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Abstract. We formulate and solve a new parameter estimation problem in the presence of data
uncertainties. The new method is suitable when a priori bounds on the uncertain data are available,
and its solution leads to more meaningful results, especially when compared with other methods
such as total least-squares and robust estimation. Its superior performance is due to the fact that
the new method guarantees that the effect of the uncertainties will never be unnecessarily over-
estimated, beyond what is reasonably assumed by the a priori bounds. A geometric interpretation
of the solution is provided, along with a closed form expression for it. We also consider the case in
which only selected columns of the coefficient matrix are subject to perturbations.
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1. Introduction. The central problem in estimation is to recover, to good ac-
curacy, a set of unobservable parameters from corrupted data. Several optimization
criteria have been used for estimation purposes over the years, but the most im-
portant, at least in the sense of having had the most applications, are criteria that
are based on quadratic cost functions. The most striking among these is the linear
least-squares criterion, which was first developed by Gauss (ca. 1795) in his work on
celestial mechanics. Since then, it has enjoyed widespread popularity in many diverse
areas as a result of its attractive computational and statistical properties (see, e.g.,
[4, 8, 10, 13]). Among these attractive properties, the most notable are the facts
that least-squares solutions can be explicitly evaluated in closed forms, they can be
recursively updated as more input data is made available, and they are also maximum
likelihood estimators in the presence of normally distributed measurement noise.

Alternative optimization criteria, however, have been proposed over the years
including, among others, regularized least-squares [4], ridge regression [4, 10], total
least-squares [2, 3, 4, 7], and robust estimation [6, 9, 12, 14]. These different formula-
tions allow, in one way or another, incorporation of further a priori information about
the unknown parameter into the problem statement. They are also more effective in
the presence of data errors and incomplete statistical information about the exogenous
signals (or measurement errors).

Among the most notable variations is the total least-squares (TLS) method, also
known as orthogonal regression or errors-in-variables method in statistics and system
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identification [11]. In contrast to the standard least-squares problem, the TLS formu-
lation allows for errors in the data matrix. But it still exhibits certain drawbacks that
degrade its performance in practical situations. In particular, it may unnecessarily
overemphasize the effect of noise and uncertainties and can, therefore, lead to overly
conservative results.

More specifically, assume A ∈ Rm×n is a given full rank matrix with m ≥ n,
b ∈ Rm is a given vector, and consider the problem of solving the inconsistent linear
system Ax̂ ≈ b in the least-squares sense. The TLS solution assumes data uncertain-
ties in A and proceeds to correct A and b by replacing them by their projections, Â
and b̂, onto a specific subspace and by solving the consistent linear system of equa-
tions Âx̂ = b̂. The spectral norm of the correction (A − Â) in the TLS solution is
bounded by the smallest singular value of [A b]. While this norm might be small for
vectors b that are close enough to the range space of A, it need not always be so. In
other words, the TLS solution may lead to situations in which the correction term is
unnecessarily large.

Consider, for example, a situation in which the uncertainties in A are very small,
say, A is almost known exactly. Assume further that b is far from the column space of
A. In this case, it is not difficult to visualize that the TLS solution will need to rotate
(A, b) into (Â, b̂) and may therefore end up with an overly corrected approximant for
A, despite the fact that A is almost exact.

These facts motivate us to introduce a new parameter estimation formulation with
prior bounds on the size of the allowable corrections to the data. More specifically, we
formulate and solve a new estimation problem that is more suitable for scenarios in
which a priori bounds on the uncertain data are known. The solution leads to more
meaningful results in the sense that it guarantees that the effect of the uncertainties
will never be unnecessarily overestimated, beyond what is reasonably assumed by the
a priori bounds.

We note that, while preparing this paper, the related work [1] has come to our
attention, where the authors have independently formulated and solved a similar esti-
mation problem by using (convex) semidefinite programming techniques and interior-
point methods. The resulting computational complexity of the proposed solution is
O(nm2 +m3.5), where n is the smaller matrix dimension.

The solution proposed in this paper proceeds by first providing a geometric for-
mulation of the problem, followed by an algebraic derivation that establishes that the
optimal solution can in fact be obtained by solving a related regularized problem. The
parameter of the regularization step is further shown to be obtained as the unique
positive root of a secular equation and as a function of the given data. In this sense,
the new formulation turns out to provide automatic regularization and, hence, has
some useful regularization properties: the regularization parameter is not selected by
the user but rather determined by the algorithm. Our solution involves an SVD step,
and its computational complexity amounts to O(mn2 + n3), where n is again the
smaller matrix dimension. A summary of the problem and its solution is provided in
section 3.4. (Other problem formulations are studied in [15].)

2. Problem formulation. Let A ∈ Rm×n be a given matrix with m ≥ n and
b ∈ Rm a given vector, both of which are assumed to be linearly related via an
unknown vector of parameters x ∈ Rn,

b = Ax+ v .(2.1)
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The vector v ∈ Rm denotes measurement noise and it explains the mismatch between
Ax and the given vector (or observation) b.

