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A STABLE AND EFFICIENT ALGORITHM FOR
THE INDEFINITE LINEAR LEAST-SQUARES PROBLEM*

S. CHANDRASEKARANT, M. GU#, AND A. H. SAYEDS

Abstract. We develop an algorithm for the solution of indefinite least-squares problems. Such
problems arise in robust estimation, filtering, and control, and numerically stable solutions have been
lacking. The algorithm developed herein involves the QR factorization of the coefficient matrix and
is provably numerically stable.
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1. Introduction. Many optimization criteria have been used for parameter es-
timation, starting with the standard least-squares formulation of Gauss (ca. 1795)
and moving to more recent works on total least-squares (TLS) and robust (or H*)
estimation (see, e.g., [4, 5, 7, 8, 10, 11]). The latter formulations have been motivated
by an increasing interest in estimators that are less sensitive to data uncertainties and
measurement errors. They can both be shown to require the minimization of indef-
inite quadratic forms, where the standard inner product of two vectors, say a’b, is
replaced by an indefinite inner product of the form a”.Jb for a given signature matriz
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where I, and I, are the identity matrices of dimensions p and ¢, respectively.

In this paper, we consider the indefinite least-squares problems of the form
(1.1) min (Az—0)" J (Az—b),
where A € R™*" is a given matrix with m > n; b € R™ is a given vector; and
p 4+ q = m. This problem reduces to the standard linear least-squares problem when
g = 0. This is a characteristic of the so-called Krein spaces [5, 10].

Contrary to standard least-squares problems that always have solutions, the in-
troduction of J with both positive and negative inertia can lead to minimization
problems that are not necessarily solvable. Under certain solvability conditions, how-
ever, they lead to normal equations with positive-definite coefficient matrices. In this
paper, we propose an algorithm for the solution of (1.1). We show that it is backward
stable.

In section 2 we discuss situations where problem (1.1) might arise. In section 3
we solve problem (1.1). In section 4 we perform an error analysis.
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Throughout this paper, a flop is a real floating-point operation « o 3, where «
and g are real floating-point numbers and o is one of the operations +, —, X, or +.
In our error analysis, we assume the following model for floating-point arithmetic:

filacf) =(a (@ +m))o(B(1+m)),

where fl(a o 3) is the floating-point result of the operation o, and |n;| < e with €
being the machine precision. For simplicity, we ignore the possibility of overflow and
underflow.

2. Motivation of indefinite quadratic forms. We briefly indicate in this sec-
tion how indefinite quadratic forms arise in the context of TLS and robust estimation
methods.

Let A € R™*™ be a given matrix with m > n, and let b € R™ be a given vector,
which are assumed to be linearly related via an unknown vector of parameters z € R™,

(2.1) b=Azx+v.

The vector v € R™ explains the mismatch between Az and the given vector (or
observation) b.

2.1. The TLS problem. The TLS method has been devised to deal with data
errors in both A and b; it incorporates possible errors in the matrix A into the problem
formulation. More specifically, given (A, b) and assuming that both data quantities are

noisy, the TLS problem seeks a matrix A and a vector & that minimize the following
optimization problem (defined in terms of the Frobenius norm):

2 2
(Z.Q)QinH[ A-A  Az-b }H e min_ H[ Ab]-|A E”( .
Az F AbER(A) F
The optimal solution Ais regarded as an approximation for A, which in turn is used
to determine an T that guarantees b € R(A). The solution of the TLS problem is

known to be given by the following construction [7, p. 36].

Assume A is m x n with m > n (i.e., A is a nonsquare matrix). Let {o1,...,0,}
denote the singular values of A, with o > --- > o, > 0. Also, let {G1,...,0n,5n+1}
denote the singular values of the extended matrix [ A b ] If 6,41 < on, then the
unique solution T of (2.2) is given by

. _ -1
T = (AT A— ai_HIn) AT b.

This form of the solution shows that the TLS solution can also be obtained by mini-

mizing the indefinite quadratic cost function

min [[b—Az|3 - ol «l3].

The cost function can be rewritten in the form

w (LAY TS 2001 )

where I,, denotes the identity matrix of size n x n. This is a special case of the
indefinite quadratic cost function to be studied in this paper (see (1.1)). A similar
cost function also arises in the solution of a least-squares problem with bounded
errors-in-variables [3].
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2.2. Robust or H*-smoothing. In recent years there has been an interest in
(suboptimal) min-max estimation, with the belief that the resulting so-called robust
or H* algorithms will be more robust and less sensitive to modeling assumptions
(e.g., [8, 11]). In this section, we review the H*-smoothing formulation, which can be
shown to include as a special case the standard least-squares solution. The application
to parameter estimation given in this section follows [5, 10].

