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ON THE SENSITIVITY OF SOLUTION COMPONENTS IN LINEAR
SYSTEMS OF EQUATIONS*

S. CHANDRASEKARAN? AND I. C. F. IPSEN

Abstract. Expressions are presented for the errors in individual components of the solution to
systems of linear equations and linear least squares problems. No assumptions about the structure
or distribution of the perturbations are made.

The resulting "componentwise condition numbers" measure the sensitivity of each solution com-
ponent to perturbations. It is shown that any linear system has at least one solution component whose
sensitivity to perturbations is proportional to the condition number of the matrix; but there may
exist many components that are much better conditioned. Unless the perturbations are restricted, no
norm-based relative error bound can predict the presence of well-conditioned components, so these
componentwise condition numbers are essential.

For the class of componentwise perturbations, necessary and sufficient conditions are given under
which Skeel’s condition numbers are informative, and it is shown that these conditions are similar
to conditions where componentwise condition numbers are useful. Numerical experiments not only
confirm that these circumstances do occur frequently, they also illustrate that for many classes of
matrices the ill conditioning of the matrix is due to a few rows of the inverse only. This means that
many of the solution components are computed more accurately than current analyses predict.
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1. Introduction. Certain problems in statistics [33], combustion [26], and mo-
lecular conformation [10] require the solution of systems of linear equations whose
individual solution components have physical significance; knowledge about the accu-
racy in the computation of the solution components is important. For the solution of
problems involving Markov chains, for instance, it turns out that all solution compo-
nents exhibit essentially the same sensitivity to perturbations in the data [25]. In [8]
it is necessary to analyse individual solution components to demonstrate the conver-
gence of inverse iteration in finite precision.

1.1. Motivation. Consider the solution of a system of linear equations Ax b
with nonsingular coefficient matrix A. The computed solution 2, which is usually
different from the true solution x, can be viewed as the true solution to a perturbed
system (A + F)2 b + f.

So far, little work has dealt with trying to assess the error in individual solution
components of a linear system; exceptions are the stability analyses of algorithms for
solving particular structured linear systems, e.g., [3], [20], [22], [23]. The conventional
way of estimating the error in 2, as.compared to the true solution x, is to estimate
an upper bound on the norm-based relative error 112- x[I/llxll. The most commonly
used first-order bound is

xll  (A)(pA + Pb)
I1’ 11
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94 S. CHANDRASEKARAN AND I. C. F. IPSEN

where the condition number t(A) IIAII IIA-II >_ 1 acts as an amplifier for the
relative perturbations in the data PA I[FII/IIAII and Pb Ilfll/llbll.

In many situations this type of error assessment is just fine unless, however, the
individual components of the solution have physical significance. The example of
the matrix of order four below, which represents a special case of a class of matrices
discussed in 7, illustrates that the condition number n(A) can severely overestimate
the error in some components,

0.4919 0.1112 -0.6234 -0.6228 0.4351

A -0.5050 -0.6239 0.0589 0.0595 -0.1929
0.5728 -0.0843 0.7480 0.7483

b
0.6165

-0.4181 0.7689 0.2200 0.2204 -0.8022

The first three columns of A are nearly orthogonal while the last two columns are
almost identical. Both the two-norm condition number t2(A) and Skeel’s condition
number [31] are larger than 103 (note that the matrix is not ill scaled). But the
"componentwise condition numbers" that we introduce in this paper turn out to be

< 1.1, < 1.1, > 103, > 103

This means that the first two components of x are well conditioned, regardless of the
perturbations, and the remaining two are ill conditioned. To illustrate this, compare
the "exact" solution x computed with 16-digit arithmetic with the solution 2 com-
puted with 4-digit arithmetic, which can be viewed as the solution to a perturbed
problem,

-.5000879795933286 -.5003
x-

-.0242511388797165
x-

-.0589
.02624513955005858 .06090

As predicted by our componentwise condition numbers, the first two components are
accurate to almost four digits, whereas the last two have no accuracy whatsoever. As
far as we know no other existing condition numbers can predict the well conditioning
of the first two components of this system.

1.2. Overview. Given a linear system Ax b of full column rank and a per-
turbed system (A + F)2 b + f, we derive expressions for the error in individual
components of the computed solution 2 (2). Our work is more general than that
of Skeel [31] on componentwise perturbations and that of Stewart [34] on stochastic
perturbations because we make no assumptions about the perturbations F and f,
their size, structure, or distribution.

We associate with a linear system Ax b not a single condition number but a set
of "componentwise condition numbers," one for each solution component. These con-
dition numbers provide a clear separation of the three factors responsible for the loss
of accuracy in the computed solution: relative magnitude of the solution components,
matrix condition, and relationship between matrix and right-hand side.