We assume that the “true” coefficient matrix is A + δA and that we only know
an upper bound on the 2-induced norm of the perturbation δA,

‖δA‖2 ≤ η ,(2.2)

with η being known. Likewise, we assume that the “true” observation vector is b+ δb
and that we know an upper bound ηb on the Euclidean norm of the perturbation δb,

‖δb‖2 ≤ ηb .(2.3)

We then pose the problem of finding an estimate that performs “well” for any allowed
perturbation (δA, δb). More specifically, we pose the following min-max problem.

Problem 1. Given A ∈ Rm×n, with m ≥ n, b ∈ Rm, and nonnegative real
numbers (η, ηb), determine, if possible, an x̂ that solves

min
x̂

max
{‖ (A+ δA) x̂− (b+ δb)‖2 : ‖δA‖2 ≤ η, ‖δb‖2 ≤ ηb

}
.(2.4)

The situation is depicted in Fig. 2.1. Any particular choice for x̂ would lead to
many residual norms,

‖ (A+ δA) x̂− (b+ δb)‖2 ,
one for each possible choice of A in the disc (A + δA) and b in the disc (b + δb). A
second choice for x̂ would lead to other residual norms, the maximum value of which
need not be the same as the first choice. We want to choose an estimate x̂ that
minimizes the maximum possible residual norm. This is depicted in Fig. 2.2 for two
choices, say x̂1 and x̂2. The curves show the values of the residual norms as a function
of (A+ δA, b+ δb).

Fig. 2.1. Geometric interpretation of the new least-squares formulation.

We note that if η = 0 = ηb, then problem (2.4) reduces to a standard least-squares
problem. Therefore we shall assume throughout that η > 0. (It will turn out that the
solution to the above min-max problem is independent of ηb.)

2.1. A geometric interpretation. The min-max problem admits an interest-
ing geometric formulation that highlights some of the issues involved in its solution.

For this purpose, and for the sake of illustration, assume we have a unit-norm
vector b, ‖b‖2 = 1, with no uncertainties in it (ηb = 0). Assume further that A is
simply a column vector, say a, with η 6= 0. That is, only A is assumed to be uncertain
with perturbations that are bounded by η in magnitude (as in (2.2)). Now consider
problem (2.4) in this context, which reads as follows:

min
x̂

(
max

‖δa‖2≤η
‖ (a+ δa) x̂− b‖2

)
.(2.5)
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Fig. 2.2. Two illustrative residual-norm curves.

This situation is depicted in Fig. 2.3. The vectors a and b are indicated in thick
black lines. The vector a is shown in the horizontal direction and a circle of radius η
around its vertex indicates the set of all possible vertices for a+ δa.

Fig. 2.3. Geometric construction of the solution for a simple example.

For any x̂ that we pick, the set {(a+δa)x̂} describes a disc of center ax̂ and radius
ηx̂. This is indicated in the figure by the largest rightmost circle, which corresponds
to a choice of a positive x̂ that is larger than one. The vector in {(a + δa)x̂} that
is furthest away from b is the one obtained by drawing a line from b through the
center of the rightmost circle. The intersection of this line with the circle defines a
residual vector r3 whose norm is the largest among all possible residual vectors in the
set {(a+ δa)x̂}.

Likewise, if we draw a line from b that passes through the vertex of a, it will
intersect the circle at a point that defines a residual vector r2. This residual will have
the largest norm among all residuals that correspond to the particular choice x̂ = 1.

More generally, any x̂ that we pick will determine a circle, and the corresponding
largest residual is obtained by finding the furthest point on the circle from b. This is
the point where the line that passes through b and the center of the circle intersects
the circle on the other side of b.

We need to pick an x̂ that minimizes the largest residual. For example, it is clear
from the figure that the norm of r3 is larger than the norm of r2. The claim is that
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in order to minimize the largest residual we need to proceed as follows: we drop a
perpendicular from b to the lower tangent line denoted by θ1. This perpendicular
intersects the horizontal line in a point where we draw a new circle (the leftmost
circle) that is tangent to both θ1 and θ2. This circle corresponds to a choice of x̂
such that the furthest point on it from b is the foot of the perpendicular from b to θ1.
The residual indicated by r1 corresponds to the desired solution (it has the minimum
norm among the largest residuals).

To verify this claim, we refer to Fig. 2.4, where we have only indicated two circles,
the circle that leads to a largest residual that is orthogonal to θ1 and a second circle
to its left. For this second leftmost circle, we denote its largest residual by r4. We
also denote the segment that connects b to the point of tangency of this circle with θ1
by r. It is clear that r is larger than r1 since r and r1 are the sides of a right triangle.
It is also clear that r4 is larger than r by construction. Hence, r4 is larger than r1. A
similar argument will show that r1 is smaller than residuals that result from circles
to its right.