Consider again the model (2.1). Assume that an arbitrary vector  is picked as an
estimate for the unknown z. Then, no matter what the given (A,b) are, it is always
possible to find a vector v that matches (2.1), i.e., that satisfies

b=Ax+7.

The particular choice Z induces an error norm ||z — Z||2 and a noise norm ||v]|2. But
since T has been picked arbitrarily, these norms may be arbitrarily large or small.
That is, the estimate may be good or bad, and one would like to develop a procedure
that picks an estimate that always guarantees a certain level of performance.

To clarify this point even further, consider the case when the norm of the original
perturbation v in (2.1) is small. In this case, the data vector b is only a slight
perturbation apart from Az. So one expects in this situation to be able to come up
with a better estimate for x than in the case when the noise v is large. In other words,
one would like to define a procedure that picks an Z in such a way that if the original
perturbation v is small, then so will be the resulting error (z — 7).

This idea can be formalized and leads to a so-called robust estimation problem.
In this context, one seeks an estimate Z (affine in b, say T = Kb + k for some K €
R™™ k € R™) in order to guarantee that the following bound holds irrespective of
the nature of the noise component v:

_ =2
(2.3) find T such that max M 2
vF0 ol

for a specified value of v (say v = 1 or some other value). The resulting estimate Z,
when it exists (and this depends on the value of ), will guarantee that the maximum
2-norm gain from the disturbance v to the estimation error (x — ) will always be
less than ~2; hence the qualification “robust” estimate since it guarantees that if the
disturbance v is small, then so will be the estimation error.

It is not difficult to see that, since v = b — Az, an alternative way of requiring
expression (2.3) to hold is to equivalently require the indefinite quadratic cost function

J=lAz=bl5 -y llz—Z3

to be nonnegative for all z. That is, the optimization problem (2.3) over v is now an
optimization problem over z. We shall not pursue in detail the complete solution of
the robust smoothing problem here (instead, see [2, 5, 10]). We only note that J can
be rewritten in the form

s (1 LATE 510 1A

where z = ¢ — 7 and ¢ = b — AZ. This is again a special case of (1.1).
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3. Solution of the indefinite least-squares problem. It is known that (see [5])
problem (1.1) has a unique solution if and only if

(3.1) ATJA s symmetric positive-definite.

If this condition does not hold, then (1.1) can either have no solution or infinitely
many solutions. We shall assume throughout this paper that condition (3.1) holds
and, therefore, that problem (1.1) has a unique solution. In particular, condition (3.1)
implies that p > n.

To solve (1.1), we first note that the quadratic cost function can be rewritten as

(Az—b)" J (Az—b)=a" (ATJA) z2—2(ATJb)" 247 Jb
—(x—a)" (AT T A) (&—=,)
+b7 T b— (AT Jb) (AT T A)T (AT D),
where z, is the unique solution of the linear system of equations
(3.2) (AT J A) z,= (A" Jb).

It follows from condition (3.1) that z is the unique solution to (1.1). Parallel to
the usual least-squares problem, we refer to (3.2) as the normal equation associated
with (1.1).

One straightforward approach to solving (3.2) is to directly form the coeffi-
cient matrix and the right-hand side, and then solve the equation by computing the
Cholesky factorization of the coefficient matrix. However, this approach is in general
not backward stable even for the usual least-squares problem, where J is the identity
matrix (see [4, Chap. 5]).

In the following, we derive a new stable algorithm for computing x;. We first
compute the QR factorization of the matrix A, say

_( @ _
A_<Q2)R_QR,

where R € R™ ™ is upper triangular; @1 € RP*™ and Q2 € R?*"; and Q =
QT  QT)T is column orthogonal, i.e.,

QTQ=Q] Q1 +Q5 Qo =1In.

It follows from condition (3.1) that R is nonsingular. For our purposes, we explicitly
compute the matrix @ as well. The cost of this decomposition is about 4n*m — 3n®
flops.

Now substituting the QR factorization of A into (3.2) and simplifying, we obtain
(3.3) (QRTJQ) Ray=(Qf @1 —Q5 Q2) Rz, =Q" Jb.

We remark that the fact that @ is orthogonal is not needed to get (3.3). In fact, this
equation is equivalent to (3.2) for any factorization A = QR as long as R € R™*" is
nonsingular. This fact will be very important for our error analysis in section 4.

