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ON RANK-REVEALING FACTORISATIONS*

SHIVKUMAR CHANDRASEKARANt AND ILSE C. F. IPSENt

Abstract. The problem of finding a rank-revealing QR (RRQR) factorisation of a matrix A
consists of permuting the columns of A such that the resulting QR factorisation contains an upper
triangular matrix whose linearly dependent columns are separated from the linearly independent
ones. In this paper a systematic treatment of algorithms for determining RRQR factorisations is
presented.

In particular, the authors start by presenting precise mathematical formulations for the prob-
lem of determining a RRQR factorisation, all of them optimisation problems. Then a hierarchy of
"greedy" algorithms is derived to solve these optimisation problems, and it is shown that the existing
RRQR algorithms correspond to particular greedy algorithms in this hierarchy. Matrices on which
the greedy algorithms, and therefore the existing RRQR algorithms, can fail arbitrarily badly are
presented.

Finally, motivated by an insight from the behaviour of the greedy algorithms, the authors present
"hybrid" algorithms that solve the optimisation problems almost exactly (up to a factor proportional
to the size of the matrix). Applying the hybrid algorithms as a follow-up to the conventional greedy
algorithms may prove to be useful in practice.
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1. Introduction. The problem of finding a rank-revealing QR (RRQR) factori-
sation of a matrix A consists of permuting the columns of A such that the resulting QR
factorisation contains an upper triangular matrix whose linearly dependent columns
are separated from the linearly independent ones. RRQR factorisations are useful in
problems such as subset selection and linear dependence analysis [21], [29], [37], [39],
subspace tracking [6], [14], and rank determination [9]. Further applications are given
in [12] and [17].

To determine a RRQR factorisation one could just adopt the brute force approach
and inspect all possible column permutations until one has found a factorisation to
one’s liking. The operation count, of course, is guaranteed to be combinatorial. Con-
sequently, much effort has gone in designing RRQR algorithms whose operation count
is polynomial in the size of the matrix.

The first such algorithm, the QR factorisation with column pivoting [7], [16],
[19], was developed by Golub in 1965 and by Faddeev, Kublanovskaya, and Faddeeva
in 1966. It makes use of column permutations and orthogonal rotations to maintain
the triangular structure of the matrix. About ten years later a second algorithm was
published by Golub, Klema, and Stewart [20], based on applying the first algorithm
to certain singular vectors of the matrix. At about the same time, a third algorithm
appeared in a paper by Gragg and Stewart [22] that works on the inverse of the
matrix. These three algorithms constitute the basis for all known RRQR algorithms.

Yet, it took another ten years for the next batch of algorithms by Stewart [32],
Foster [17], and Chan [9] to appear. By this time it was known that there are matrices
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for which Golub’s RRQR algorithm [7], [16], [19] can fail arbitrarily badly; Kahan’s
matrix [28] is such an example.

Again the field lay fallow for several years. Recently Hong and Pan [26] proved
that an optimal RRQR factorisation is able to produce an estimate of a singular value
that is accurate up to a factor proportional to the matrix size. This result implies that,
in exact arithmetic and with a combinatorial operation count, RRQR factorisations
have the potential of being accurate and reliable. (Much more than that, though, the
result represents a statement about the relation between matrix columns and singular
values: it says that there are k columns in the matrix that can reproduce, up to a
factor in the matrix size, the kth singular value of the matrix.)

These days, the potential of RRQR factorisations is investigated for use in trun-
cated singular value decompositions [10], [23], Lanczos methods [14], total least squares
[37], and sparse matrix computations [3]-[5], [30]. Stewart has extended the RRQR
factorisation by allowing orthogonal rotations from the right, resulting in the so-cMled
URV decomposition [1], [31], [35], [36].

The state of affairs regarding RRQR factorisations can be summed up as follows.
Despite the variety of algorithms, the problem of what it means to find a RRQR de-
composition has never been clearly defined. Most definitions of a RRQR factorisation
are about as fuzzy as the one we gave in the first sentence of this paper. Relation-
ships or connections among the different RRQR algorithms are not known. All algo-
rithms have the potential of failing badly. For some, we know the matrices where
they fail badly. No criteria, other than a few test matrices, are known for comparing
algorithms and judging their quality. Surprisingly, in numerical experiments, most
RRQR algorithms turn out to be accurate and fast.

In this paper we present a systematic treatment of algorithms for determining
RRQR factorisations. We start by presenting three precise mathematical formulations
for the problem of determining a RRQR factorisation: one is a maximisation problem,
one is a minimisation problem, and a third one is a combination of the two. We
derive a hierarchy of "greedy" algorithms to solve the maximisation problem. It
turns out that algorithms for solving the minimisation problem can be obtained by
running algorithms for the maximisation problem on the inverse of the matrix and vice
versa. This gives two parallel hierarchies of greedy algorithms for determining RRQR
factorisations. We show that the existing RRQR algorithms correspond to particular
greedy algorithms in this hierarchy. Moreover, we present matrices on which the
greedy algorithms, and therefore the existing RRQR algorithms, fail arbitrarily badly.

Finally, motivated by our insight from the behaviour of the greedy algorithms,
we present three "hybrid" algorithms that solve the optimisation problems with an
accuracy given by the bounds of Hong and Pan [26]. Although the worst-case opera-
tion count of the hybrid algorithms may be combinatorial, we have not been able to
find a matrix where this occurs. We present a few numerical experiments to demon-
strate that applying the hybrid algorithms as a follow-up to the conventional RRQR
algorithms may prove to be useful in practice.

2. The problem. In this section we give mathematical formulations of the prob-
lem of determining a rank-revealing QR (RRQR) factorisation of a matrix M.

Let M be a real m n matrix and m >_ n. We assume that the singular values
a(M) of M are arranged in decreasing order

al(M) >_... >_ O’n(M).

We also assume that k is a given integer such that 1 _< k < n and ak(M) > 0. In the
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applications where rank-revealing factorisations are of relevance, ak(M) and ak+ (M)
are usually "well-separated," and ak+l (M) is "small," of the order of the error in the
computation, which means that the matrix has numerical rank k. Although our
algorithms do not use this, it is useful to keep it in mind.

Denote by

MH QR

the QR factorisation of M with its columns permuted according to the n x n permuta-
tion matrix H. The real m x n matrix Q has orthonormal columns, and the real n n
matrix R is upper triangular with positive diagonal elements. We block-partition R
as

where Rll is a k x k matrix.

k n-k
k (R11 R12 )-R,n- k 0 R22

The RRQR problem. The problems to be discussed in this paper are how to choose
permutations H such that

(;rmin(Rll) rk(M

or

amx(R22) a+(M)

or both hold simultaneously. So there are three objectives leading to three different
problems, all of which we refer to as "rank-revealing problems." It is an open question
whether these are really three different objectives. That is, if we find a permutation
such that amin(Rll) a(M), does it imply that rmax(R22) ak+(M)? Our
attempts at answering this question have not yielded sufficiently good answers, and
in this paper we will consider them as three independent objectives.