Fig. 2.4. Geometric construction of the solution for a simple example.

The above argument shows that the minimizing solution can be obtained as fol-
lows: drop a perpendicular from b to θ1. Pick the point where the perpendicular
meets the horizontal line and draw a circle that is tangent to both θ1 and θ2. Its
radius will be ηx̂, where x̂ is the optimal solution. Also, the foot of the perpendicular
on θ1 will be the optimal b̂.

The projection b̂ (and consequently the solution x̂) will be nonzero as long as b
is not orthogonal to the direction θ1. This imposes a condition on η. Indeed, the
direction θ1 will be orthogonal to b only when η is large enough. This requires that
the circle centered around a has radius aT b, which is the length of the projection of
a onto the unit norm vector b. This is depicted in Fig. 2.5.
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Fig. 2.5. Geometric condition for a nonzero solution.

Hence, the largest value that can be allowed for η in order to have a nonzero
solution x̂ is

η < |aT b| .

Indeed, if η were larger than or equal to this value, then the vector in the set (a+ δa)
that would always lead to the maximum residual norm is the one that is orthogonal
to b, in which case the solution will be zero again. The same geometric argument will
lead to a similar conclusion had we allowed for uncertainties in b as well.

For a nonunity b, the upper bound on η would take the form

η <
|aT b|
‖b‖2 .

We shall see that in the general case a similar bound holds, for nonzero solutions, and
is given by

η <
‖AT b‖2
‖b‖2 .

We now proceed to an algebraic solution of the min-max problem. A final statement
of the form of the solution is given in section 3.4.

3. Reducing the min-max problem to a minimization problem. We start
by showing how to reduce the min-max problem (2.4) to a standard minimization
problem. To begin with, we note that

‖ (A+ δA) x̂− (b+ δb)‖2 ≤ ‖Ax̂− b‖2 + ‖δA‖2 · ‖x̂‖2 + ‖δb‖2 ,
≤ ‖Ax̂− b‖2 + η‖x̂‖2 + ηb ,

which provides an upper bound for ‖ (A+ δA) x̂− (b + δb)‖2. But this upper bound
is in fact achievable, i.e., there exist (δA, δb) for which

‖ (A+ δA) x̂− (b+ δb)‖2 = ‖Ax̂− b‖2 + η‖x̂‖2 + ηb .
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To see that this is indeed the case, choose δA as the rank one matrix

δAo =
(Ax̂− b)

‖Ax̂− b‖2
x̂T

‖x̂‖2 η ,

and choose δb as the vector

δbo = − (Ax̂− b)

‖Ax̂− b‖2
ηb .

For these choices of perturbations in A and b, it follows that

(Ax̂− b) , δAox̂ , and δbo ,

are collinear vectors that point in the same direction. Hence,

‖ (A+ δAo) x̂− (b+ δbo)‖2 = ‖(Ax̂− b) + δAox̂− δbo‖2 ,
= ‖Ax̂− b‖2 + ‖δAox̂‖2 + ‖δbo‖2 ,
= ‖Ax̂− b‖2 + η‖x̂‖2 + ηb ,

which is the desired upper bound. We therefore conclude that

max
‖δA‖2≤η ,‖δb‖2≤ηb

‖ (A+ δA) x̂− (b+ δb)‖2 = ‖Ax̂− b‖2 + η‖x̂‖2 + ηb ,(3.1)

which establishes the following result.
Lemma 3.1. The min-max problem (2.4) is equivalent to the following minimiza-

tion problem. Given A ∈ Rm×n, with m ≥ n, b ∈ Rm, and nonnegative real numbers
(η, ηb), determine, if possible, an x̂ that solves

min
x̂

(‖Ax̂− b‖2 + η‖x̂‖2 + ηb) .(3.2)

3.1. Solving the minimization problem. To solve (3.2), we define the cost
function

L(x̂) = ‖Ax̂− b‖2 + η‖x̂‖2 + ηb .

It is easy to check that L(x̂) is a convex continuous function in x̂, and hence, any
local minimum of L(x̂) is also a global minimum. But at any local minimum of L(x̂),
it either holds that L(x̂) is not differentiable or its gradient 5L(x̂) is 0. In particular,
note that L(x̂) is not differentiable only at x̂ = 0 and at any x̂ that satisfies Ax̂−b = 0.

We first consider the case in which L(x̂) is differentiable and, hence, the gradient
of L(x̂) exists and is given by

5L(x̂) =
1

‖Ax̂− b‖2A
T (Ax̂− b) +

η

‖x̂‖2 x̂ ,

=
1

‖Ax̂− b‖2
((
ATA+ αI

)
x̂−AT b

)
,

where we have introduced the positive real number

α =
η‖Ax̂− b‖2

‖x̂‖2 .(3.3)
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By setting 5L(x̂) = 0 we obtain that any stationary solution x̂ of L(x̂) is given by

x̂ =
(
ATA+ αI

)−1
AT b .(3.4)

We still need to determine the parameter α that corresponds to x̂ and which is defined
in (3.3).

