
A FAST STABLE SOLVER FOR NONSYMMETRIC TOEPLITZ AND
QUASI-TOEPLITZ SYSTEMS OF LINEAR EQUATIONS∗

S. CHANDRASEKARAN† AND ALI H. SAYED‡

SIAM J. MATRIX ANAL. APPL. c© 1998 Society for Industrial and Applied Mathematics
Vol. 19, No. 1, pp. 107–139, January 1998 008

Abstract. We derive a stable and fast solver for nonsymmetric linear systems of equations
with shift structured coefficient matrices (e.g., Toeplitz, quasi-Toeplitz, and product of two Toeplitz
matrices). The algorithm is based on a modified fast QR factorization of the coefficient matrix
and relies on a stabilized version of the generalized Schur algorithm for matrices with displacement
structure. All computations can be done in O(n2) operations, where n is the matrix dimension, and
the algorithm is backward stable.

Key words. displacement structure, generalized Schur algorithm, QR factorization, hyperbolic
rotations, generator matrices, Schur complements, error analysis

AMS subject classifications. 65F05, 65G05, 65F30, 15A23

PII. S0895479895296458

1. Introduction. Linear systems of equations can be solved by resorting to the
LDU factorization (Gaussian elimination) of the coefficient matrix. But for indefinite
or nonsymmetric matrices, the LDU factorization is numerically unstable if done
without pivoting. Moreover, since pivoting can destroy the structure of a matrix, it
is not always possible to incorporate it into a fast algorithm for structured matrices
without potential loss of computational efficiency.

Sometimes though, one can transform a given structured matrix to another struc-
tured form so that the new structure is insensitive to partial pivoting operations [9, 12].
While this technique can be satisfactory for certain situations, it may still pose numer-
ical problems because partial pivoting by itself is not sufficient to guarantee numerical
stability even for slow algorithms. It also seems difficult to implement complete piv-
oting in a fast algorithm without accruing a considerable loss of efficiency. Recently,
Gu [11] proposed a fast algorithm that incorporates an approximate complete pivoting
strategy.

Another way to solve a structured linear system of equations is to compute the
QR factorization of the coefficient matrix rapidly. Several fast methods have been
proposed earlier in the literature [1, 6, 7, 8, 19], but none of them are numerically
stable.

In this paper we resolve this open issue and derive an algorithm that is provably
both fast and backward stable for solving linear systems of equations involving non-
symmetric structured coefficient matrices (e.g., Toeplitz, quasi Toeplitz, and Toeplitz-
like). The algorithm is based on a modified fast QR factorization of the coefficient
matrix T in Tx = b. It computes a factorization for T of the form

T = ∆(∆−1Q)R,

∗Received by the editors December 27, 1995; accepted for publication (in revised form) by L.
Reichel January 4, 1997.

http://www.siam.org/journals/simax/19-1/29645.html
†Department of Electrical and Computer Engineering, University of California, Santa Barbara,

CA 93106 (shiv@ece.ucsb.edu).
‡Department of Electrical Engineering, University of California, Los Angeles, CA 90095 (sayed@

ee.ucla.edu). The work of this author was supported in part by National Science Foundation award
MIP-9796147.

107

108 S. CHANDRASEKARAN AND A. SAYED

where ∆ is lower triangular, (∆−1Q) is orthogonal, and R is upper triangular. The
factorization is then used to solve for x efficiently by using

x = R−1(QT∆−T)∆−1b.(1.1)

All computations can be done in O(n2) operations, where n is the matrix dimension,
and the algorithm is backward stable in the sense that the computed solution x̂ is
shown to satisfy an equation of the form

(T +H)x̂ = b,

where the norm of the error matrix satisfies

‖H‖ ≤ c1ε ‖T‖ + O(ε2),

where ε denotes machine precision and c1 is a low-order polynomial in n.
The fast and stable algorithm to be derived in this paper is based on ideas of

displacement structure theory [15]. The concept of displacement structure was intro-
duced by Kailath, Kung, and Morf almost two decades ago [14] and has since proven
to be a useful tool in matrix analysis. Its strength lies in the fact that it allows us,
in a systematic way, to describe and exploit varied forms of matrix structure. In this
framework, matrix structures are described in terms of displacement equations and
triangular factorizations are efficiently carried out by a generalized Schur algorithm
[15].