Satisfaction of the third objective, where both bounds are satisfied simultaneously,
implies that the leading k columns of MH have condition number a(M)/a(M) and
approximate the range space of M to an "accuracy" of ak+l (M).

Before proceeding any further we should be more specific about those signs.
According to the interlacing properties of singular values (Corollary 8.3.3 in [21] ap-
plied to RT) the bounds

(I1) (:rmin(Rll)

_
ak(M),

(I2) amax(R22)

_
rk+l(M)

hold for any permutation II. So the RRQR problems can be precisely formulated as
Problem-I: maxri amin(Rll);
Problem-II: min r amx(R22)

or that both can be solved simultaneously, though that may not be possible all the
time.

Because we believe that the time complexity of these problems is combinatorial,
we are content to find permutations H that guarantee

ak(M)
ami. >
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or

amax(R22) <_ q(n)ak+l(M)

or that both bounds hold simultaneously. Here p(n) and q(n) are low degree polyno-
mials in n. We say that a permutation H that achieves one or both of these inequalities
gives rise to a RRQR factorisation MH QR. An algorithm that attempts to solve
Problem-I is called a Type-I algorithm and has the suffix I in its name. An algorithm
that attempts to solve Problem-II is called a Type-II algorithm and has the suffix II
in its name.

3. Overview of RRQR algorithms. We accomplish two tasks in this paper:
first, we demonstrate that all existing RRQR algorithms form a hierarchy of greedy
algorithms; and second, we present a set of new algorithms that are more accurate
than the existing RRQR algorithms.

The existing algorithms in the literature guarantee that

ffmin (Rll) >
ak(M)

or
n2k amax(R22) _< ak+l(M)n2n-k

where the bounds are worst-case bounds. In practice, however, the existing algorithms
perform quite well and the worst-case bounds are rarely obtained. There also exists
an algorithm [20] with simultaneous worst-case bounds

(Tmin (Rll)

_
ak(M)

n2min(k,n-k) ffmax(R22)

_
(k+l(M)n2min(k’n-k).

In contrast, our new algorithms guarantee

O’min (Rll)
v/k(n- k + 1)

or

amax(R22)

_
crk+l(M)v/(k + 1)(n-

or both. The existence of such RRQR factorisations was established in [26]. Although
we believe that the operation count of our new algorithms is combinatorial in the worst
case, preliminary numerical experiments indicate that they may be fast in practice.

We ignore brute force algorithms for finding permutations H because they do
not exploit any properties of the matrix. Their operation count is therefore always
combinatorial.

Now we start with the presentation of a unified approach to the existing RRQR
algorithms. Our approach simplifies the presentation and analysis of these algorithms,
and it also directly motivates our new algorithms. To this end, we make the following
simplification. If MH QR is a QR factorisation of M for some permutation H, and
if RH QR is a RRQR factorisation of R, then

MHH QQR

is a RRQR factorisation of M. Hence one can ignore the original matrix M and work
with the triangular matrix R instead.
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4. Type-I greedy algorithms. It is our goal to find algorithms to solve Prob-
lem-I

that guarantee

max ffmin (Rll)
II

ak(M)
amin (Rll)

_
p(n)

where p(n) is a low degree polynomial in n. Problem-I is likely to represent a com-
binatorial optimisation problem, and this suggests that a greedy algorithm might do
well.

The basic idea for our greedy algorithm, which we call Greedy-I, is very simple.
The objective of Problem-I is to find k well-conditioned columns of M. So suppose
that we already have < k well-conditioned columns of M. Then Greedy-I picks a
column from the remaining n- columns of M such that the smallest singular value
of the given columns plus the new column is as large as possible. Starting with 0
this is done k times to pick k well-conditioned columns of M. Note that Greedy-I
does not discard a column once it has been chosen.

ALGORITHM GREEDY-I
R() R
For 0 to k- 1 do
Set

n-1

n-1 C

Denote the columns of B and C by bi Bei and c Ce.
1. Find the next column + j of R(l) such that

max (7min min
l<i<n-1 Ci Cj

2. Exchange columns + 1 and + j of R(t), and retriangu-
larise it from the left with orthogonal transformations to
get R(t+1).

In iteration 0, Greedy-I selects the column of R with largest norm. If every-
thing goes right, then R(k) should be a rank-revealed upper triangular matrix. It is
important to keep in mind that the dimensions of A, B, and C change with every
iteration of Greedy-I.

Step 1 of Greedy-I, which selects the next column to be dded to A, is very
expensive. We mke it cheaper, while t the same time retaining the greedy strategy,
by performing step 1 only approximately. Thus the algorithm becomes less greedy
and more efficient. Since Greedy-I cn only find an approximate solution t best,
further approximations will hopefully not make matters much worse.

Before continuing we make a small simplification. If ]]c]], where ]]. repre-
sents the two-norm, then

ffmin 0 C
ffmin 0 i
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This means, only the two-norm of the columns of C matters rather than individual
elements in a column. Therefore the problem amounts to determining the smallest
singular values of an upper triangular matrix of order + 1.

Now we present a sequence of successively less greedy approximations to step 1
of Greedy-I that give rise to most of the existing RRQR algorithms. In other words,
we show that most existing RRQR algorithms can be viewed as approximations to
algorithm Greedy-I.

In the first approximation, the determination of the smallest singular values
min(’) is replaced by directly computable quantities. We choose to approximate
the smallest singular value of a matrix by the reciprocal of the largest two-norm of
the rows of its inverse: if D is a nonsingular matrix of order n and

then

D-1 r2
T

1
Omin (D) < min < (D) v/-.,77--y O’min

l<i<n

Consequently, the smallest singular value of a nonsingular matrix of order n can be
estimated up to a factor of x/.

ALGORITHM GREEDY-I. 1
Replace step 1 in algorithm Greedy-I by:
Find the next column + j of R(z) such that

l<i<n--1 h ()-e A b
0 "7

--1 --1

=min e A bj

where e is the hth row of the identity matrix of order + 1.

An algorithm similar to Greedy-I.1 was proposed by Stewart [34] where, for rea-
sons of efficiency, the Frobenius norm rather than the two-norm is used.

Although we say that Greedy-I.1 is an approximation to Greedy-I, this does not
necessarily imply that Greedy-I reveMs the rank better than Greedy-I.1. It only means
that Greedy-I.1 is less greedy than Greedy-I. In particular, if in iteration Greedy-I
and Greedy-I.1 have the same submatrix A, then the Tmin of the leading + 1 columns
from Greedy-I is larger than or equal to the amin of the corresponding columns from
Greedy-I.1. But there is no guarantee that in the subsequent iteration + 1 the amin
of the leading + 2 columns of Greedy-I will be larger than or equal to the amin of
the corresponding columns of Greedy-I.1. This is because the greedy algorithms are
not allowed to change their minds and to throw out a column selected in a previous
iteration, and the best local choice in one step does not necessarily lead to the global
optimum.

Because

( ) ( _1)A b
-1 A- -A-

0 - 0
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the upper left block A-1 is already available from the previous step, and only
the last column of the inverse needs to be computed for each i, which requires n-
matrix vector multiplications. But carrying the inverse along with us at every stage
is costly in terms of space and we first get rid of that.