To solve for α, we introduce the singular value decomposition (SVD) of A,

A = U

[
Σ
0

]
V T ,(3.5)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ = diag(σ1, . . . , σn) is diago-
nal, with

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0

being the singular values of A. We further partition the vector UT b into[
b1
b2

]
= UT b,(3.6)

where b1 ∈ Rn and b2 ∈ Rm−n.
In this case, the expression (3.4) for x̂ can be rewritten in the equivalent form

x̂ = V (Σ2 + αI)−1Σb1 ,(3.7)

and, hence,

‖x̂‖2 = ‖Σ (Σ2 + αI
)−1

b1‖2 .

Likewise,

b−Ax̂ = U

(
UT b−

(
Σ
0

)(
Σ2 + αI

)−1
Σb1

)
,

= U

[
b1 − Σ2

(
Σ2 + αI

)−1
b1

b2

]
,

= U

[
α
(
Σ2 + αI

)−1
b1

b2

]
,

which shows that

‖b−Ax̂‖2 =

√
‖b2‖22 + α2‖ (Σ2 + αI)

−1
b1‖22 .

Therefore, (3.3) for α reduces to the following nonlinear equation that is only a func-
tion of α and the given data (A, b, η):

α =
η
√
‖b2‖22 + α2‖ (Σ2 + αI)

−1
b1‖22

‖Σ (Σ2 + αI)
−1

b1‖2
.(3.8)

Note that only the norm of b2, and not b2 itself, is needed in the above expression.
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Remark. We have assumed in the derivation so far that A is full rank. If this
were not the case, i.e., if A (and hence Σ) were singular, then (3.8) can be reduced to
an equation of the same form but with a nonsingular Σ of smaller dimension. Indeed,
if we partition

Σ =

[
Σ̂ 0
0 0

]
,

where Σ̂ ∈ Rk×k is nonsingular, and let b̂1 ∈ Rk be the first k components of b1,
b̃1 ∈ Rn−k be the last n− k components of b1, and let

‖b̂2‖22 = ‖b2‖22 + ‖b̃1‖22,

then (3.8) reduces to

α =
η

√
‖b̂2‖22 + α2‖

(
Σ̂2 + αI

)−1

b̂1‖22

‖Σ̂
(
Σ̂2 + αI

)−1

b̂1‖2
,(3.9)

which is the same form as (3.8). From now on, we assume that A is full rank and,
hence, Σ is invertible:

A full rank is a standing assumption in what follows .

3.2. The secular equation. Define the nonlinear function in α,

G(α) = bT1
(
Σ2 − η2I

) (
Σ2 + αI

)−2
b1 − η2

α2
‖b2‖22 .(3.10)

It is clear that α is a positive solution to (3.8) if, and only if, it is a positive root of
G(α). Following [4], we refer to the equation

G(α) = 0(3.11)

as a secular equation.
The function G(α) has several useful properties that will allow us to provide

conditions for the existence of a unique positive root α. We start with the following
result.

Lemma 3.2. The function G(α) in (3.10) can have at most one positive root. In
addition, if α̂ > 0 is a root of G(α), then α̂ is a simple root and G′(α̂) > 0.

Proof. We prove the second conclusion first. Partition[
Σ 0
0 0

]
=

[
Σ1 0
0 Σ2

]
∈ R(n+1)×(n+1) ,

where the diagonal entries of Σ1 ∈ Rk×k are those of Σ that are larger than η, and
the diagonal entries of Σ2 ∈ R(n+1−k)×(n+1−k) are the remaining diagonal entries of
Σ and one 0. It follows that (in terms of the 2-induced norm for the diagonal matrices
(Σ2

2 + αI) and (Σ2
1 + αI))

‖Σ2
2 + αI‖2 · ‖

(
Σ2

1 + αI
)−1 ‖2 < 1(3.12)
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for all α > 0.
Let u ∈ Rk be the first k components of

√
Σ2 − η2I · b1 and let v ∈ Rn+1−k be

the last n+ 1− k components of[ √
η2I − Σ2 0

0 η

] [
b1

‖b2‖2
]
.

It follows that we can rewrite G(α) as the difference

G(α) = uT
(
Σ2

1 + αI
)−2

u− vT
(
Σ2

2 + αI
)−2

v

and, consequently,

G′(α) = −2
(
uT
(
Σ2

1 + αI
)−3

u− vT
(
Σ2

2 + αI
)−3

v
)
.