We show that there is at least one component of the solution vector whose sensi-
tivity to relative perturbations is proportional to the condition number of the matrix;
but there may exist components that are much better conditioned. Consequently,
unless the perturbations are restricted, no norm-based relative error bound can ever
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predict the presence of well-conditioned components in x. Therefore, our component-
wise condition numbers are essential.

Along the way, we comment on the tightness of norm-based error bounds (3),
and we clarify some results of Chan and Foulser [6] regarding the influence of the
right-hand side on the sensitivity of the solution to perturbations (4).

We also provide a geometric interpretation (5) of our condition numbers, which
in turn leads to a geometric interpretation of rank-revealing QR factorisations. Un-
like traditional condition numbers, our componentwise condition numbers are able
to indicate how linearly dependent individual matrix columns are on other columns.
They can therefore be considered a continuation of Stewart’s work on collinearity in
regression problems [33].

We further show that the relative errors in individual components of a linear
system are reduced by column scaling only if column scaling manages to reduce the
perturbations (6). Two simple examples are given where our componentwise condi-
tion numbers are significantly more accurate than the norm-based condition numbers
(7). We extend the results for linear systems to the solution of linear least squares
problems miny IIAy bll of full column rank (8).

For the class of componentwise perturbations, we give necessary and sufficient
conditions under which Skeel’s condition numbers are informative, and we show that
these conditions are similar to those where componentwise condition numbers are
useful (9). Numerical experiments not only confirm that these circumstances do occur
frequently, they also illustrate that for many classes of matrices the ill conditioning of
the matrix is due to a few rows of the inverse only (11). This means that many of
the solution components are computed more accurately than current analyses would
lead us to believe. Finally we demonstrate that a componentwise error bound for
componentwise perturbations can be significantly better than the norm-based error
bounds.

Existing software can be used to compute or estimate componentwise condition
numbers (10). We also prove that the problem of estimating componentwise con-
dition numbers for triangular matrices by means of the comparison matrix is well
conditioned.

2. Condition numbers for linear systems. This section presents expressions
for errors in individual solution components of linear systems with full column rank
and defines condition numbers for each component.

As for notation, I1" represents the two-norm and e stands for the ith column of
the identity matrix I. Let A be an n rn matrix A of rank m. Its condition number
is (A) [JAIl IIA and the rows of its left-inverse A are denoted by rT.

Regarding perturbations in the right-hand side, the treatment of linear systems
and least squares problems can be combined. Suppose the exact solution x = 0 solves
miny IIAy- bll while the computed solution 2 solves miny IIAy- (b + f)ll. Let i
be the angle between ri and b, and i the angle between ri and f. If xi = 0 and

b Ilfll/llbll then

Regarding perturbations in the matrix of a linear system, suppose the exact so-
lution x 0 solves Ax b, while the computed solution 2 : 0 solves (A + F)2 b.
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IIFII thenDenote by i the angle between ri and F2. If x =fi 0 and A IIAI111211

(RE2) 2 x 1 IIF211 cos 11211 IIAII !lrll eACOS.x cosZ I111 x

The perturbations in the first expressions for (RE1) and (RE2) are amplified
by 1/cos. Hence the relative error in 2 is likely to increase with increasing orthog-
onality of r and b.

The second expressions in (RE1) and (RE2) have two amplification factors in
common: the magnitude of x relative to Ilxll, and the matrix condition IIAII IIrll _<
(A). The term

in (RE1) occurs in the error expressions for all 2i and describes the relation between
matrix and right-hand side. In the case of linear systems Ax b it has the upper
bound

[Ibll IIAxll < 1.
IIAIIIIxll IIAIIIIxll

The expressions (RE1) and (RE2) provide a clear separation of the three factors
responsible for the loss of accuracy in the computed solution: relative magnitude
of the solution components, matrix condition, and relationship between matrix and
right-hand side.

Now we determine when the amplification factors are maximal. If Ilrmaxll
maxk Ilrkll is the row of largest norm in A then

(CN) [IAII ][rmx[[ (A) <_ x/-llAII l]rmx]].

Applying inequalities (CN) to the componentwise relative errors (RE1) and (RE2)
shows that there must exist a component 2k for which

I-xl > 1 Ilbll
Ixl vllAIIllxll bl cos

12k xk > 1

Ixl -,(A) AICOsI.