If the greedy algorithms have not failed at the/th stage, the leading columns
must be "well conditioned." Hence A must be a well-conditioned matrix. Therefore
min(A) cannot be "small," which in turn implies that no row of A-1 can have a large
two-norm. But if the addition of a new column, say the ith, produces a small singular
value, then the two-norm of some row of the inverse of the corresponding matrix must
be large. But since we assumed that no row of A-1 is large, this must mean that
some component of the last column of the inverse

( -A-lb(’
-1

)
must be large in magnitude. Thus the second approximation to step 1 of Greedy-I,

-1

still avoids the selection of a very bad column.

ALGORITHM GREEDY-I.2
Replace step 1 in algorithm Greedy-I by:
Find the next column + j of R(t) such that

max min
l<i<n--I h

_A-1 -1),;1 h

-1

To eliminate the n- backsolves A-1 bi in Greedy-I.2, we make further use of the
observation that A is probably well conditioned, so IIA-lb 1, and any large value
must come from "yi. Thus the third approximation to step 1 of Greedy-I,

min
-1

still tries to avoid selecting a very bad column. This is nothing but the standard QR
algorithm with column pivoting [7], [19], which is also described in [16].

ALGORITHM GREEDY-I.3 (GOLUB-I)
Replace step 1 in algorithm Greedy-I by:
Find the next column + j of Rq) such that maxl<i<n-t

This algorithm can be implemented efficiently because the column norms 3’i need
only be updated during each iteration, rather than recomputed from scratch [7].

The approximations still to be discussed do not result in algorithms that are
faster than Golub-I; in fact, they may be slower, but they are necessary to derive the
remaining existing RRQR algorithms.

The goal is to make a further approximation to

max " 0I+1
l<i<n-I
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in iteration l, where at is the/th diagonal element in the final upper triangular matrix
in Golub-I. To this end, compute the right singular vector of the submatrix C of R(t)

corresponding to its largest singular value IICII. Therefore the next approximation
consists of finding the (n l) 1 vector v such that

and choosing as the next column the column j that corresponds to the largest com-
ponent in magnitude of v,

l<i<n--I

ALGORITHM GREEDY-I.4 (CHAN-I)
Replace step 1 in algorithm Greedy-I by:
Find the next column + j of R(t) for which Ivjl maxl<i<n-1

This algorithm was discovered independently by Chan and Hansen [11] and is
related to the algorithm in [9]. Its choice of column j can be justified as follows. The
Cauchy-Schwartz inequality gives

As v has n- elements and satisfies Ilvll 1, it must have a component vj for which
Ivy >_ 1/v/n- 1. This is true in particular for the largest component in magnitude of
v. Using this in /j _> I[CII Ivy gives

OZl+l (j (OZl..i..l OZl+ max
v/n l<i<n-I

That is, the 7j from algorithm Chan-I will be almost as large as that from algorithm
Golub-I, if both algorithms were given the same columns in A.

5. Threshold pivoting algorithms. We can make even further approxima-
tions to Chan-I. Algorithms Golub-I and Chan-I can be viewed as selecting large
diagonal elements (pivots) at each stage to keep the smallest singular value as large
as possible. According to the interlacing property (I2) of singular values,
7/+1(M), so

0/+1 )
O’l+l(M)

0 < < k- 1 where o/+ max
v/n l<i<n--I

But all that is really needed is

ffmin(Rll) ak (M),

which means one may be able to get away with choosing pivots that are only as large
as crk(M). That is, instead of trying to achieve

I(Rll)lll , l<_l<_k,

we only try to ensure that

I(R11)ul ak(M), l</<k.
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Golub-I and Chan-I try to keep all the pivots as large as possible at each stage. But
since amin(Rll) will be smaller than the smallest pivot, we are hoping that only the
size of the smallest pivot is important, so that the conditions on the larger pivots can
be relaxed.

Versions of Golub-I based on this approximation also go by the name of "threshold
pivoting," and we now present two such algorithms. The first algorithm represents one
of the first RRQR algorithms [20], [21] and, as we will show later, has the distinction
of being able to solve both Problem-I and Problem-II simultaneously. Our name for
the algorithm derives from the last names of its authors, Golub, Klema, and Stewart.

ALGORITHM GKS-I
Let R UEVT be the singular value decomposition of R with

k n-k

1. Compute V1.
2. Apply algorithm Golub-I to the rows of Vx, VITH QvT.
3. Compute the QR decomposition RH QR, which is the

required rank-revealing factorisation.

To see that this is indeed a threshold pivoting algorithm, partition the singular
value decomposition (SVD) of R as follows

R U ( El 0)(V1 V2 T
0 -2

Substituting the result of step 3, (TRH --/, in step 2 gives

Q,, 1 uTQ"

Since -1 and the leading k columns of represent upper triangular matrices,

Because is the result of QR with column pivoting on a matrix with orthonormal
rows, he largest element in magnitude in the th row of is (1)i and I( l).l
1/. Combining the inequalities gives a lower bound on the pivots,

So algorithm GKS-I behaves like a threshold pivoting algorithm.
We now describe a threshold pivoting algorithm that we call Foster-I because it

is related to an algorithm proposed by Foster (see Algorithm 2 in [17]). For a given 5,
where 5 is presumably about as big as ak(M), Foster-I tries to achieve amin(Rll) 5
by choosing pivots greater than or equal to 5. To this end it searches the rows of
R, bottom up, for an element of magnitude greater than 5. When it finds such an
element it adds the corresponding column to RI and continues the search. As in all
greedy algorithms for Problem-I, once a column has been added to R it is never
discarded again. The algorithm halts when it h finished searching n rows. If it
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succeeds in finding k elements larger than 5, then the first k pivots are at least as
large as 5.

ALGORITHM FOSTER-I
i n, count n, 0
While (count >_ 1) do

Find the maximal element in row i" IRijl max{IRiil,...,
If (IRjl _> i) then

Insert column j between the/th and (l+1)st columns
Retriangularise R
l=l+l

else
i--i-1

count count- 1

Here we have come to the end of our approximations to Greedy-I, which was a
greedy algorithm for solving the Type-I problem

max (min (Rll).
H

6. (Pessimistic) analysis of the greedy algorithms. In the previous sec-
tions we presented a succession of approximations to algorithm Greedy-I with little
formal justification. Now we need to investigate how big ak(M)/amin(R11) from these
algorithms can be. Algorithm Greedy-I represents the "best" method in the greedy
sense, so we expect its worst-case behaviour to be indicative of that of the other greedy
algorithms.

Suppose Greedy-I has already set aside columns

0 C

where A is a matrix. It then chooses as the (1 + 1)st column that column j which
when added to A maximises the smallest singular value, so

(l+l max (Tmin (Tmin
l<i<n-t 0 ci 0 cj

To estimate how small t+l can be we need to compute a lower bound on the
smallest singular value. To this end we compute a lower bound instead for the column
Golub-I would select, given the same A, because this also serves as a lower bound for
the column Greedy-I picks. So assume that Golub-I picks column q. This column has
the largest norm among all columns of C.