Let α̂ > 0 be a root of G(α). This means that

uT
(
Σ2

1 + α̂I
)−2

u = vT
(
Σ2

2 + α̂I
)−2

v ,

which leads to the following sequence of inequalities:

uT
(
Σ2

1 + α̂I
)−3

u ≤ ‖ (Σ2
1 + α̂I

)−1 ‖2 · uT ·
(
Σ2

1 + α̂I
)−2

u

= ‖ (Σ2
1 + α̂I

)−1 ‖2 · vT ·
(
Σ2

2 + α̂I
)−2

v

<
1

‖ (Σ2
2 + αI) ‖2 · v

T · (Σ2
2 + α̂I

)−2
v

≤ vT
(
Σ2

2 + α̂I
)−3

v .

Combining this relation with the expression for G′(α), it immediately follows that
G′(α̂) > 0. Consequently, α̂ must be a simple root of G(α).

Furthermore, we note that G(α) is a sum of n + 1 rational functions in α and
hence can have only a finite number of positive roots. In the following we show by
contradiction that G(α) can have no positive roots other than α̂. Assume to the
contrary that α̂1 is another positive root of G(α). Without loss of generality, we
further assume that α̂ < α̂1 and that G(α) does not have any root within the open
interval (α̂, α̂1). It follows from the above proof that

G′(α̂) > 0 and G′(α̂1) > 0 .

But this implies that G(α) > 0 for α slightly larger than α̂ and G(α) < 0 for α slightly
smaller than α̂1, and consequently, G(α) must have a root in the interval (α̂, α̂1); a
contradiction to our assumptions. So G(α) can have at most one positive root.

Now we provide conditions for G(α) to have a positive root. (The next result was
in fact suggested earlier by the geometric argument of Fig. 2.3.) Note that Ax̂ can be
written as

Ax̂ = U

[
Σ
0

]
V T x̂ .

Therefore solving Ax̂ = b, when possible, is equivalent to solving[
Σ
0

]
V T x̂ = UT b =

[
b1
b2

]
.



PARAMETER ESTIMATION WITH UNCERTAIN DATA 245

This shows that a necessary and sufficient condition for b to belong to the column
span of A is b2 = 0.

Lemma 3.3. Assume η > 0 (a standing assumption) and b2 6= 0, i.e., b does
not belong to the column span of A. Then the function G(α) in (3.10) has a unique
positive root if and only if

η <
‖AT b‖2
‖b‖2 .(3.13)

Proof. We note that

lim
α→0+

(
α2G(α)

)
= −η2‖b2‖22 < 0 ,

and that

lim
α→+∞

(
α2G(α)

)
= bT1

(
Σ2 − η2I

)
b1 − η2‖b2‖22 ,

= ‖AT b‖22 − η2‖b‖22 ,(3.14)

= bT1 Σ2b1 − η2‖b‖22 .

First we assume that condition (3.13) holds. It follows then that G(α) changes
sign on the interval (0,+∞) and therefore has to have a positive root. By Lemma 3.2
this positive root must also be unique.

On the other hand, assume that

η >
‖AT b‖2
‖b‖2 .

This condition implies, in view of (3.14), that G(α) < 0 for sufficiently large α. We
now show by contradiction that G(α) does not have a positive root. Assume to the
contrary that α̂ is a positive root of G(α). It then follows from Lemma 3.2 that G(α)
is positive for α slightly larger than α̂ since G′(α̂) > 0, and hence G(α) must have a
root in (α̂,+∞), which is a contradiction according to Lemma 3.2. Hence G(α) does
not have a positive root in this case.

Finally, we consider the case

η =
‖AT b‖2
‖b‖2 .

We also show by contradiction that G(α) does not have a positive root. Assume to
the contrary that α̂ is a positive root of G(α). It then follows from Lemma 3.2 that
α̂ must be a simple root and a continuous function of the coefficients in G(α). In
particular, α̂ is a continuous function of η. Now we slightly increase the value of η so
that

η >
‖AT b‖2
‖b‖2 .

By continuity, G(α) has a positive root for such values of η, but we have just shown
that for η > ‖AT b‖2/‖b‖2 this is not possible. Hence, G(α) does not have a positive
root in this case either.



246 CHANDRASEKARAN, GOLUB, GU, AND SAYED

We now consider the case b2 = 0, i.e., b lies in the column span of A. This case
arises, for example, when A is a square invertible matrix (m = n).

Define

τ1 =
‖Σ−1b1‖2
‖Σ−2b1‖2 and τ2 =

‖Σb1‖2
‖b1‖2 .

It follows from b2 = 0 that (cf. (3.13))

τ2 =
‖AT b‖2
‖b‖2 .

Now note that

bT1 b1 = bT1 ΣΣ−1b1 .