We also remark that condition (3.1) implies that the matrix

2Q{ Q1 -1, =Q7 Q1 —QF Q>
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is symmetric positive-definite. Hence the singular values of @Q; are all between 1/v/2
and 1. In other words, Q; is very well-conditioned, even though the matrix Q¥ Q, —
Q¥ Q. itself could be very ill-conditioned.

To solve the linear system of equations (3.3), we form the matrix QT Q; — QT Q-
explicitly and then compute its Cholesky factorization

QI Q1 —QF Q2=LL",

where L € R™ "™ is lower triangular. The cost of this decomposition is about n2m+%n3
flops. To compute x5, we then compute the right-hand side in (3.3) and perform one
forward and two backward substitutions. These computations cost about O(mn)
flops. Hence the total cost for computing x, is about (5m — n)n? flops. We shall
establish in section 4.2 that the proposed algorithm is backward stable.

Remark. A referee pointed out that an alternative method to solve the indefinite
least-squares problem (1.1) can be derived by using hyperbolic Householder trans-
forms (see Berry and Cybenko [1] and Rader and Steinhardt [9]). This alternative is
potentially less expensive than the one in section 3, although it might not be backward
stable.

4. Error analysis. We now perform an error analysis for the proposed solution
to the indefinite least-squares problem. We begin with some definitions and well-
known results.

4.1. Preliminaries. We use the definition of stability in [12, pp. 75-76]. Let
F(X) be a function of the input data X'. We say that an algorithm for computing
F(X) is backward stable if its output is exactly F(X), where X is a small perturbation
of X.

Let A € R™*™ and B € R™*!. When the matrix—matrix product A-B is computed
in the straightforward way, the computed product fl (A - B) satisfies (see [4, pp. 66—
68])

fi(A-B)=A-B+0(e-[|A]2 [|Bll2) -

Let b € R™. When the matrix—vector product A-b is computed in the straightforward
way, the computed product satisfies (see [6, Chap. 3])

fl(A-b) =(A+6A)-0b,
where ||6A||2 = O(e - ||All2). Let
A+6A=QR

be the computed QR factorization of A (say, by Householder transformations) with
§A € RM>™ Q € R™ ™ and R € R, Then R is upper triangular. The computed
QR factorlzatlon is Stable in that (see [6, Chap. 18])

QT Q=1,+A; with A;=AT =0() € R™" and ||64]2=O(c- | Al2).

Let M € R™™ be a symmetric positive-definite matrix, and assume that a nu-
merical Cholesky factorization of M can be successfully computed

M+6M =L1LI%,
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where L € R™*™ is lower triangular. Then 6)M is symmetric and satisfies ||6M |, =
O(e - ||M]||2). For details see [6, Chap. 10].

Let R € R™*™ be a nonsingular upper (or lower) triangular matrix; let b € R™ be
a vector; and let T be the computed solution via backward (or forward) substitution
to the linear system of equations

Rz =0b.
Then T satisfies
(4.1) (R+6R)ZT =,
where (see [6, Chap. 8])
oR| < < R

Here |6 R| and | R| are matrices of moduli of § R and R, respectively, and the inequality
is meant entrywise. It follows that R = O(e - || R]|2).

4.2. Analysis of the indefinite least-squares solution. Let

{0\ 5 Ao
A+6A=| % R=QR
+ (Q ) Q

2

be the numerical QR factorization of A, with R € Rmxn upper triangular. It fol-

lows from section 4.1 that ||5AH2 = O(e - ||All2) and that Q is numerically column
orthogonal, i.e.,
(42) QTQ=QT Q1 +0Q] Q> =1L+ A,

where A1 = AT = O(e) € R,
We first assume that the matrix Q¥ Q; — Q¥ Q- has been computed and success-
fully Cholesky factorized, so that

(4.3) QT Q1 — QY Qu+ Ay =L 1L".

It follows from section 4.1 that Ay € R™*™ is symmetric and ||Az]j2 = O(e).

Let 7, be the computed solution to (3.3). For simplicity we assume that R is
nonsingular and T # 0. According to section 4.1, T satisfies

~ ~ -~ ~ T ~ e -~ NI
(4.4) (L n 6L1> (L n 6L2) (R n 53) %, = (Q + 5@) Jb,
where
18R]z = O(e- |R]l2) . [6Q]l2 = O(e), and [|8L[l2 = O(e- |L]2) for i=1,2.

Since R is a nonsingular upper triangular matrix, it follows from (4.1) that R+6R is
also nonsingular, and hence

5 4t (R+5R) Z, # 0.