However, the numerical behavior of the generalized Schur algorithm has been an
issue of concern until very recently, which is mainly due to the fact that the algorithm
relies heavily on hyperbolic transformations. In recent work, Bojanczyk et al. [2] have
shown that for a subclass of positive-definite shift structured matrices (known as quasi
Toeplitz), the Cholesky factorization provided by the generalized Schur algorithm is
asymptotically stable despite the hyperbolic rotations.

The class of quasi-Toeplitz matrices refers to a special kind of structured matrices
whose displacement rank (to be defined later) is equal to 2. Stewart and van Dooren
[18] further considered the case of positive-definite shift structured matrices with
displacement ranks larger than 2. They argued that the generalized Schur algorithm
will still provide a stable Cholesky factorization provided the required rotations are
now implemented in a special way (a combination of unitary rotations followed by a
single hyperbolic rotation in mixed form).

Motivated by the work of Bojanczyk et al. [2], we have also pursued in [4] a
detailed analysis of the numerical stability of the generalized Schur algorithm for a
general class of positive-definite structured matrices. In particular, we have shown
that along with proper implementations of the hyperbolic transformations, if further
modifications are introduced while computing intermediate quantities, the algorithm
will guarantee a Cholesky factorization that is provably backward stable. We further
employed a perturbation analysis to indicate the best accuracy that can be expected
from any finite precision algorithm (slow or fast), and then showed that the modified
Schur algorithm of [4] essentially achieves this bound. For all practical purposes,
the major conclusion of the analysis in [4] was that the modified Schur algorithm is
backward stable for a large class of structured matrices.

The above results have further motivated us to tackle the standing issue of de-
riving an algorithm that is both fast and stable for the solution of nonsymmetric
structured linear systems of equations Tx = b, where T is shift structured (to be de-
fined later). The stability analyses of the generalized Schur algorithm that we referred

A FAST AND STABLE SOLVER FOR STRUCTURED SYSTEMS 109

to above do not apply in this case since the structured matrix T is not positive definite
(it is not even required to be symmetric). The only restriction on T is invertibility.

The way we approach the problem is motivated by embedding ideas pursued in
[5, 13]. We first embed the given n×n matrix T into a larger 2n× 2n matrix M that
is defined by

M =

[
TTT TT

T 0

]
.(1.2)

The matrix M is symmetric but still indefinite; while its leading n × n submatrix is
positive definite (equal to TTT), its Schur complement with respect to the (1, 1) block
is negative definite (and equal to −I). (The product TTT is not formed explicitly, as
explained later.)

We then apply 2n steps of the generalized Schur algorithm to M and obtain its
computed triangular factorization, which is of the form[

R̂T 0

Q̂ ∆

] [
R̂ Q̂T

0 −∆T

]
,

where R̂T and ∆ are n×n lower triangular matrices. The matrices {R̂, Q̂,∆} are the
quantities used in (1.1) to determine the computed solution x̂ in a backward stable
manner.

From a numerical point of view, the above steps differ in crucial ways from the
embeddings suggested in [5, 13], and which turn out to mark the difference between
a numerically stable and a numerically unstable implementation.

The discussion in [5, pp. 37, 50, 52] and [13] is mainly concerned with fast pro-
cedures for the QR factorization of Toeplitz-block and block-Toeplitz matrices. It
employs an embedding of the form

M =

[
TTT TT

T I

]
,(1.3)

where the identity matrix I in (1.3) replaces the zero matrix in our embedding (1.2).
The derivation in [5, 13] suggests applying n (rather than 2n) steps of the generalized
Schur algorithm to (1.3) and then uses the resulting R̂ and Q̂ as the QR factors of
T . This procedure, however, does not guarantee a numerically orthogonal matrix Q̂
and cannot, therefore, be used to implement a stable solver for a linear system of
equations Tx = b.