Therefore, by using the Cauchy–Schwarz inequality, we have

‖b1‖2‖b1‖2 ≤ ‖Σb1‖2 ‖Σ−1b1‖2 ,

and we obtain, after applying the Cauchy–Schwarz inequality one more time, that

τ2 =
‖Σb1‖2
‖b1‖2 ≥ ‖b1‖2

‖Σ−1b1‖2 ≥
‖Σ−1b1‖2
‖Σ−2b1‖2 = τ1 .(3.15)

Lemma 3.4. Assume η > 0 (a standing assumption) and b2 = 0, i.e., b lies in the
column span of A. Then the function G(α) in (3.10) has a positive root if and only if

τ1 < η < τ2 .(3.16)

Proof. It is easy to check that

lim
α→0+

G(α) =
(
τ2
1 − η2

)
bT1 Σ−4b1 ,

and that

lim
α→+∞

(
α2G(α)

)
=
(
τ2
2 − η2

)
bT1 b1 .

If η > τ2, then

lim
α→0+

G(α) < 0 and lim
α→+∞

(
α2G(α)

)
< 0 .

Arguments similar to those in the proof of Lemma 3.3 show that G(α) does not have
a positive root. Similarly G(α) does not have a positive root if η < τ1. Continuity
arguments similar to those in the proof of Lemma 3.3 show that G(α) does not have
a positive root if η = τ2 or τ1.

However, if τ1 < η < τ2, then

lim
α→0+

G(α) < 0 and lim
α→+∞

(
α2G(α)

)
> 0 .

So G(α) must have a positive root. By Lemma 3.2 this positive root is unique.
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3.3. Finding the global minimum. We now show that whenever G(α) has a
positive root α̂, the corresponding vector x̂ in (3.4) must be the global minimizer of
L(x̂).

Lemma 3.5. Let α̂ be a positive root of G(α) and let x̂ be defined by (3.4) for
α = α̂. Then x̂ is the global minimum of L(x̂).

Proof. We first show that

4L(x̂) > 0 ,

where 4L(x̂) is the Hessian of L at x̂. We take the gradient of L,

5L(x̂) =
1

‖Ax̂− b‖2A
T (Ax̂− b) +

η

‖x̂‖2 x̂ .

Consequently,

4L(x̂) =
1

‖Ax̂− b‖2A
TA− 1

‖Ax̂− b‖32
(
ATAx̂−AT b

) (
ATAx̂−AT b

)T
+

η

‖x̂‖2 I −
η

‖x̂‖32
x̂x̂T .

We now simplify this expression. It follows from (3.4) that(
ATA+ α̂I

)
x̂ = AT b ,

and, hence,

ATAx̂−AT b = −α̂x̂ .
Substituting this relation into the expression for the Hessian matrix 4L(x̂), and
simplifying the resulting expression using (3.3), we obtain

4L(x̂) =
1

‖Ax̂− b‖2

((
ATA+ α̂I

)− x̂x̂T

x̂T x̂

(
α̂+ η2

))
.

Observe that the matrix
(
ATA+ α̂I

)
is positive definite since α̂ > 0. Hence

4L(x̂) can have at most one nonpositive eigenvalue. This implies that 4L(x̂) is
positive definite if and only if det (4L(x̂)) > 0. Indeed,

det (4L(x̂)) ‖Ax̂− b‖n2
det (ATA+ α̂I)

= det

(
I −

(
ATA+ α̂I

)−1
x̂x̂T

x̂T x̂

(
α̂+ η2

))

= 1− x̂T
(
ATA+ α̂I

)−1
x̂

x̂T x̂

(
α̂+ η2

)
=

1

x̂T x̂

(
x̂T x̂− (α̂+ η2

) (
x̂T
(
ATA+ α̂I

)−1
x̂
))

.

The last expression can be further rewritten, using the SVD of A and (3.8),

det (4L(x̂)) ‖Ax̂− b‖n2
det (ATA+ α̂I)

=
1

x̂T x̂
bT1 Σ2

(
Σ2 + α̂I

)−2
b1

− α̂+ η2

x̂T x̂
bT1 Σ2

(
Σ2 + α̂I

)−3
b1
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=
1

x̂T x̂

η2
(
‖b2‖22 + α̂2‖ (Σ2 + α̂I

)−1
b1‖22

)
α̂2

− α̂+ η2

x̂T x̂
bT1 Σ2

(
Σ2 + α̂I

)−3
b1

=
α̂

x̂T x̂

(
η2‖b2‖22
α̂3

+ bT1
(
η2 − Σ2

) (
Σ2 + α̂I

)−3
b1

)
.

Comparing the last expression with the function G(α) in (3.10), we finally have

det (4L(x̂)) ‖Ax̂− b‖n2
det (ATA+ α̂I)

=
α̂

2x̂T x̂
G′(α̂) .

By Lemma 3.2, we have that G′(α̂) > 0. Consequently, 4L(x̂) must be positive
definite, and hence x̂ must be a local minimizer of L(x̂). Since L(x̂) is a convex
function, this also means that x̂ is a global minimizer of L(x̂).

We still need to consider the points at which L(x̂) is not differentiable. These
include x̂ = 0 and any solution of Ax̂ = b.