360 S. CHANDRASEKARAN, M. GU, AND A. SAYED

We will write some of the round-off errors in (4.4) into @1 and b. To this end, define

gyt

I-——=
2 |913

As=vyl +7vT, where v= —
1l2

: (5E1 LT + L 6LT + 6L, 5E2T) 7.
It is easy to verify that Az € R™*" is symmetric and satisfies

(T+6L)) (D+6Lo) (R+0R)z = (L7 + A4) (R +6R) ..
Furthermore,

1As]l2 < 2 [Jv]l2 (17l

'I_WT
2 171|2 ~ o~ ~ o~ ~ o~
<o 2l |7, 274 £ 6] + oF. 621, e 1912
2
/\/\T

7 Yy

-0 (2 [r- ) =00,
2112

where we have used the fact that

gy’

||E||§ = H@T Q1 — @\g Qs+ A2H2 <1+4+0(e) and HI BRI
3

=
Combining the above with equations (4.3) and (4.4), we have
PN . o~ \T
(Q1Q) Qs + 2o + 1) (R 6R) 5. = (@ +6Q) Tb.

Similar to section 3, relations (4.2) and (4.3) imply that the singular values of @1 are
all between 1/v/2 4+ O(e) and 1+ O(e). Hence Q1 is very well-conditioned.

In the following we shall rewrite Ay + Ag as a perturbation to @1. Let P € RP*P
be the unique symmetric positive-definite matrix such that

~ —1

P2=1,+0Q (@1T @1)_1 (Ag + A3) (@{ @1) QT

and let (]3 + 1 )% be the unique symmetric positive-definite square root of P+1. It
follows that

Nl=

~

]3—11,: (ﬁ‘f'f)i - Q1 (@1T @1)71 (Ag 4+ Aj) (@1T C51)71 @1T~(13+I)7 ,

Nl=

and that
1Pt |(Pe1) K ]@1 (@1 @) @eray (T Q) ar|
.H(ﬁﬂ)%
2
<@ (@ra)” @eran (@@ af| =06,
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Now define

Q= ( P@le ) =Q+0(e).

Since both P and @1 are very well-conditioned, it follows that @ is itself very well-
conditioned. Hence

~ ~ PN ~rr N\ T o~ o~
Q"IQ=(QF P)(QTP) - Q% @

AT A (At A\t ArAa) AT A AT A
= Ql <Ip + Q1 (Q1 Q1> (A2 + A3) (Ql Ql) Ql ) Q1 — Q2 Q2
= Q7 Q1 — QY Q2+ As + As.

Hence we can now rewrite equation (4.4) simply as
_ N e A\ T
(4.5) (QT J Q) (R + 53) %, = (Q n 5@) Jb.
In the following, we write the round-off errors on the right-hand side as an error in b.
. \T S 2
(@+6Q) Jb=(Q"+Q"Q (Q"Q) (Q+Q-@Q) ) Jo
=Q" J (b+6b),
where
~ fxp A\l A A T
v=7Q (Q"Q) (6Q+Q-Q) v,
and hence ||6b||2 = O(e - ||b]|2). Equation (4.5) can now be rewritten as
(4.6) (@T J @) (1% + 5}?) Zo=QT J (b+6b).
Finally we define the perturbation in A as
6A4=84+(Q-Q) R+QoR
Then it follows that [|[§A]l2 = O(e - ||A||2). It can be easily checked that
(4.7) A+6A:@(1§+51§).

With these backward errors, we note that (4.6) is exactly the equation (3.3) for the
perturbed indefinite least-squares problem

min ((A+4+6A)z— (b+ 5b))T J ((A+6A) x — (b+ 6b)).
Hence the new algorithm in section 3 is backward stable. Note that the matrix @ is

in general not orthogonal, and hence the factorization (4.7) is in general not a QR
factorization.
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Now we consider the case where one fails to numerically compute the Cholesky
factorization (4.3). This can happen only if the matrix

@{@1—©2T@2+A2

is not symmetric positive-definite for a symmetric Ay, € R™*"™ with a small 2-norm.
With the techniques developed above, it is straightforward to show that this implies
that there exists a 64 € R™ ™ such that the matrix (A + §A)TJ(A + §A) is not
symmetric positive-definite. In other words, the indefinite least-squares problem (1.1)
does not have a unique solution for a slightly perturbed A. Such a problem cannot
be expected to have a numerically meaningful solution in general.

5. Conclusion. In this paper we proposed a stable and efficient algorithm for
solving the indefinite least-squares problem. Our error analysis shows that this algo-
rithm is backward stable.
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