Just as in algorithm Greedy-I.1, we estimate (:rmin by the reciprocal of the largest
two-norm of the rows of the inverse

0 7q 0 7-1

The norm of the row with the largest norm among the leading rows of the inverse is
bounded from above by

+
max IleA- ll + +
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where the penultimate inequality is a result of the Cauchy-Schwartz inequality. The
norm of the (1 + 1)st row of the inverse clearly cannot exceed the upper bound on
the maximal norm of the leading rows. Since the maximal row norm of the inverse
approximates the smallest singular value of the matrix, we have

l+i _>
V/2( + 1) al (M) /a.

Using the interlacing property (I2)

al+i(M)
max % >_

l<i<n--I /It-

with the above inequality gives a lower bound for the smallest singular value

al(M) V/2(/- 1)(n- l)

This goes to show that even if the leading columns had been selected so that
was as accurate as possible, there could be a potentially serious deterioration in the
quality of estimation from/th to (1 + 1)st singular value if the (1 + 1)st column is
chosen according to a greedy strategy. This is because a greedy algorithm, once it
has decided on a column, can never get rid of it. And a column that participates
in an accurate estimation of l may not be a column to be included in an accurate
estimation of t+. In particular, the estimate t+ worsens with the ill conditioning
of the leading columns in R(t).

In fact, there exist matrices that almost achieve the above bound. One such
example is the Kahan matrix [28]

1 0 0 1 -c c

,vn 0 s ". 0 1 ".

o o 0 o o C

0 0 8n-- 0 0

where c2 + 8
2 1. Greedy-I, Greedy-I.1, Greedy-I.2, and Golub-I do not cause any

permutation of the columns of Kn. We prove this for Greedy-I by induction. Since
all columns of Kn have unit norm, no column permutations are necessary in the
first iteration of Greedy-I. Suppose no permutations are necessary during the first
iterations, so

Kn__ I Kl bi bn-l l.Cl Cn--l

In the (1 + 1)st iteration Greedy-I selects the (1 + 1)st column by examining

(Tmin
Ci

--(7min
"}/i

"yi lci I, 1 _< _< n- 1.

But all bi are identical for the Kahan matrix, as are all %; hence no permutations are
necessary in iteration + 1.
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Yet Kn is not in rank-revealed form.
singular values are

For n 100, k 99, and c 0.2, the

aoo(Koo) 3 10-9,
a99(K1oo) 0.1482,

(99 4 10-9.

Although the 99th and 100th singular values are well separated, the smallest singular
value of the first 99 columns chosen by the greedy algorithms is exponentially smaller
than a99 (Kloo).

Traditionally, the Kahan matrix has served as an example to demonstrate the
failure of algorithm Golub-I to make the last diagonal element of the same order of
magnitude as aloo(Kloo). But from our discussion it is clear that Golub-I pursues a
different mission: it wants to make (99 " (r99(K100). And it fails in that.

7. (Optimistic) analysis of the greedy algorithms. Now that we have seen
how badly the greedy algorithms do, we wonder why they do so well in practice? This
question seems to be related to other rare matrix events like pivot growth in Gaussian
elimination with partial pivoting. Foster [18] considers this question for QR without
column pivoting. The case of QR with column pivoting seems to be much harder to
analyse, and we can only give informal reasons why the greedy algorithms Golub-I,
Chan-I, and GKS-I are so effective.

The basic idea is to derive a lower bound for ffmin(Rll) of the form

ak(M) O’min(Rll) O’k(M),

where W is a k k triangular matrix with

IwI _< 1, Iw.I 1,

and the inequality is componentwise. The lower triangular matrix in Gaussian elimi-
nation with partial pivoting satisfies these same two properties as the W matrices and
is usually well conditioned. (Or as Kahan [28] would say, "intolerable pivot growth
is a phenomenon that happens only to numerical analysts who are looking for that
phenomenon.") Of course, this does not prove anything and more work is needed in
this regard.

We start with the derivation of the above bound for algorithm Golub-I. Here we
define the matrix W by

Rll DW, D diag(Rll),

where diag(Rll) is a diagonal matrix whose diagonal elements are the same as those
of Rll. The diagonal elements of Rll in Golub-I satisfy I(Rll)iil >_ I(Rll)ijl; hence W
fulfills the required conditions

IW <_ 1, IW,,[ 1.

The interlacing properties (I2) of singular values and the first few inequalities in 5
imply that

ai(M)
1 <_ i <_ k.I(RI ).I >

+ 1’
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Since D is a diagonal matrix, its singular values equal its diagonal elements, so

1
D_

amin(D) II-< o’k(M)"

From (Tmin(Rll) >_ (Tmin(D)(Tmin(W) the desired bound for Golub-I follows

amin(Rll)

_
ak(M)

Next we derive the bound for algorithm Chan-I. The proof is similar to that of
Theorem 3.1 in [9]. We first define the n k auxiliary matrix Z. Its columns are
composed of the right singular vectors vq) associated with the largest singular values
of the lower right block of order n- + 1, (t) of the final triangular matrix R. That22

is, Z is a lower trapezoidal matrix with columns

0

Zet Zt 1 <_ <_ k,

v(O

where (t),,(t)= iiR(2 llu< )and IIv<011 Ilu< )ll 122
matrix W for Chan-I is given by

Then the lower triangular

z=[W|D/\ D=diag(Z Zkk),
\/

where Zii are the diagonal elements of Z.
According to algorithm Chan-I, the first component of v(t) is the largest in mag-

nitude, hence

{W{

_
1, {W,i}- 1.

Moreover, {Iv(O{{-- 1 implies

and

1 1

{{D_l{ rmin(D

_
V"

From the interlacing property (I2)of singular values, II-o  II (), and the
fact that vq) is a right singular vector with

Iv(1)]T r,(t) -22
1

l(1 [u(1)]T,

we get
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Since ZT and R are upper triangular this implies

IIDWTR- < IIZTR-111 < v/ max ZTR-111 <l</<k ak(M)

Hence

IIO- II IIW- 
<

ak(M)

gives the desired bound for algorithm Chan-I

O’min (Rll)

__
ak(M)

At last we derive the bound for algorithm GKS-I, which is also given in [20] and
in Theorem 12.2.1 in [21]. Let R UEVT be the SVD of R and partition

k n-k

V=(Vl V2 ).

Algorithm GKS applies algorithm Golub-I to VT, so

v n= Q ,rlr,
where 1 is a lower trapezoidal matrix. The matrix W for GKS-I is defined by

I=(W)D D=diag(lPil kk)

where Vi are diagonal elements of V1 and W is a lower triangular matrix. Because
1 comes from algorithm Golub-I, its diagonal elements are the largest elements in
magnitude in each column, so IV/il > IVil and the matrix W satisfies the required
properties

IWI 1, IWii[ 1.

Since each column of V1 has unit norm,
matrix R are upper triangular, one gets

Ii] >- 1/x/-, and since WT and the final

IIR  I] < IIR; II
x/llw-lll IIW-TII IID-Xll

Moreover, from 5 we know that (with R now renamed R)

IlfflTR-111 IlNi-111 ak(M)

Combining the last two inequalities yields

O’min (Rll) _> ak(M)



606 SHIVKUMAR CHANDRASEKARAN AND ILSE C. F. IPSEN

To summarise, we have demonstrated in this section that the failure of algorithms
Golub-I, Chin-I, nd GKS-I depends on IIW-II, where W is triangular matrix
satisfying

IwI < , Iw.I 1.