Therefore, the sensitivity of xk to matrix perturbations is proportional to the condition
number of A, and is proportional to right-hand side perturbations only when the right-

Ilbll is not too small.hand side has an appropriate direction, that is, whenever [[AI [ixl
DEFINITION 1. Let x 0 solve the linear system Ax b with n m matrix A of

rank m, and let 2 0 be the computed solution. If rT eT At, then the quantities

IIAII I111, 1 _< _< m,

are called componentwise condition numbers for the linear system or condition num-
bers for x.
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Support for this kind of definition comes from earlier work of Stewart [33] who in-
troduces the "collinearity indices" ai --Ilaill Ilrill that represent the scaling-invariant
version of IIAII Ilrill. The main difference between Stewart’s condition numbers and
ours is that the collinearity indices are designed to reflect the linear dependence of
the matrix columns, while our componentwise condition numbers measure the condi-
tioning of the linear system: matrix plus right-hand side.

In 1970 van der Sluis [38], [39] realised the need to distinguish the conditioning of
individual components of x and the fact that the conditioning depends on the relative
size of a component. He introduced the notion of "ith column condition number
of A," IIA-11111aill, and derived the similar-looking normwise relative error bound
(here f 0)

3. Conventional error bounds. This section argues that for any linear sys-
tem there exist perturbations for which the norm-based bounds on the relative error
are as tight as possible. We also justify our particular representation of the matrix
perturbations.

It follows from (RE1) and (CN) that for perturbations of the right-hand side,

where

v(A) IIAII Ilxll b#
I1- xll < x/-(A) Ilbll

Ilxll I]AII Ilxll ’’

As for perturbations of the matrix,

1 I111 I1 xl] < v/-(A A,

!!FIIwhere A IIAII I111"
In the absence of knowledge about the values of cos Oi, we must assume the

worst case # 1, which implies that the norm-based error bounds are tight. Thus
the conventional upper bounds are as good as possible given that one has chosen
to measure a norm-based error. As a consequence, if the normwise bounds give
unsatisfying information, it is not because the bounds are loose, but rather because
an unsatisfying way of measuring the error was adopted in the first place.

The upper bounds for nonsingular linear systems commonly found in the literature
are of the form

I1-xll < (A) (PA + ), ]]A-FII < 1,
Ilxll 1- (A)pA

e.g., III.2.3 in [35], where the matrix perturbations are represented by PA IIFII/IIAII.
In contrast, our representation of the matrix perturbations is CA. This is a sensible
measure because A represents the smallest possible matrix perturbation, as we now
show.

For given Ax b and 2, let Fmin be the perturbation of smallest Frobenius norm

among all perturbations F that satisfy (A+F)2 b (Fmin also has smallest two-norm
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among all such perturbations). From Theorem III.2.16 in [35], and also [27], it follows
that Fmi satisfies

[[Fmin[I-(A + Fmin) b, ffmin IIAII [[AI[ I111’
which is exactly the matrix perturbation eA in the relative error (RE2).

4. Special right-hand sides for linear systems. This section analyses error
bounds for linear systems Ax b whose right-hand side b is a singular vector associ-
ated with the smallest singular value am of A. We show that in this case all solution
components are sensitive to perturbations.

In this case

IIA*bll/llbll- 1/am- IIA*II
and

Ilbll 1 Ilbll
IIAIIIIxll (A)’ IIAIIIIxll

IIrll 1.IIA[[ I111 IIA*
This implies together with (RE1) that the relative sensitvity of all solution components
to right-hand side perturbations is solely determined by their relative magnitude.

According to 2, the norm-based error satisfies

1 I1 xll < v.-’ <
Ilxll

This means the norm-based relative error is about the same magnitude as the per-
turbation in the right-hand side and does not depend on the condition number of A.
This was already observed in [6].

Chan and Foulser [6] try to incorporate a potential relationship between right-
hand side and matrix by modifying the conventional bound

(A) IIFIII1 xll < (PA / ), PA IIAIIIlxll 1 (A)pA

Let

A UY]VT, where U (Ul Un ), a >_ ae >_... >_ a > 0,

be the singular value decomposition (SVD) of a nonsingular matrix A with singular
values ai and right singular vectors ui. According to Theorem 1 in [6], if A2 b + f
and Pk is the orthogonal projection onto the space spanned by u,-k+l,..., Un,

They conclude that if, for some k, a large fraction of b lies in the space spanned by
Un-k+l,..., Un, and if an-k+l " an, then x "is relatively insensitive to perturbations
in b." For instance, if b Un then Pb b,
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ai spanki{ak}

spanki {ak }

FIG. 1. Angles associated with columns.

and we conclude that x is insensitive to perturbations in b.
The interpretation of Theorem 1 given in [6] is valid if f represents the input

error in the data b. However, we do not agree with the application of Theorem 1 in
the case when f represents a backward error chosen to satisfy A2 b + f because

f depends on the size of 2. Since Fmin --f’T/’Tc is the perturbation of smallest
two-norm and Frobenius norm satisfying (A + Fmin); b, Theorem III.2.16 in [35],
we obtain from the first expression in (RE1)-- min COS

When b tn, the common term IIAII I111/11bll is approximately allan and the sensi-
tivity of all solution components is proportional to the condition number. A slightly
different argument based on the use of the perturbations

IIFminl[ IIb[I
min [[A[] IIAII I1 :1[

implies that for b Un we have eb ;(A)min and the ill conditioning is merely hidden
in the perturbation eb. Consequently, all components of x are extremely sensitive to
perturbations if A is ill conditioned, which disagrees with the interpretation in [6].