For this reason, we instead propose in this paper to proceed with the earlier
embedding (1.2) since it seems difficult to obtain a stable algorithm that is solely
based on the alternative embedding (1.3). We also apply 2n steps (rather than just
n steps) of the generalized Schur algorithm to (1.2). This allows us to incorporate a
correction procedure into the algorithm that is shown to ensure backward stability,
when coupled with other modifications that are needed, especially while applying the
hyperbolic rotations.

1.1. Notation. In the discussion that follows we use ‖ · ‖ to denote the 2-norm
of its argument. Also, the ·̂ notation denotes computed quantities, and we use ε to
denote the machine precision and n the matrix size. We also use subscripted δ’s to
denote quantities bounded by machine precision in magnitude, and subscripted c’s to
denote low-order polynomials in n.

110 S. CHANDRASEKARAN AND A. SAYED

We assume that in our floating point model additions, subtractions, multiplica-
tions, divisions, and square roots are done to high relative accuracy, i.e.,

fl(x ◦ y) = (x ◦ y)(1 + δ),

where ◦ denotes +,−,×,÷ and |δ| ≤ ε. Likewise for the square root operation. This
is true for floating point processors that adhere to the IEEE standards.

2. Displacement structure. Consider an n × n symmetric matrix M and an
n× n lower triangular real-valued matrix F . The displacement of M with respect to
F is denoted by ∇F and defined as

∇F = M − FMFT .(2.1)

The matrix M is said to have low displacement rank with respect to F if the rank
of ∇F is considerably lower than n. In this case, M is said to have displacement
structure with respect to F [15].

Let r � n denote the rank of ∇F . It follows that we can factor ∇F as

∇F = GJGT ,(2.2)

where G is an n× r matrix and J is a signature matrix of the form

J =

[
Ip 0
0 −Iq

]
, p+ q = r.(2.3)

The integer p denotes the number of positive eigenvalues of ∇F , while the integer
q denotes the number of its negative eigenvalues. The factorization (2.2) is highly
nonunique. If G satisfies (2.2), then GΘ also satisfies (2.2) for any J-unitary matrix
Θ, i.e., for any Θ such that ΘJΘT = J. This follows from the trivial identity

(GΘ)J(GΘ)T = G(ΘJΘT)GT = GJGT .

Combining (2.1) and (2.2), a matrix M is said to be structured with respect to the
displacement operation defined by (2.1) if it satisfies a displacement equation of the
form

M − FMFT = GJGT ,(2.4)

with a “low” rank matrix G. Equation (2.4) uniquely defines M (i.e., it has a unique
solution M) iff the diagonal entries of the lower triangular matrix F satisfy the con-
dition

1− fifj 6= 0 for all i, j.

This uniqueness condition will hold for the cases studied in this paper. (It can be
relaxed in some instances [15].)

The pair (G, J) is said to be a generator pair for M since, along with F , it
completely identifies M . Note, however, that while M has n2 entries, the matrix
G has nr entries and r is usually much smaller than n. Therefore, algorithms that
operate on the entries of G, with the purpose of obtaining a triangular factorization
for M , will generally be an order of magnitude faster than algorithms that operate
on the entries of M itself. The generalized Schur algorithm is one such fast O(rn2)

A FAST AND STABLE SOLVER FOR STRUCTURED SYSTEMS 111

procedure, which receives as input data the matrices (F,G, J) and provides as output
data the triangular factorization of M . A recent survey on various other forms of
displacement structure and on the associated forms of Schur algorithms can be found
in [15].

The notion of structured matrices can also be extended to nonsymmetric matrices
M . In this case, the displacement of M is generally defined with respect to two lower
triangular matrices F and A (which can be the same, i.e., F = A; see (2.10)),

∇F,A = M − FMAT ,(2.5)

and the low-rank difference matrix ∇F,A is (nonuniquely) factored as

∇F,A = GBT ,(2.6)

where G and B are n× r generator matrices, i.e.,

M − FMAT = GBT .(2.7)

Again, this displacement equation uniquely defines M iff the diagonal entries of F
and A satisfy 1− fiaj 6= 0 for all i, j, a condition that will be met in this paper.