The lower triangular matrix L in Gaussian elimination with partial pivoting satisfies
the same properties as W, and it generally turns out that ILL-11[ is small, say, like
O(n). Although this does not prove anything, it does show that M1 these rare matrix
events are closely related. The probability of pivot growth in Gaussian elimination
with partial pivoting is closely related to the probabilities of Golub-I, Chan-I, and
GKS-I failing.

For the above matrices W of order k a tight upper bound on IIW- is [16], [28]

1 V/4k + 6k- 1 < v2 k > 1IIW-ll < 5
and, as illustrated in 6, the Kahan matrix essentially achieves this bound.

8. Unification. After having discussed greedy algorithms for the solution of
Problem-I

max (Tmin (R11 ),
H

we now turn to greedy algorithms for Problem-II

min amx(R22).
H

Fortunately, a simple observation greatly reduces this task.
Section 3 explains why it suffices to solve Problem-I for triangular matrices R and

to consider

/H QR, R= (R11 R12)0 R22

Suppose that/ is nonsingular, invert both sides of the above equation,

HT- ( R-{IO R-llR12 QT

and take transposes on both sides

/-TII Q 11
/:-TloT/:)--T R2T-v22 12-11

Now Problem-II can be formulated as

1
min amax (R22) min
II II (:rmin(R-21)

1

m&x YI O’min (R-21
1

max YI (Tmin (R-2T
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Hence solving Problem-II is equivalent to solving Problem-I for the inverse. We call
this the unification principle as it lets us unify the algorithms and analyses of Problem-
I and Problem-II.

Applying a Type-I algorithm to the inverse gives

-TI: IPllo P12/P22
where Pll is an upper triangular matrix of order n- k, P22 is an upper triangu-
lar matrix of order k, and (hopefully) amin(Pll) an-k(t-T). Hence we need to
make some adjustments as PI should correspond to R2T, which is lower triangular.
Moreover, Pll should really have been the lower right block.

The necessary adjustments are achieved by a sequence of permutations, which
can be accumulated in Q and H. First permute the two block columns and the two
block rows,

0)0 P22
--+

P22 0
--+

P12 Pll

Then reverse the ordering of the columns and of the rows in PI and P22 separately.
This is accomplished by means of permutation matrices Jp of order p that have ones
on the antidiagonal,

0 )P12 Pll -- Jn-kP2Jk Jn-kPllJn-k

Now the resulting matrix has the desired form; it is lower triangular with Pll in the
lower right corner.

Therefore, the postprocessing step consisting of the above permutations proves
that applying a Type-I algorithm to the rows of the inverse amounts to executing a
Type-II algorithm. In fact, we call such an algorithm the Type-H version of the Type-I
algorithm. This notion is completely symmetric with respect to the two types, as one
can equally well construct a Type-I version of a Type-H algorithm to solve Problem-I.

Unification principle. Running a Type-I algorithm on the rows of the inverse of
the matrix yields a Type-II algorithm.

9. Type-II greedy algorithms. In this section we illustrate the unification
principle by exhibiting the Type-II version of algorithm Golub-I, and by proving that
algorithm GKS-I also solves Problem-II.

We use the name Stewart-II for the Type-II version of algorithm Golub-I, as it
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was first proposed in [33], though not quite in the form in which we are presenting it.

ALGORITHM STEWART-II
R() R
For 0 to n- k- 1 do

Set

n-1
n-l ( A B) R(0

C

1. Find the next column j of R(l) such that

max Ile A-ill IlefA-111.lin--I

2. Exchange columns n-1 and j of R(t), and retriangularise it
from the left with orthogonal transformations to get R(t+t)

Clearly, algorithm Stewart-II obtains the right ordering of the columns by sending
the selected columns to the right end of the matrix. In all other matters it is completely
equivalent to running Golub-I on the rows of the inverse:

A few clarifying remarks may be in order. Just because a Type-II version of
an algorithm can be constructed by applying a Type-I algorithm to the rows of the
inverse of the matrix, this does not mean that is also how it should be implemented.
There may very well be a way to reformulate the Type-II version so that it avoids
explicit dealings with inverses.

Furthermore, it is important to realise that a Type-I algorithm and its Type-II
version, in general, come up with different column permutations; and that solving
Problem-I does not entail solving Problem-II. All the unification principle says is that
if there is an algorithm for solving Problem-I, then a simple modification will give an
algorithm for solving Problem-II and vice versa.

There is another advantage of the unification principle. It allows us to carry over
the analyses and worst-case examples for a Type-I algorithm, with suitable modifica-
tions, to its Type-II version and vice versa. A few examples follow.

In 6 we explained that the lower bounds for the singular value estimates from
algorithms Golub-I, Chan-I, and GKS-I can be cast in the form

(:rmin (Rll) _> ak(M)

where W are triangular matrices satisfying

The unification principle therefore admits upper bounds for the singular value esti-
mates from the Type-II versions of Golub-I, Chan-I, and GKS-I of the form

max(R22) <_ o:+l(M)nllw-1ll,

where, again, W are triangular matrices satisfying

IWI _< 1, {W.l 1.
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As for other existing Type-II algorithms, the Type-II version of Chan-I, which we
call Chan-II, was published apparently independently in [22], [9], [17]. The Type-II
version of GKS-I was first published in [20] and will be called GKS-II. The Type-
II version of Foster-I, which we refer to as Foster-II, was first published in [17]. The
detailed exposition of Foster-II in [17] also serves to illuminate our algorithm Foster-I.

We still owe a justification of our claim that GKS-I also solves Problem-II [20],
[21]. Let R UEVT be the SVD of the final triangular matrix R, where

k n-k
k (VII VI2 )n-k V21 V22 V,

This implies

and

1 1--Tmin(R-21) > Tmin(-ly22) O’min(-]-l)(Tmin(Y22)--

so

amin (Rll)

_
ak(M)

According to the CS decomposition, 2.6 in [21],

Since GKS-I attempts to keep IIV sm, it therefore automatically also tries to
keep I[V2 small. Therefore GKS-I solves both, Problem-I and Problem-II.

At last we demonstrate how the worst-case example of a Type-I Mgorithm can be
converted to a worst-case example for its Type-II version. Section 6 illustrates that
the Kahan matrix

1 0 0 1 -c c

Kn= 0 s ". 0 1 ".

". ". 0 ". ". c
0 0 8n-1 0 0

represents a worst case for algorithms Greedy-I, Greedy-I.1, Greedy-I.2, and Golub-I.
It follows from the unification principle that the modified Kahan matrix whose inverse
is given by

1 -c c sn- 0 0

0 1 "’. 0 sn-2 "’.