Consider first the case b2 6= 0. This means that b does not belong to the column
span of A and, hence, we only need to check x̂ = 0. If condition (3.13) holds, then it
follows from Lemma 3.3 that G(α) has a unique positive root α̂, and it follows from
Lemma 3.5 that

x̂ =
(
ATA+ α̂I

)−1
AT b

is the global minimum. On the other hand, if condition (3.13) does not hold, then it
follows from Lemma 3.3 that G(α) does not have any positive root and hence

x̂ = 0

is the global minimum.
Now consider the case b2 = 0, which means that b lies in the column span of

A. In this case L(x̂) is not differentiable at both x̂ = 0 and x̂ = V Σ−1b1 = A†b. If
condition (3.16) holds, then it follows from Lemma 3.4 that G(α) has a unique positive
root α̂ and it follows from Lemma 3.5 that

x̂ =
(
ATA+ α̂I

)−1
AT b

is the global minimum. On the other hand, if η ≤ τ1, then

L (V Σ−1b1
)− L(0) = η‖Σ−1b1‖2 − ‖b1‖2 ,

≤ ‖Σ−1b1‖2
(‖Σ−1b1‖2
‖Σ−2b1‖2 −

‖b1‖2
‖Σ−1b1‖2

)
,

≤ 0 ,

where we have used the Cauchy–Schwarz inequality. It follows that

x̂ = V Σ−1b1

is the global minimum in this case. Similarly, if η ≥ τ2, then

x̂ = 0
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is the global minimum.
We finally consider the degenerate case τ1 = τ2 = η. Under this condition, it

follows from (3.15) that

‖Σ−1b1‖2‖Σb1‖2 = ‖b1‖2 · ‖b1‖2 .
Hence,

L (V Σ−1b1
)− L(0) = η‖Σ−1b1‖2 − ‖b1‖2

=
‖Σ−1b1‖2
‖b1‖2 · ‖Σ−1b1‖2 − ‖b1‖2 = 0 .

This shows that L (V Σ−1b1
)

= L(0). But since L(x̂) is a convex function in x̂, we
conclude that for any x̂ that is a convex linear combination of 0 and V Σ−1b1, say

x̂ = βV Σ−1b1, for any 0 ≤ β ≤ 1 ,(3.17)

we also obtain L(x̂) = 0. Therefore, when τ1 = τ2 = η there are many solutions x̂
and these are all scaled multiples of V Σ−1b1 as in (3.17).

3.4. Statement of the solution of the min-max problem. We collect, in
the form of a theorem, the conclusions of our earlier analysis.

Theorem 3.6. Given A ∈ Rm×n, with m ≥ n and A full rank, b ∈ Rm, and
nonnegative real numbers (η, ηb). The following optimization problem

min
x̂

max
{‖ (A+ δA) x̂− (b+ δb)‖2 : ‖δA‖2 ≤ η, ‖δb‖2 ≤ ηb

}
(3.18)

always has a solution x̂. The solution(s) can be constructed as follows.
• Introduce the SVD of A,

A = U

[
Σ
0

]
V T ,(3.19)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal, and Σ = diag(σ1, . . . , σn)
is diagonal, with

σ1 ≥ σ2 ≥ · · · ≥ σn > 0

being the singular values of A.
• Partition the vector UT b into [

b1
b2

]
= UT b,(3.20)

where b1 ∈ Rn and b2 ∈ Rm−n.
• Introduce the secular function

G(α) = bT1
(
Σ2 − η2I

) (
Σ2 + αI

)−2
b1 − η2

α2
‖b2‖22 .(3.21)

• Define

τ1 =
‖Σ−1b1‖2
‖Σ−2b1‖2 and τ2 =

‖AT b‖2
‖b‖2 .
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First case: b does not belong to the column span of A.
1. If η ≥ τ2, then the unique solution is x̂ = 0.
2. If η < τ2, then the unique solution is x̂ = (ATA+ α̂I)−1AT b, where α̂ is the

unique positive root of the secular equation G(α) = 0.
Second case: b belongs to the column span of A.
1. If η ≥ τ2, then the unique solution is x̂ = 0.
2. If τ1 < η < τ2, then the unique solution is x̂ = (ATA + α̂I)−1AT b, where α̂

is the unique positive root of the secular equation G(α) = 0.
3. If η ≤ τ1, then the unique solution is x̂ = V Σ−1b1 = A†b.
4. If η = τ1 = τ2, then there are infinitely many solutions that are given by

x̂ = βV Σ−1b1 = βA†b, for any 0 ≤ β ≤ 1.
The above solution is suitable when the computation of the SVD of A is feasible.