5. Geometric interpretation. This section gives a geometric interpretation
of the componentwise condition numbers. It is shown that IIrll reflects the linear
dependence of column of A on all other columns. This, in turn, leads to a geometric
justification for rank-revealing QR factorisations.

First of all, the size of the IIrll reflects the linear dependence of the ith column
of A on all others because

where ai is the angle between ri and ai. This follows from the expression 1 rTiai
Ilrill Ilaillcosci for the ith diagonal element of I AtA, which also implies that
cosc > 0, so -r < ai < r. Because e/T rTA, ri is orthogonal to all columns
of A except for ai, see Fig. 1.

To obtain a geometric meaning for rl, partition A (al A1 ), where al rep-
resents the first column of A and A1 represents the remaining columns. Let -51
be the residual in the least squares approximation of al by the columns of A1,
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115111 miny IIAly- alll and let -fi-1 be the residual in the least, squares approxi-
mation of the columns of A1 by al, lift.1 miny IlalyT AIlI. As in the derivation
of the formulae for partial correlation coefficients in [11] one can now show that

A (ATA)-IAT

It follows that the first row rl
T of At lies in the same direction as the residual -1

in the least squares approximation of column al by the remaining columns. The
residual, in turn, is just the projection of a onto the orthogonal complement of the
range of A1. Hence, Ilrlll 1/5, which means that increasing linear dependence
of a on the other columns leads to larger r]]. Analogous statements hold for the
other rows r of A.

Already in [33] Stewart used a different argument to show that

]] min ]]Ay a] 1/r].
y

Here we provide more justification for the choice of r as an indicator of sensitivity:
because r is a multiple of the residual 5, the residual is inherent in A and thus
represents a most nturM choice for sensitivity measure.

Angles between subspaces spanned by different columns of a matrix also occur in
the context of nonsymmetric eigenvalue problems [12], [29].

5.1. Application. Our geometric interpretation of the rows of the left-inverse
explains certain algorithms for rank-reveMing QR factorisations. These factorisations
ppeared first in [15], [4], [16], [18], and are further analysed and refined in [32], [13],
[5], [33], [9]. In the simplest case, the goal of a rank-reveMing QR factorisation is to
determine the most linearly dependent column of a matrix A.

The idea [9], [32] is based on the existence of a row of A that approximates ]]A
well. Perform a QR factorisation AP QR, where Q has orthonormal columns, R
is upper triangular, and the permutation matrix P is chosen so as to minimise the
magnitude of the trailing diagonal element (R)mm of R. Then the inverse of this

Telement, 1/](R)mm] ]]eR- r]], s as large as possible, and the residual
1/r[ is as small as possible. Therefore the last column of AP is the column that
can be best approximated by all other columns and so is the most linearly dependent
among all columns.

6. Implications for column scaling. This section shows that the component-
wise relative error decreases under column scaling only if column scaling actually
reduces the perturbations.

A diagonal column scaling D of the least squares problem miny ]]Ay- b] to
minz [(AD)z-b, where D is a nonsingular diagonal matrix, changes only the lengths
of the columns but not the angles. In case of a column equilibrated matrix AD, [17,
3.5.2], and [37], [38], where the diagonal matrix D is chosen so that all columns of
AD have identical length, the condition number of AD comes from the largest angle
of A,

1

cos(max a) [[AD (AD)[[ cos(mx a)"

This bound already appeared in a different form in [33].
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In [37], van der Sluis showed that a column equilibrated matrix A of order n has a
condition number that is at most a factor x/,away from the lowest condition number
among all matrices of the form AD. This would suggest that one could solve only
linear systems and least squares problems with column equilibrated matrices so as to
minimise the condition number in

Ilxll IIAIlllxll
However, note that the condition number occurs in an upper bound.