0 0 1 0 0 1
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maxii O’min (R11 minn ffmax(R22)

Greedy-I

Greedy-I.1

Greedy-I.2

Golub-I

Chan-I

Greedy-II

Greedy-II. 1

Greedy-II.2

Stewart-II

Chan-II

GKS-I GKS-II
Foster-I Foster-II

Fie,. 10.1. The greedy algorithms.

where C2 -- 82 1, represents a worst case for algorithms Greedy-II, Greedy-II.1,
Greedy-II.2, and Stewart-II, the Type-II versions of the respective Type-I algorithms.

10. Summary. This ends our presentation of the existing RRQR algorithms.
We gave three mathematical problems that we called rank-revealing problems,

Problem-I:
Problem-II:

maxH ffmin(R11),
min I (max(R22),

and the third was to solve Problem-I and Problem-II simultaneously. We then exhib-
ited a sequence of successively less greedy algorithms to solve Problem-I. By means of
the unification principle, we demonstrated the existence of Type-II versions of these
algorithms, which are also greedy but solve Problem-II instead. Figure 10.1 illustrates
the two parallel hierarchies made up from the Type-I and Type-II algorithms, where
the corresponding Type-I and Type-II algorithms are next to each other, and each
algorithm is less greedy than the one above it. Each of the existing RRQR algo-
rithms has a place in this hierarchy. Examples of exponential failure of these greedy
algorithms are provided by the Kahan and modified Kahan matrices.

We have ignored the greedy algorithms based on condition number estimators
for triangular matrices, e.g., [2]-[5], [25], [34], because their behaviour depends very
much on the particular condition number estimator.
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The worst-case bounds

min(Rll) > ak(M) IIR2211 < ak+l(M)n2n_k

n2k

reveal that Type-I greedy algorithms work pretty well for small k, while Type-II
greedy algorithms work well when k is close to n. This prompts the question whether
a Type-I and a Type-II greedy algorithm can be combined into a single algorithm
that works all the time. The answer is given in the next section.

11. Overview of the hybrid algorithms. In this section we present algo-
rithms Hybrid-I and Hybrid-II. They are guaranteed to solve Problem-I and Problem-
II, respectively. We also present algorithm Hybrid-III. It is guaranteed to solve both
Problem-I and Problem-II simultaneously.

In particular, Algorithm Hybrid-I guarantees that

ak(M)(rmin(Rll) >_
v/k(n- k + 1)’

rmax(R22)

_
rTmin(R11)V/k(n- k q- 1).

Note that Hybrid-I does not solve Problem-II. According to the unification principle,
the Type-II version of Hybrid-I, which we call Hybrid-II, must guarantee that

(rmax(R22)

_
rk+l(M)v/i/ q- 1)(n-

amax(R22)
rYmin (Rll)

_
v/(k + 1)(n- k)

Note again that Hybrid-II does not solve Problem-I. Hybrid-III does solve both
Problem-I and Problem-II simultaneously, and it guarantees that

ffmin (Rll) _>
v/k(n- k + 1)’

ffmax(22) ak+l(M)v/(k + 1)(n- k).

Of course, the brute force algorithm, which tries every combination of columns,
also solves these problems, but its operation count is combinatorial. What about
the hybrid algorithms? Unfortunately, we lack a complete analysis of the worst-
case operation count of the hybrid algorithms, although we believe that it may be
combinatorial as well. However, preliminary experimental results in 15 demonstrate
that the hybrid algorithms are rather efficient in practice.

As in the previous sections we assume that k is given. Although this may not be
a realistic assumption, a proper choice of k depends very much on the problem to be
solved, and we refer to [20], [33] for the discussion of this issue.

12. Algorithm Hybrid-I. The algorithm Hybrid-I is a combination of Golub-
I and Stewart-II, though in a practical implementation one may want to replace
Stewart-II by Chan-II.

The obvious strategy of running Stewart-II after Golub-I is not guaranteed to solve
Problem-I because Golub-I and Stewart-II almost always produce a unique ordering
of columns, so the result of this strategy would merely equal the result of Stewart-II.

Instead, our idea is to alternate between Golub-I and Stewart-II and to let each
work on a different part of the matrix: Stewart-II works on the (1,1) block of order k,
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and Golub-I works on the (2,2) block of order n-k+ 1 of the matrix. Suppose Golub-I
has picked the best column from the (2,2) block and put it in position k. Stewart-II
then determines whether the kth column is indeed a good column. If not, it puts the
worst column from the (1,1) block into position k. Now it is again Golub-I’s turn
to put the best column from the (2,2) block in position k. This process continues
until Golub-I and Stewart-II agree on the kth column. To understand the resulting
algorithm Hybrid-I, we briefly review Golub-I and Stewart-II.

Golub-I is good at approximating the largest singular value of MH QR. In its
first iteration it finds the "most linearly independent" column of R, i.e., the column
with largest norm. Suppose we permute this column to the first position and retri-
angularise the matrix. Then the first column rile1 of the resulting triangular matrix
approximates the largest singular value of M,

Since Stewart-II is the Type-II version of Golub-I, it is good at approximating
the largest singular value of M-1 by finding the most linearly independent row of
R-. Suppose we permute this row of R- to the last position and retriangularise
the inverse to get the triangular matrix/-1 I:IR-I. Then the last column rnn-1 en
of/-1 approximates the largest singular value of M-,

But since/-1 is triangular, rn is the trailing diagonal element of/ and it approxi-
mates the smallest singular value of M,

(min(M)

_
Irnnl

_
V/-(rmin(M).

We illustrate Hybrid-I on a 5 5 example, where k 3 and the symbol "x"
represents nonzero matrix elements. First we run Golub-I on the (2, 2) block of order
n- k + 1 so that diagonal element rkk has largest norm among all columns of the
(2, 2) block

k-1 k

X X X X X

X X X

rkk X X

X X

Now we enlarge the (1, 1) block from order k- 1 to order k so that the kth
diagonal element can transfer information between the two algorithms. Then we run
Stewart-II on the (1, 1) block of order k so that the (modified) diagonal element
has smallest norm.
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k k+l

x x x

x x

rkk

X X

X X

X X

A run of Golub-I followed by Stewart-II constitutes one iteration. The circled
elements in the (1, 2) block are modified by orthogonal rotations from the left due
to retriangularisation in Stewart-II. They are part of the (2, 2) block for the subse-
quent run of Golub-I and illustrate how one algorithm changes the part of the matrix
associated with the other algorithm. The (1, 1) block input to Stewart-II undergoes
similar changes in column k due to column permutations during Golub-I.

ALGORITHM HYBRID-I(k)
/(0) R, 0
Repeat

+ 1, permuted 0
Set

where A is of order k 1 and 6’ is of order n- k + 1.
Golub-I"

1. ind the column k+j-1 of () such that
2. If Cel < ICej then

permuted 1
Exchange columns k and k + j 1 of (t)
Retriangularise it from the left with orthogonal transformations to
get

C

where A is of order k and C is of order n-
Stewart-II"

3. Find the column j of R(t) such that IleA-1ll maxl<< [leA-l
4. If T -] eA-]< then

permuted 1
Exchange columns j and k of R
Retriangularise it from the left with orthogonal transformations to
get (t+]).

until not permuted
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The final matrix is

R22 R22

where Rll is of order k- 1 and Rll is of order k.
The two if statements assure that permutations are performed only in case of a

strict inequality but not in case of a tie.
We proceed with an analysis of Hybrid-I because it is not clear that Hybrid-

I eventually halts, and that it indeed increases amin(Rll). We first show that if
Hybrid-I halts then

rmin (Rll)_
(k(M)

V/k(n- k + 1)
amax(R22)

_
amin(Rll)V/k(n- k + 1).