For large sparse matrices A, it is better to reformulate the secular equation as follows.
Squaring both sides of (3.3) we obtain

‖(ATA+ αI)−1AT b‖2 α2 = η2‖A(ATA+ αI)−1AT b − b‖2 .(3.22)

After some manipulation, we are led to

dT (C + αI)−2d =
η2

α2

[
bT b− dT (C + αI)−1d− αdT (C + αI)−2d

]
,

where we have defined C = ATA and d = AT b. Therefore, finding α reduces to finding
the positive root of

H(α)
∆
= dT (C + αI)−2d

− η2

α2

[
bT b− dT (C + αI)−1d− αdT (C + αI)−2d

]
.(3.23)

In this form, one can consider techniques similar to those suggested in [5] to find α
efficiently.

4. Restricted perturbations. We have so far considered the case in which all
the columns of the A matrix are subject to perturbations. It may happen in practice,
however, that only selected columns are uncertain, while the remaining columns are
known precisely. This situation can be handled by the approach of this paper, as we
now clarify.

Given A ∈ Rm×n, we partition it into block columns,

A =
[
A1 A2

]
,

and assume, without loss of generality, that only the columns of A2 are subject to
perturbations while the columns of A1 are known exactly. We then pose the following
min-max problem.

Given A ∈ Rm×n, with m ≥ n and A full rank, b ∈ Rm, and nonnegative real
numbers (η2, ηb), determine x̂ such that

min
x̂

max
{‖ [ A1 A2 + δA2

]
x̂− (b+ δb)‖2 : ‖δA2‖2 ≤ η2, ‖δb‖2 ≤ ηb

}
.(4.1)

If we partition x̂ accordingly with A1 and A2, say

x̂ =

[
x̂1

x̂2

]
,
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then we can write

‖ [ A1 A2 + δA2

]
x̂− (b+ δb)‖2 = ‖(A2 + δA2)x̂2 − (b−A1x̂1 + δb)‖2 .

Therefore, following the argument at the beginning of section 3, we conclude that the
maximum over (δA2, δb) is achievable and is equal to

‖A2x̂2 − (b−A1x̂1)‖2 + η2‖x̂2‖2 + ηb .

In this way, statement (4.1) reduces to the minimization problem

min
x̂1,x̂2

(∥∥∥∥[ A1 A2

] [ x̂1

x̂2

]
− b

∥∥∥∥
2

+ η2‖x̂2‖2 + ηb

)
.(4.2)

This statement can be further reduced to the problem treated in Theorem 3.6 as
follows. Introduce the QR decomposition of A, say

A = QR = Q


 R11 R12

0 R22

0 0


 ,

where we have partitioned R accordingly with the sizes of A1 and A2. Define
 b̄1A

b̄2A
b̄2


 = QT b .

Then (4.2) is equivalent to

min
x̂1,x̂2



∥∥∥∥∥∥

 R11 R12

0 R22

0 0


[ x̂1

x̂2

]
−

 b̄1A

b̄2A
b̄2



∥∥∥∥∥∥

2

+ η2‖x̂2‖2 + ηb


 ,(4.3)

which can be further rewritten as

min
x̂1,x̂2



∥∥∥∥∥∥

 R11x̂1 +R12x̂2 − b̄1A

R22x̂2 − b̄2A
b̄2



∥∥∥∥∥∥

2

+ η2‖x̂2‖2 + ηb


 .(4.4)

This shows that once the optimal x̂2 has been determined, the optimal choice for x̂1

is necessarily the one that annihilates the entry R11x̂1 +R12x̂2 − b̄1A. That is,

x̂1 = R−1
11

[
b̄1A −R12x̂2

]
.(4.5)

The optimal x̂2 is the solution of

min
x̂2

(∥∥∥∥
[
R22

0

]
x̂2 −

[
b̄2A
b̄2

]∥∥∥∥
2

+ η2‖x̂2‖2 + ηb

)
.(4.6)

This optimization is of the same form as the problem stated earlier in Lemma 3.1

with x̂ replaced by x̂2, η replaced by η2, A replaced by
[
R22

0

]
, and b replaced by[

b̄2A
b̄2

]
.

Therefore, the optimal x̂2 can be obtained by applying the result of Theorem 3.6.
Once x̂2 has been determined, the corresponding x̂1 follows from (4.5).
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5. Conclusion. In this paper we have proposed a new formulation for parameter
estimation in the presence of data uncertainties. The problem incorporates a priori
bounds on the size of the perturbations and admits a nice geometric interpretation. It
also has a closed form solution that is obtained by solving a regularized least-squares
problem with a regression parameter that is the unique positive root of a secular
equation.

Several other interesting issues remain to be addressed. Among these, we state
the following:

1. A study of the statistical properties of the min-max solution is valuable for a
better understanding of its performance in stochastic settings.

2. The numerical properties of the algorithm proposed in this paper need also
be addressed.

3. Extensions of the algorithm to deal with perturbations in submatrices of A
are of interest and will be studied elsewhere.

We can also extend the approach of this paper to other variations that include
uncertainties in a weighting matrix, multiplicatives uncertainties, etc. (see, e.g., [15]).
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