Based on the expressions for the componentwise errors (RE1) and (RE2) we come
to the following conclusions. In contrast to the norm-based condition numbers, the
amplification factors 1/cos/i are preserved when the columns of A are multiplied by
nonzero scalars. The computed solution 2 of the system (AD)z b, where z D-ix,
satisfies a perturbed system AD2 b-4- g. Postmultiplication of A by D corresponds
to premultiplication of A by D-1, which changes only the lengths of the rows rT
in A but preserves the angles i between b and r. Hence the amplification factors
1/cos/ remain invariant under column scaling. Therefore the componentwise relative
error decreases under column scaling only if column scaling manages to reduce the
perturbations.

7. Example. This section contains two examples that illustrate the previous re-
sults. The first example represents a generalisation of the example from 1.1 and
demonstrates that even a very ill-conditioned matrix may have robust solution com-
ponents.

Consider a 4 4 orthogonal matrix A (al a2 a3 a4) and define a one-
parameter family of matrices by

()a3 -4- ad) ).A(A) (al a2 a3

Obviously A(0) A is a well-conditioned matrix and A() is a singular matrix. For
all , IIA( )II _< 2. When < , the inverse is given by

[A(A)] -1 a2
T

a3
T Aa4T
+

from which one computes

COSOZ3 Ila311COS(O3) COS O4 Ila4ll cos(o4) v/1 + 2
Thus as c the matrix A(A) becomes increasingly singular. Its condition number
behaves like O(). Note that the matrix A(A) is column equilibrated (and not nec-
essarily row ill scaled) so the ill conditioning is a result of small angles rather than
short columns.

Consider a linear system A(A)x(A) b, where the right-hand side is independent
of and can be represented as b Tlal + T2a2 -f- 7"3a3 -+- Tda4. Then

T1 72 7"3 AT4 7"4

I1 11’ I1 11’ II llv’ + I1 11
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The solution vector is given by

The values of Xl and x2 are independent of A, and so are Ilajllcos j and cos/j for
j 1, 2. So the sensitivity of the components xl and x2 depends solely on their size
relative to x. If, for instance, Ixll >> Ixl for : 1 then, according to (RE), the
error in x is not amplified independent of the values of A and the condition number
of A(A).

The second example show8 that all 801ution components can be sensitive to per-
turbation8 when the choice of right-hand side i8 unfortunate. In [25] we show that
system8 with uniformly sensitive solution components also occur in ill-conditioned
Markov problems.

The coefficient matrix of the linear system Ax b is the Hilbert matrix with
elements 1/(i -+- j 1) of order 4,

1.00000000000000
0.50000000000000
0.33333333333333
0.25000000000000

0.50000000000000
0.33333333333333
0.25000000000000
0.20000000000000

while the right-hand side

0.33333333333333
0.25000000000000
0.20000000000000
0.16666666666667

0.25000000000000
0.20000000000000
0.16666666666667
0.14285714285714

bT (-0.02919332316479 0.32871205576319 -0.79141114583313 0.51455274999716)

is a left singular vector corresponding to the smallest singular value of A. The con-
dition number of A is at least 104. If the error matrix F has norm IIFII
then the solution of the system (A + F)2 b contains at least one component that
has no accurate digits. We choose the following random matrix with norm

0.00057208543036
0.00019069514345
0.00019069514345
0.00038139028691

0.00017162562911 0.00038139028691
0.00057208543036 0.00019069514345
0.00057208543036 0.00019069514345
0.00038139028691, 0.00057208543036

Computing x and 2 in 16-digit arithmetic gives

0.00038139028691
0.00057208543036
0.00057208543036
0.00005720854304

-301.88859986174430
3399.21637943995029

x
-8183.99472310610599
5320.99783141589251

81.63154025985811
1310.35333852711346
3649.17285297454328
2572.42993839543533

The components of 2 do not even have the correct sign, let alone any accurate digits.
So all solution components of this system are sensitive to perturbations.

8. Condition numbers for least squares problems. This section presents
expressions for componentwise errors in the solution of least squares problems of full
column rank. The treatment in 2 on perturbations of the right-hand side is now
extended to also allow perturbations in the matrix.

Suppose x 0 solves

min IIAy bll, where r b Ax,
y
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and 2 0 solves

min II(A + F)y- (b + f)ll, where 4 b + f- (A + F)2 # 0.
y

Let q]" eTi(ATA) -1 and define the following error angles: CF, is the angle between
ri and F2, Cf,i is the angle between ri and f, wi is the angle between ri and 4, and
Wq,i is the angle between qi and FT4. By applying (RE1) to the associated augmented
nonsingular system one can show the following.

IIFTII thenIf xi # 0 and A,r IIATII I11

x Ilbll cos cos RE + IIAII llll x A, cOSq,,

where

RE= IIllx IIAII IIrll [A cos CF, Ilbll
IIAII I111Cb COS

is the componentwise relative error in the solution of a linear system solution.
Equations (LS) contain two different expressions that account for the least squares

nature. The perturbation in the first expression is amplified by 1/cos i, which reflects
how linearly dependent b is on the space spanned by ak, k # i; and it is invariant
under column scaling.