Suppose Hybrid-I halts. Then Golub-I applied to R22 does not change the first column
rkkel of R22, where rkk is the kth diagonal element of R. Hence

> >
v/n- k + l v/n- k + l

since R22 is a submatrix of/22. Moreover, Stewart-II applied to RI does not change
the last row rkkeTk of Rll, and

Combining the two inequalities for rkk gives the first desired bound

rmax(R22

_
min(Rll)Vk(n- ]g - 1).

Applying the interlacing property (I2) to R22,

amax(R22) > ak(M)
v/n-k+l v/n-k+l

and combining the previous two inequalities yields the second desired bound

Tmin (Rll)

_
ak(M)

+ 1)

Thus, if Hybrid-I halts, it solves Problem-I.
To prove that Hybrid-I indeed halts, we make use of the fact that columns are

permuted only in case of strict inequalities. The basic idea is to show that det(A)l is
a strictly increasing function during the algorithm. Remember that A is the leading
principal submatrix of order k. Since det(A)l is unique for any given column ordering,
no column ordering repeats if det(A)l is strictly increasing. As there are only a finite
number of column orderings, Hybrid-I must eventually halt.

It remains to show that det(A)l is strictly increasing during Hybrid-I. By as-
sumption from 2 we have that ak(M) > 0. So we can assume that our initial
ordering of columns is such that det(A)l > 0. Stewart-II does not change det(A)
because det(A)l is invariant under application of orthogonal transformations from
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the left to (A B_) and to C; and under permutation of the columns of A and of
the columns of (g). To see how Golub-I affects det(A), we divide Golub-I into two
phases: the first phase keeps det(A)l invariant, while the second one may change
det(A)l. Accordingly, we identify and separate the first column (bT 3"eT1 )T of the
matrix affected by Golub-I,

In the first phase the columns of () are permuted, so that the first column of the
permuted ( has largest norm among all columns of , and then the permuted (7 is
retriangularised to give (. In the second phase, the relevant matrix elements are
and the nonzero elements ( and

k
k+l

Golub-I permutes columns k and k + 1 if 3’2 < O2
_

/2, in which case the matrix
becomes

k
k+l

k k+l
* * * *

c 3’ *

The matrix is retriangularised by eliminating/ via a Givens rotations from the left,
which affects only rows k and k + 1 and results in

k
k+l

k k+l

v/ + x
X *

where the two x represent new numbers. Other than the kth diagonal element, which
changed from 3’ to V/a2 + 2, no diagonal element of A changed. But the kth diagonal
element underwent a strict increase in magnitude since 13’1 < V/a2 + 2, and therefore
det(A)l is a strictly increasing function during Hybrid-I. Consequently, algorithm
Hybrid-I must halt.

Section 15 presents some numerical experiments on the running time of Hybrid-I.

13. Algorithm Hybrid-II. In this section we present algorithm Hybrid-II, the
Type-II version of Hybrid-I. According to the unification principle, Hybrid-II guaran-
tees that
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Tmax(R22)

_
ak+l(M)v/(k + 1)(n- k)

max(R22)amin(Rll)

_
v/(k + 1)(n- k)

From the interlacing properties (I1) and (I2) it follows that Hybrid-I(k+l) guarantees
the same bounds as Hybrid-II(k). Thus, one way to implement Hybrid-II(k) is via
Hybrid-I(k+l).

ALGORITHM HYBIID-II(k)
Hybrid-I(k+l)

Although nonsingularity is needed for the application of the unification principle,
this implementation of Hybrid-II(k) has the advantage of doing without the require-
ment that the matrix be nonsingular. However, to reduce the proof that Hybrid-
I(k+l) halts to the proof for Hybrid-I(k) requires ak+l (M) > 0, which may not be
true. Our proof that Hybrid-II halts does so without this assumption, and it also
enables us to design the more accurate algorithm Hybrid-III by providing additional
insight into the nature of the problem.

The basic idea of the proof is again to demonstrate the strict increase of the
determinant of the leading k x k principal submatrix during Hybrid-II. Unfortunately,
we cannot prove that the absolute value of the determinant of the leading (k + 1) x
(k + 1) block is strictly increasing because that would necessitate the assumption
ak+l(M) > 0. To facilitate understanding of the proof, we first describe in more
detail the implementation of Hybrid-II(k) based on Hybrid-I(k+l).

ALGORITHM HYBRID-II(k)
R() R, 0
Repeat

+ 1, permuted 0
Set

R(t)_(A B)C
where A is of order k and C is of order n- k.

Golub-I:
1. Find the column k + j of R(t) such that IlVejll maxl<i<n-k IlVeill
2. If IlCell < IlVejll then

permuted- 1
Exchange columns k + 1 and k + j of R(t)

Retriangularise it from the left with orthogonal transformations to
get

where is of order k + 1 and is of order n- k- 1.
Stewart-II:
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3. Find the column j of (t) such that Ile-lll-- maxl<i<k+ IleT-ll
4. If %+13 [I < then

permuted 1
Exchange columns j and k + 1 of ()
Retriangularise it from the le with orthogonM transformations to
get R(t+).

until not permuted
The finM matrix is

R22 R22

where/?t is of order k + 1 and RI is of order k.

As in Hybrid-I, the two if statements assure that permutations are performed
only in case of a strict inequality but not in case of a tie.

Again, as we had assumed that ak(M) > 0, we can assume that our initial ordering
of columns is such that det(A)[ > 0. Although this proof is based on Hybrid-I(k+l) it
is slightly different from the proof we gave for Hybrid-I(k) because now we are focusing
on column k instead of column k + 1. Clearly, Golub-I does not affect det(A)l but
Stewart-II does. We divide Stewart-II into two phases. The first phase keeps det(A)[
invariant while the second phase may change det(A)l. Accordingly, we identify and
separate the last column (aT oeT1 )T of the matrix affected by Stewart-II,

In the first phase the columns of ., are permuted, so that the last row of - has
largest norm among all rows of .,-1, and then the permuted -1 is retriangularised
from the right to give .,-1. In the second phase the relevant matrix elements are
the element above it, and the trailing nonero 3’ of ek

k k+l

k
k+l

Since Stewart-II is the Type-II version of Golub-I, it permutes to the last position
the column corresponding to the row with largest norm in the inverse, whose relevant
elements are

k

k+l

k k+l

Stewart-II permutes columns k and k + 1 if

or
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But this is the same situation as in Hybrid-I(k), and it follows that the kth diagonal
element of Rll changes from - to V/2 + 2 while all other diagonal elements of RI
remain unchanged. As we just proved that 171 < V/c2 +/2, det(A)l is strictly
increasing during Hybrid-II.