2.1. Toeplitz, quasi-Toeplitz, and shift structured matrices. The concept
of displacement structure is perhaps best introduced by considering the much-studied
special case of a symmetric Toeplitz matrix T =

[
t|i−j|

]n
i,j=1

, t0 = 1.

Let Z denote the n × n lower triangular shift matrix with ones on the first sub-
diagonal and zeros elsewhere (i.e., a lower triangular Jordan block with eigenvalue
0):

Z =




0
1 0

. . .
. . .

1 0


 .(2.8)

It can be easily checked that the difference T−ZTZT has displacement rank 2 (except
when all ti, i 6= 0, are zero), and a generator for T is {G, (1⊕−1)}, where

T − ZTZT =




1 0
t1 t1
...

...
tn−1 tn−1



[

1 0
0 −1

]
1 0
t1 t1
...

...
tn−1 tn−1



T

= GJGT .(2.9)

Similarly, for a nonsymmetric Toeplitz matrix T = [ti−j]
n
i,j=1 , we can easily verify

that the difference T − ZTZT has displacement rank 2 and that a generator (G,B)
for T is

T − ZTZT =




t0 1
t1 0
...

...
tn−1 0






1 0
0 t−1

...
...

0 t−n+1



T

= GBT .(2.10)

112 S. CHANDRASEKARAN AND A. SAYED

This is a special case of (2.7) with F = A = Z. In particular, any matrix T for which
(T − ZTZT) has rank 2 is called quasi Toeplitz, i.e.,

T − ZTZT = GBT has rank 2.(2.11)

For example, the inverse of a Toeplitz matrix is quasi Toeplitz [15].
Later in the paper we shall focus on the class of shift structured matrices (cf.

(4.1)), which includes Toeplitz and quasi-Toeplitz matrices as special cases. These
are all matrices that are structured with respect to F = A = Z. For ease of reference,
we define the terminology below.

Definition 2.1.
1. Any matrix that is structured with respect to the shift operators F = Z and

A = Z will be said to be shift structured. That is, for shift structured matrices
the rank of ∇Z,Z (or displacement rank) is low compared to n.

2. A quasi-Toeplitz matrix is a shift structured matrix with displacement rank 2.
For example, the product of two Toeplitz matrices is shift structured with dis-

placement rank 4 [15].

3. The generalized Schur algorithm. An efficient algorithm for the triangu-
lar factorization of symmetric or nonsymmetric structured matrices (of either forms
(2.4) or (2.7)) is the generalized Schur algorithm [15]. For our purposes, it is sufficient
to describe the algorithm here for symmetric structured matrices M of the form (2.4),
with a strictly lower triangular matrix F . This includes, for example, the following
special choices for F : F = Z, F = Z2, F = (Z ⊕ Z), etc. The matrix M is further
assumed to be strongly regular (i.e., all its leading submatrices are nonsingular).

A generator matrix G is said to be in proper form if its first nonzero row has a
single nonzero entry, say in the first column

G =




x 0 0 0 0
x x x x x
x x x x x
...

...
...

...
...

x x x x x


 ,(3.1)

or in the last column

G =




0 0 0 0 x
x x x x x
x x x x x
...

...
...

...
...

x x x x x


 .(3.2)

The generalized Schur algorithm operates on the entries of (F,G, J), which de-
scribe the displacement structure of M in (2.4) (assumed strongly regular), and pro-
vides the triangular factorization of M [15].

Algorithm 3.1 (the generalized Schur algorithm).
• Input data: An n× n strictly lower triangular matrix F , an n× r generator
G1 = G, and J = (Ip ⊕−Iq).

• Output data: A lower triangular factor L and a signature matrix D such that
M = LDLT , where M is the solution of (2.4) (assumed n× n).