The relative perturbation eA,rCOSWq,i in the second expression is amplified by
three factors. The first factor represents, as in the error for linear system solution,
the size of the component xi relative to 11211. The second factor Ilqill IIAII 2 has the
bounds

(llr, IIAll) IIqll IIAII II(ATA)-III IIAII a2(A),
as a result of Ilqi -> I1 . Since there exists a row rk of At whose norm approximates

IIAt to a factor of v/-, there must exist at least one component xk for which

IIqll IIAll >_ la2(A)
m

I1tl describes the relationship between matrix and right-handThe third factor IIAII I111
side. If 0 is the angle between b and the range of A, then the exact residual r satisfies

and for some xk

1

n(A)
tan 0 < IIr[I < tan 0

IIAII Ilxll

1 Ilrll 2 2--(A) tan 0 < Ilqkll IIAII < (A) tan 0.
m IIAII Ilxll

Consequently, least square8 problem8 are alway8 more sensitive to ill conditioning
than linear system8 and, depending on the angle between b and the range of A, their
sensitivity may be as high a8 the square of the condition number.

DEFINITION 2. Let x 7 0 solve the least squares problem miny IlAy b[I with n xm
matrix A of rank m, and let 2 7 0 be the computed solution with residual 4 # O. If
qi eTi (ATA)-1 and rT eTi A then the quantities

112[[ 114[[ [[A[[ Ilqi 1 _< _< m,Ix, l’ IIAIIl[r, ll, IIAIIIIII
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are called componentwise condition numbers for the least squares problem.
The condition numbers for linear systems from [38] and [39] are extended to least

squares problems in [14].
9. A special class of perturbations. Unlike the previous sections, which as-

sumed no knowledge about the perturbations, this section analyses the reduction in
error bounds brought about by the special structure of perturbations resulting from
floating point computations. This issue was first investigated by Skeel in [31] for
the case of "componentwise perturbations." We provide necessary and sufficient con-
ditions under which Skeel’s condition numbers are useful, and we show that these
conditions are similar to those where componentwise condition numbers are useful.
The experiments in 11 illustrate that these conditions indeed occur frequently.

For Ax b and (A + F)2 b + f the perturbations F and f are called compo-
nentwise perturbations if the inequalities

hold componentwise for some e >_ t3.
In [31] Skeel defines a condition number that exploits componentwise perturba-

tions. Theorem 2.1 in [31] shows that

and Skeel uses

cond(A,x) IA-I IAI Ixl I1

as the condition number for the linear system Ax b. He also introduces

cond(A) IA-Xl IAI I1
as an upper bound for cond(A,x).
number

A componentwise version of Skeel’s condition

eT(IA-Xl IAI Ixl + IA-11 Ibl)/Ixl

is advocated in [28]; and [1] introduces condition numbers similar to the one used by
Skeel for matrix inversion, least squares problems, and the solution of Vandermonde-
like linear systems.

Skeel’s condition number is invariant under row-scaling. Therefore, cond(A) may
be much lower than the traditional condition number e;(A) IIA-111 IIAII when
the rows of A are ill scaled, i.e., when the norms of the rows of A differ widely. But the
less known fact is that cond(A) can be much lower than t(A) only when the rows
of A are ill scaled. The reasoning is as follows. Let e be the vector of all ones and DR
a nonsingular diagonal matrix with DRIAle e, that is, the diagonal elements of DR
are the inverse row norms of A. Then

no(D)
_< cond(A) _< n(A).

This means, if n(D) 1 then the rows of A are not ill scaled and cond(A) a(A),
which limits the applicability of cond(A).
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Remember that our componentwise condition numbers are useful if there are large
differences among the Ilrill. It turns out that something similar holds for cond(A, x):
cond(A,x) is useful only when the norms of the columns of A-1 differ widely in
magnitude. Denote the columns of A by ai and the columns of A-1 by Pi. If j(i) is
the index of the largest element in column i, Ilall la,j()l, then

Choosing such that Ixil Ilxll and defining De as the diagonal matrix that
equilibrates the columns of A, eTIAIDc eT, gives

cond(A,x) IA-11 ]AI Ixl I1 > ilpj(i)llllAil
1

Ilxll nt(Dc)

> mini IlPill 1

IlPjlI
al(A) n2a(nc)

for some column py of A-1. This means, cond(A, x) al (A) for all x whenever d-1

is not badly column-scaled. Therefore the conditions under which cond(A, x) is useful
are quite similar to those for our componentwise condition numbers.