Because we were able to prove that Hybrid-II halts, requiring only that ak(M) >
0, we can show directly that Hybrid-II(k) satisfies

amax(R22) <_ ak+(M)v/(k + 1)(n- k),

(rmin (Rll)_> (Tmax (R22)
v/(k + 1)(n- k)

The proof is similar to the one that establishes the bounds for Hybrid-I.

14. Algorithm Hybrid-III. Our last new algorithm is Hybrid-III, which sat-
isfies

o’k(M)
amin(Rll) >_

+ 1)’
(Tmax(R22)

_
ak+ (M)v/(k + 1)(n- k).

There are several implementations of Hybrid-III. We present the one that is sim-
plest to describe. This implementation, motivated by the fact that the determinant
of the leading principal submatrix of order k is a strictly increasing function in both
Hybrid-I and Hybrid-II, consists of running Hybrid-I and Hybrid-II in alternation
until no more permutations take place.

ALGORITHM HYBRID-III(k)
Repeat

Hybrid-I(k)
Hybrid-II(k)

Until no permutations occur

The halting argument for Hybrid-III follows easily from the halting of Hybrid-I
and Hybrid-II. We had shown earlier that during Hybrid-I and Hybrid-II, the deter-
minant of the leading k x k principal submatrix is a strictly increasing function. So
it must be true during Hybrid-III also. Hence Hybrid-III halts.

When Hybrid-III has halted, both Hybrid-I and Hybrid-II do not cause any fur-
ther permutations in the matrix. Therefore the bounds guaranteed by Hybrid-I and
Hybrid-II must hold simultaneously now. That is

amin(Rll)

_
O’k(M)

+
amax(R22) _< ak+l(M)v/(k + 1)(n- k)

must be true.
Because we do not know whether the solution of Problem-I also implies the so-

lution of Problem-II or vice versa, it is not clear whether the output of algorithm
Hybrid-I also satisfies the bounds that govern the output from Hybrid-II. In particu-
lar we are therefore not able to compare the operation counts of Hybrid-III with those
of Hybrid-I or Hybrid-II.
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REMARK 14.1. As we mentioned earlier, it is more practical to replace algorithm
Stewart-II in the hybrid algorithms with algorithm Chan-II.

Moreover, there are other ways of implementing algorithm Hybrid-III. For exam-

ple, replacing the Stewart-II part of Hybrid-I with a simpler algorithm results in an

Hybrid-III algorithm: Instead of moving the most linearly dependent column to the
kth position, in turn permute every one of the leading k columns to the kth posi-
tion. Obviously, this algorithm solves Problem-I and Problem-II simultaneously. The
corresponding Type-II version, which involves replacing the Golub-I part of Hybrid-
II, also solves Problem-I and Problem-II simultaneously according to the unification
principle. This idea has been taken up in [32].

However, we believe that the original version of Hybrid-III described at the be-
ginning of this section is more efficient in practice than the latter two (provided it

is properly implemented with good condition number estimators in place of Golub-I
and Stewart-II, and run as a postprocessor to either Golub-I or Chan-II).

15. Some numerical experiments. Although we have demonstrated that the
three hybrid algorithms halt in exact arithmetic, we know very little about their worst-
case running times. In this section we present some preliminary numerical results for
Hybrid-I, which also apply to Hybrid-II and Hybrid-III as the implementations for
the latter two algorithms can be based on Hybrid-I. In practice, the hybrid algorithms
are best run as postprocessors to the more efficient greedy algorithms, like Golub-I or
Chan-II.

In the experiments to follow, we counted the number of iterations in Hybrid-I
when it is run after Golub-I. To prevent cycling in the algorithm due to roundoff errors,
we carried out permutations only if the pivot increased by more than n2 e, where e is the
machine precision. To estimate the dependence of the running time of Hybrid-I on the
matrix size n and the separation of the singular values ak(M)/ak+l (M), we generated
fifty random matrices of size fifty, to which we applied Hybrid-I with k 37. Then
we multiplied the last n- k singular values of these fifty matrices by 0.1 to increase
the separation between the singular values but did not change the singular vectors.
Hybrid-I was applied to these fifty new matrices. The same process was repeated on
one hundred random matrices of size one hundred with k 75. Table 15.1 shows
how many times Hybrid-I required a certain number of iterations. Hybrid-I seems to
require fewer iterations when the gap between ak(M) and ak+(M) is larger, and--in
these experiments, at least--the number of iterations does not deteriorate too much
with increase in matrix size.

16. Conclusion. In this paper we proposed three optimisation problems which
we called rank-revealing QR (RRQR) problems. We presented a unifying treatment
of the existing algorithms by placing them in a hierarchy of greedy algorithms. Fi-
nally, we presented three new hybrid algorithms for solving the three rank-reveMing
problems. Unfortunately, we were not able to estimate the worst-case running time
of the hybrid algorithms.

Most of the discussion for the RRQR factorisations can be extended in a simple
manner to rank-reveMing LU (RRLU) factorisations [8], [27] by replacing orthogo-
nal transformations with elementary Gauss transformations and row interchanges for
partial pivoting. Partial pivoting prevents the ill conditioning of the Gauss trans-
formations. Compared to RRQR factorisations, the bounds for RRLU factorisations
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TABLE 15.1
Hybrid-I run-time estimate.

Matrix size
k--

Avg(ak(M)Sk+"(M)
No. of iter. $

1

9
10
11
12
13
14
15
16
17
18
19

Total

50 50 100 100
37 37 75 75

1.0804 10.804 1.0406 10.406

no. of occurrences

21 25 16
7 8 3
5 3 9
5 4 15 15
4 4 11 6
1 5 13 6
0 0 6 1
1 0 7 5
4 1 4 1
1 0 7 1
1 0 1 1
0 0 0 2
0 0 4 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0

45
8
9

50 50 100 100

are generally worse and, due to pivoting and the resulting fill-in, their operation are
counts higher. It is not clear to us which applications would benefit from RRLU
factorisations.

In a subsequent paper [13] we show that very naturally the hybrid algorithms
give rise to new algorithms for computing the URV decomposition [34]-[36] and also
to a new divide-and-conquer algorithm for the SVD. In fact, using a preceding RRQR
algorithm to accelerate the computation of eigenvalues or singular values is not new,
see for instance [15], [24], [38] where a Jacobi method is preceded by QR with column
pivoting.

In this paper, we present only one algorithm for each of the three optimisation
problems, but one can easily design other kinds of approximate and exact algorithms.
Our motivation for the three hybrid algorithms was to perform column interchanges
based on what we believed would result in a high rate of convergence. But sometimes
one may want to trade off number of column exchanges for maintainance of sparsity
[3], [4], [30] or minimisation of communication costs.

The ideas presented in this paper may aid in the design of special-purpose algo-
rithms. Instead of choosing the best two columns to exchange, one could compromise
and choose a column exchange that maintains sparsity or keeps communication costs
low, while still ensuring that the determinant of the leading k k principal submatrix
increases strictly so that the algorithm halts. We hope that the ideas presented in
this paper prove helpful in developing algorithms for such problems.
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