A FAST AND STABLE SOLVER FOR STRUCTURED SYSTEMS 113

The algorithm operates as follows: start with G1 = G, F1 = F , and repeat
for i = 1, 2, . . . , n:

1. Let gi denote the top row of Gi.
2. If giJg

T
i > 0 (we refer to this case as a positive step):

• Choose a J-unitary rotation Θi that converts gi to proper form with
respect to the first column, i.e.,

giΘi =
[
x 0 0 0 0

]
.(3.3)

Let Ḡi = GiΘi (i.e., apply Θi to Gi).
• The nonzero part of the ith column of L, denoted by l̄i, is the first column

of Ḡi,

l̄i = Ḡi

[
1
0

]
.(3.4)

The ith column of L, denoted by li, is obtained by appending (i−1) zero
entries to l̄i,

li =

[
0
l̄i

]
.(3.5)

The ith signature is di = 1.
• Keep the last columns of Ḡi unchanged and multiply the first column by
Fi, where Fi denotes the submatrix obtained by deleting the first (i− 1)
rows and columns of F . This provides a new matrix whose first row is
zero (since Fi is strictly lower triangular) and whose last rows are the
rows of the next generator matrix Gi+1, i.e.,[

0
Gi+1

]
=

[
Fi l̄i Ḡi

[
0

I

]]
.(3.6)

3. If giJg
T
i < 0 (we refer to this case as a negative step):

• Choose a J-unitary rotation Θi that converts gi to proper form with
respect to the last column, i.e.,

giΘi =
[

0 0 0 0 x
]
.(3.7)

Let Ḡi = GiΘi (i.e., apply Θi to Gi).
• The nonzero part of the ith column of L, denoted by l̄i, is the last column

of Ḡi,

l̄i = Ḡi

[
0
1

]
.(3.8)

The ith column of L, denoted by li, is obtained by appending (i−1) zero
entries to l̄i,

li =

[
0
l̄i

]
.(3.9)

The ith signature is di = −1.

114 S. CHANDRASEKARAN AND A. SAYED

• Keep the first columns of Ḡi unchanged and multiply the last column
by Fi. This provides a new matrix whose first row is zero (since Fi is
strictly lower triangular) and whose last rows are the rows of the next
generator matrix Gi+1, i.e.,[

0
Gi+1

]
=

[
Ḡi

[
I

0

]
Fi l̄i

]
.(3.10)

4. The case giJg
T
i = 0 is ruled out by the strong regularity of M .

Schematically, for the special case r = 2, we have the following simple array
picture for a positive-step case (a similar picture holds for a negative-step case):

Gi =




x x
x x
x x
...

...


 Θi−→




x′ 0
x′ x′

x′ x′
...

...




︸ ︷︷ ︸
Ḡi

apply Fi−→




0 0
x′′ x′

x′′ x′
...

...


 =

[
0 0
Gi+1

]
.(3.11)

Using words we have the following:
• Use the top row of Gi to define a J-unitary matrix Θi that transforms this

row to the form
[
x′ 0

]
;

• multiply Gi by Θi and keep the last columns unchanged;
• apply Fi to the first column of Ḡi = GiΘi;
• these two operations result in Gi+1.

The rotations Θi are always guaranteed to exist and they can be constructed in
different ways (see, e.g., [15, Lem. 4.3 and sect. 4.4.1]).

After n steps, the algorithm provides the triangular decomposition [15]

M =

n∑
i=1

dilil
T
i(3.12)

at O(rn2) computational cost.
Moreover, the successive matrices Gi that are obtained via the algorithm have an

interesting interpretation. Let Mi denote the Schur complement of M with respect to
its leading (i−1)× (i−1) submatrix. That is, M1 = M , M2 is the Schur complement
with respect to the (1, 1) top left entry of M , M3 is the Schur complement with
respect to the 2 × 2 top left submatrix of M , and so on. The matrices Mi are
therefore (n− i+1)× (n− i+1). Recall also that Fi denotes the submatrix obtained
by deleting the first (i− 1) rows and columns of F . Hence, Mi and Fi have the same
dimensions.