It is possible to profitably combine Skeel’s analysis with our componentwise errors
because componentwise perturbations induce upper bounds on the cosines. If A2
b+ f and [f eb then

ITI Ibl
I11111fll’

implies

(CRE1) 12i- xl < IrTI Ib_____t
Ixl -Irrbl

for error (RE1). Similarly, if (A + F)2 b and IFI <_ elA then the upper bound for
(RE2) simplifies to

(CRE2) Ii- xl <e IrTI IAI Il

This last inequality illustrates that componentwise perturbations in our error expres-
sions lead to a componentwise version of Skeel’s condition number cond(A,x). Al-
though these expressions already exist implicitly in Skeel’s work, it is the observation
that we lose a lot by taking norms that is important. Because the rows of the inverse
may differ significantly in size, the difference between our bounds and cond(A, x) may
be arbitrarily large as shown in the following example.

Let e > 0 and

so that

A= b=

A-l= - x-
e 1
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Hence

Skeel’s condition number cond(A, x) is unbounded as e becomes small. In fact, it has
the same order of magnitude O(1/e2) as the traditional condition number a(A),
although the columns of A are badly scaled (this is because Ixl lies almost in the
singular direction corresponding to the largest singular value of IA-111AI). In contrast,
the amplifier in our error bound for x2, which is the largest component of x, equals
Irl IAI Ixl/]x21 1.

Because our error expressions represent a componentwise version of Skeel’s condi-
tion number, we get the same componentwise error bounds as appear in the literature.
For instance, when IA-111bl--Ixl, as is the case for certain Vandermonde systems
[20] and M-matrices with positive right-hand sides, the term amplifying e in (CRE1)
equals one. So the individual solution components are insensitive to perturbations in
the right-hand side (an algorithm for such systems that gives rise to a small compo-
nentwise backward error f is called "weakly stable" in [23]).

For triangular M-matrices A with positive right-hand side b, it is shown in [22]
that

which implies

Hence the term amplifying e in (CRE2) is essentially bounded above by 2n- 1. This
is true in particular if b is the vector of all ones. Thus, estimating the componentwise
condition numbers of a triangular matrix by solving a linear system involving the
comparison matrix, as in [21] and 10, is a well-conditioned problem.

10. Estimation of componentwise condition numbers. This section shows
that componentwise condition numbers can be efficiently estimated with existing soft-
ware.

For a n m matrix A, bounds for IIAII can be determined in O(mn) operations,
and IIll/Ixil and 11411 can be estimated a posteriori in O(mn) operations. This leaves
the computation of Ilrill and Ilqill. Numerical issues in the computation of the Ilrill,
due to the potential ill conditioning of A, are addressed in [32] and in the context of
statistical errors in [33]. If a factorization of A is available, then upper bounds on

Ilrill can be determined in O(n2) additional operations and an estimate of Ilqill can
be obtained by making use of the inequality Ilqill >- Ilrill 2.

For instance, suppose the QR factorization

is available, where Q is a n n orthogonal matrix, and R is an rn m nonsingular
upper triangular matrix. To compute Ilri and Ilqi II, it suffices to work with R instead
of A. From

qT eT (ATA)- eTi R-1R-T vT R-T, V R-Tei
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it follows that qi is the solution of the triangular system Rqi v and IIrll- Ilvillo
As for the actual computation of Ilqill and Ilrill, observe that Vm R-Tern -em,

where p is the element of R in position (m, m). Hence Ilrmll- 1/Ipl and Rq, -em.
Therefore, if a QR decomposition of A is available, Ilrmll is available right away and
the computation of qm requires O(m2) operations. This process can be carried out for
all i, and is described in [32] for the computation of IIrll by permuting the columns
of A. Gragg and Stewart [18] show how to efficiently "update" the QR factorisation
from one permutation to the next in O(m2) operations; see also [17, 12.6].

Next, we indicate how the condition number estimators for triangular matrices in
[21] can be used to compute upper bounds for the IIrll in O(n2) operations. Since A
is triangular, (A-1)i 1/a and 1/[ail <_ IIrll <_ Ilrilll. Replace A by its comparison
matrix C(A) (ciy) of A [2], which is defined as

f [al if j,
cij -lajl ifij,

and satisfies the componentwise inequalities

C(A)- >_ O, IA-I C(A)-
because it is an M-matrix [40]. The first inequality implies that the ith element of
C(A)-Te equals IIC(A)-TeII, where e is the vector of all ones, while the second
one implies IIrll <_ IIr[l <_ IIC(A)-TeII. Hence all IIC(A)-TeIII can be computed
with a total of O(n2) operations by solving the system C(A)Ty e. Since C(A)
is an M-matrix, so is C(A)T. According to 9, the solution of linear systems with
triangular M-matrices and positive right-hand side produces a small componentwise
error. Hence, the estimation of componentwise condition numbers from the solution
of C(A)Ty e is a well-conditioned problem.