While the Mi are never computed explicitly, it can be shown that (Mi, Fi, Gi)
satisfy the displacement equation [15]

Mi − FiMiF
T
i = GiJG

T
i .(3.13)

Hence, Gi constitutes a generator matrix for the ith Schur complement Mi, which
is therefore structured. Note further that Ḡi is also a generator matrix for the
same Schur complement Mi since, due to the J-unitarity of Θi, we have ḠiJḠ

T
i =

GiΘiJΘT
i G

T
i = GiJG

T
i .

We summarize the above discussion in the following statement, deliberately stated
in loose terms.

A FAST AND STABLE SOLVER FOR STRUCTURED SYSTEMS 115

Lemma 3.2. The successive Schur complements of a structured matrix are also
structured and the generalized Schur algorithm is a recursive procedure that provides
generator matrices for the successive Schur complements. It also provides the trian-
gular factors of the original matrix.

We also indicate here, for later reference, that two successive Schur complements
Mi and Mi+1 are related via the Schur complementation step:

Mi = di l̄i l̄
T
i +

[
0 0
0 Mi+1

]
.(3.14)

We now address the main issues of this paper.

4. Fast QR factorization of shift structured matrices. Let T be an n× n
shift structured matrix (possibly nonsymmetric) with displacement rank r,

T − ZTZT = GBT .(4.1)

Special cases include the Toeplitz matrix of (2.10) and quasi-Toeplitz matrices of
(2.11), whose displacement ranks are equal to 2 (r = 2).

Consider the 3n× 3n augmented matrix

M =


 −I T 0

TT 0 TT

0 T 0


 .(4.2)

The matrix M is also structured (as shown below) with respect to Zn ⊕ Zn ⊕ Zn,
where Zn denotes the n× n lower shift triangular matrix (denoted earlier by Z; here
we include the subscript n in order to explicitly indicate the size of Z).

It can be easily verified that M − (Zn ⊕Zn ⊕Zn)M(Zn ⊕Zn ⊕Zn)T is low rank
since

M − (Zn ⊕ Zn ⊕ Zn)M(Zn ⊕ Zn ⊕ Zn)T =


 −e1eT1 GBT 0

BGT 0 BGT

0 GBT 0


 ,(4.3)

where e1 =
[

1 0 . . . 0
]T

is a basis vector of appropriate dimension. A generator
matrix for M , with 3n rows and (2r + 1) columns, can be seen to be

G =
1√
2


 G −G e1

B B 0
G −G 0


 , J =

[
Ir
−Ir+1

]
.(4.4)

That is,

M −FMFT = GJ GT ,
where F = (Zn ⊕ Zn ⊕ Zn) and (G,J) are as above.

The n × n leading submatrix of M is negative definite (in fact, equal to −I).
Therefore, the first n steps of the generalized Schur algorithm applied to (F ,G,J)
will be negative steps (cf. step 3 of Algorithm 3.1). These first n steps lead to a
generator matrix, denoted by Gn+1 (with 2n rows), for the Schur complement of M
with respect to its leading n× n leading submatrix, viz.,

Mn+1 − (Zn ⊕ Zn)Mn+1(Zn ⊕ Zn)T = Gn+1JGTn+1 ,(4.5)

116 S. CHANDRASEKARAN AND A. SAYED

where Mn+1 is 2n× 2n and equal to

Mn+1 =

[
TTT TT

T 0

]
.(4.6)

Clearly, M and its Schur complement Mn+1 are related via the Schur complement
relation (cf. (3.14))

M =


 I
−TT

0


 (−I) [I −TT 0

]
+


 0 0 0

0 TTT TT

0 T 0


 .

Therefore, (Gn+1,J) is a generator for Mn+1 with respect to (Zn⊕Zn), as shown by
(4.5).

The leading n × n submatrix of Mn+1 is now positive definite (equal to TTT).
Therefore, the next n steps of the generalized Schur algorithm applied to (Zn ⊕
Zn,Gn+1,J) will be positive steps (cf. step 2 of Algorithm 3.1). These steps lead to
a generator matrix, denoted by G2n+1 (with n rows), for the Schur complement of M
with respect to its leading 2n× 2n leading submatrix, viz.,

M2n+1 − ZnM2n+1Z
T
n = G2n+1JGT2n+1,

where M2n+1 is now n× n and equal to −I.
Again, Mn+1 and M2n+1 are related via a (block) Schur complementation step

(cf. (3.14)), written as[
TTT TT

T 0

]
= Mn+1 =

[
RT

Q

]
(I)
[
R QT

]
+

[
0 0
0 −I

]
,(4.7)

where we have denoted the first n columns of the triangular factor of Mn+1 by[
RT

Q

]
with R an n × n upper triangular matrix and Q an n × n matrix. The R and Q
matrices are thus obtained by splitting the first n columns of the triangular factor of
Mn+1 into a leading lower triangular block followed by a full matrix Q.

By equating terms on both sides of (4.7) we can explicitly identify R and Q as
follows:

TTT = RTR , T = QR , QQT − I = 0.

These relations show that Q and R define the QR factors of the matrix T .
In summary, the above discussion shows the following: given a shift structured

matrix T as in (4.1), its QR factorization can be computed efficiently by applying 2n
steps of the generalized Schur algorithm to the matrices (F ,G,J) defined in (4.4).
The factors Q and R can be obtained from the triangular factors {li} for i = n +
1, n+ 2, . . . , 2n.

Alternatively, if a generator matrix is directly available for Mn+1 in (4.6) (see
section 4.1), then we need only apply n Schur steps to the generator matrix and read
the factors Q and R from the resulting n columns of the triangular factor.

In the later sections of this paper we shall establish, for convenience of exposition,
the numerical stability of a fast solver for Tx = b that starts with a generator matrix

A FAST AND STABLE SOLVER FOR STRUCTURED SYSTEMS 117

for the embedding (4.6) rather than the embedding (4.2). It will become clear, how-
ever, that the same conclusions will hold if we instead start with a generator matrix
for the embedding (4.2).

The augmentation (4.2) was used in [16, 17] and it is based on embedding ideas
originally pursued in [5, 13] (see section 4.2).

4.1. The Toeplitz case. In some cases it is possible to find an explicit generator
matrix for Mn+1. This saves the first n steps of the generalized Schur algorithm.

For example, consider the case when T is a Toeplitz matrix (which is a special case
of (4.1) whose first column is [t0, t1, . . . , tn−1]

T and whose first row is [t0, t−1, . . . , t−n+1]).
Define the vectors

 c0
...

cn−1


 =

Te1
‖Te1‖ ,


 s0

...
sn−1


 = TT


 c0

...
cn−1


 .

It can be verified that a generator matrix for Mn+1 in (4.6) is the following [5]:

Mn+1 − (Zn ⊕ Zn)Mn+1(Zn ⊕ Zn)T = Gn+1JGTn+1,

where J is 5× 5,

J = diag[1, 1,−1,−1,−1],

and Gn+1 is 2n× 5,

Gn+1 =




s0 0 0 0 0
s1 t−1 s1 tn−1 0
...

...
...

...
...

sn−1 t−n+1 sn−1 t1 0
c0 1 c0 0 1
c1 0 c1 0 0
...

...
...

...
cn−1 0 cn−1 0 0



.

4.2. Other augmentations. It is also possible to compute the QR factors of a
structured matrix T satisfying (4.1) by using other augmented matrices, other than
(4.2). For example, consider the 3n× 3n augmented matrix

M =


 −I T 0

TT 0 TT

0 T I


 ,(4.8)

where an identity matrix replaces the zero matrix in the (3, 3) block entry of the
matrix in (4.2). A generator matrix for M , with 3n rows and (2r+2) columns, is now

G =
1√
2


 G 0 −G e1

B 0 B 0
G e1 −G 0


 , J =

[
Ir+1

−Ir+1

]
.

If T is Toeplitz, as in section 4.1, then the rank of G can be shown to reduce to
2r = 4 [5] (this is in contrast to the displacement rank 5 that follows from the earlier
embedding (4.2), as shown in section 4.1).