In [7] we fit the linear-time algorithms in [19] for computing IIA-II for bi or
tridiagonal matrices A to the computation of Ilrill.

We are currently investigating techniques based on appropriate rank-revealing QR
decompositions that estimate componentwise condition numbers in O(n2) operations.

11. Numerical experiments. This section presents numerical experiments that
reveal the existence of large classes of matrices for which the componentwise matrix
condition numbers vary widely. For these matrices, componentwise condition num-
bers can therefore predict the sensitivity of individual solution components much more
accurately than norm-based or Skeel’s condition numbers.

Here we consider only nonsingular linear systems Ax b. The componentwise
condition numbers consist of two parts: the relative magnitude II2[[/x of the solution
component and the associated matrix condition IIAII IIrll where r eTA-. We
consider only matrices for which IIrll differ widely in size because they exhibit a
large difference between IIrll and [[A-II, as well as between IrTI [A] and cond(A).
According to inequalities (CN), at least one Ilrkll approximates IIA-II to within a
factor of v/-, where n is the order of A. The potential for deviation of other Ilri from

IIA-111 increases, of course, with increasing ill conditioning of A. Below we present
examples where some IIrll are orders of magnitude smaller than IIA-II.

All experiments were performed in CLAM, version 2.00 [30], on a SPARCstation 1.
The tests involved more than twenty classes of matrices, most of them from [24], their
orders ranging up to n 500. Among these, only the Minij and Pei matrices have r
that are essentially identical in size. A group of matrices with a little more variation in
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000

FIG. 2. Random tridiagonal matrix A with n 100, IIA-Xll 4752, mini IIrll ..
the IIrll are the highly ill-conditioned Pascal, Cauchy, Hilbert, and Lotkin matrices. In
the group of matrices that comprises random symmetric and nonsymmetric matrices,
random Woeplitz and Vandermonde matrices, at least half of the IIrll differ from

IIA-111 by a small multiple of ten. This means, at least half of the components of x
are 1-2 digits more accurate than predicted by IIA-111 (assuming the components are
not too small). The group of matrices with the widest variation in the IIrll includes
random tridiagonal matrices, Jordan matrices, Chebyshev-Vandermonde matrices,
and triangular comparison matrices.

The surprising outcome of our experiments is that often only a few rows of A-1

are responsible for IIA-111, while most of the remaining rows are small in size. This
is more pronounced for ill-conditioned matrices. It also comes out in the plots in
Figs. 2-7, where we plot IIrill against i, 1 _< <_ n, for matrices from the last group.
In case of high ill conditioning, the difference among the Ilrill can be as high as 1015
for matrices of order n 100. In addition, preliminary statistical analyses show that
for these matrices usually more than half of the IIrll are small. Therefore, although
a norm-based error bound would predict a total loss of accuracy, many components
could actually be computed to a significant number of correct digits.

Figures 2-4 contain plots of three typical random tridiagonal matrices of order
n-- 100. The differences in the IIr[I for each matrix are illustrated in Table 1.

TABLE

Figure IIA-II mini II?ll
2 4752 1.1
3 678 1.2
4 2577 1.1

Figure 5 shows the II? II for a random Chebyshev-Vandermonde matrix of order
n 10, for which IIA-111 11922 and minllrill .72. Figures 6 and 7 plot the

IIrill on a logarithmic scale for a random Jordan and a random unit upper triangular
comparison matrix, respectively, both of order n 100. The Jordan matrix has

lid-ill 4.1014 and min Ilrill 1.4, While the triangular matrix has lid-ill 2.1017
and min IIrll 1.1. Similar observations about the ill conditioning of random unit-
triangular matrices are made in [36].
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600

200

50 180

FIG. 3. Random tridiagonal matrix A with n 100, IIA-1ll- 678, mini Ilrill- 1.2.

50

FIG. 4. Random tridiagonal matrix A with n- 100, IIA-11I- 2577, mini Ilrill- 1.1.

10

FIG. 5. Random Chebyshev-Vandermonde matrix A with n 10, IIA-111 11922, mini Ilrill .72.
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50 10

FIG. 6. Random Jordan matrix A with diagonal element .7183, n 100, IIA-111 4.10TM,
mini Ilrill-- 1.4.

ll

50 100

FIG. 7. Random unit upper triangular comparison matrix A, n 100, I[A-111 2. 1017,
mini Ilrill-- 1.1.
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