118 S. CHANDRASEKARAN AND A. SAYED

After 2n steps of the generalized Schur algorithm applied to the above (G,J), we
obtain the following factorization (since now M2n+1 = 0):

M =


 I 0
−TT RT

0 Q


[−I 0

0 I

] I 0
−TT RT

0 Q


T ,

from which we can again read the QR factors of T from the triangular factors {li} for
i = n+ 1, . . . , 2n+ 1. This augmentation was suggested in [5, p. 37] and [13].

However, from a numerical point of view, computing the QR factors of a struc-
tured matrix T using the generalized Schur algorithm on the augmented matrices M
in (4.2) or (4.8) is not stable. The problem is that the computed Q matrix is not nec-
essarily orthogonal. This is also true for other procedures for fast QR factorization
[1, 7, 8, 19].

In the next section we show how to overcome this difficulty and develop a fast
and stable algorithm for solving linear systems of equations with shift structured
coefficient matrices T . For this purpose, we proceed with the embedding suggested
earlier in (4.2) since it seems difficult to obtain a stable algorithm that is based solely
on the alternative embedding (4.8). The reason is that the embedding (4.2) allows us
to incorporate a correction procedure into the algorithm in order to ensure stability.

We first derive a stable algorithm for a well-conditioned coefficient matrix, and
then modify it for the case when the coefficient matrix is ill conditioned. The in-
terested reader may consult at this time the summary of the final algorithm that is
provided in section 10.

5. Well-conditioned T . In this section we develop a stable algorithm for the
case of well-conditioned matrices T . A definition of what we mean by a well-condi-
tioned matrix is given further ahead (see (5.19)). Essentially this refers to matrices
whose condition number is less than the reciprocal of the square root of the machine
precision. Modifications to handle the ill-conditioned case will be introduced later in
the paper.

We start with an n × n (possibly nonsymmetric) shift structured matrix T with
displacement rank r,

T − ZnTZ
T
n = GBT ,(5.1)

and assume we have available a generator matrix G for the 2n×2n augmented matrix

M =

[
TTT TT

T 0

]
,(5.2)

that is,

M −FMFT = GJ GT ,(5.3)

where F = (Zn⊕Zn). Note that, for ease of exposition, we have modified our notation.
While we have earlier denoted the above matrix M by Mn+1, its generator by Gn+1,
and have used F to denote (Zn ⊕Zn ⊕Zn), we are now dropping the subscript n+ 1
from (Mn+1,Gn+1) and are using F to denote the 2n× 2n matrix (Zn ⊕ Zn).

In section 4.1 we have discussed an example where we have shown a particular
generator matrix G for M when T is Toeplitz. (We repeat that the error analysis of

A FAST AND STABLE SOLVER FOR STRUCTURED SYSTEMS 119

later sections will still apply if we instead start with the 3n×3n embedding (4.2) and
its generator matrix (4.4).)

We have indicated earlier (at the end of section 4) that by applying n steps of
the generalized Schur algorithm to the matrix M in (5.2) we can obtain the QR
factorization of T from the resulting n columns of the triangular factors of M . But
this procedure is not numerically stable since the resulting Q is not guaranteed to
be unitary. To fix this problem, we propose some modifications. The most relevant
modification we introduce now is to run the Schur algorithm for 2n steps on M rather
than just n steps. As suggested in the paper [4], we also need to be careful in the
application of the hyperbolic rotations. In particular, we assume that the hyperbolic
rotations are applied using one of the methods suggested in the paper [4] (mixed
downdating, OD method, or H procedure; see Appendices A and B at the end of this
paper).

The matrix T is only required to be invertible. In this case, the leading submatrix
of M in (5.2) is positive definite and therefore the first n steps of the generalized Schur
algorithm will be positive steps. Hence, the hyperbolic rotations needed for the first n
steps will perform transformations of the form (3.3), where generators are transformed
into proper form with respect to their first column. Likewise, the Schur complement
of M with respect to its leading submatrix TTT is equal to −I, which is negative
definite. This means that the last n steps of the generalized Schur algorithm will be
negative steps. Hence, the hyperbolic rotations needed for the last n steps will perform
transformations of the form (3.7), where generators are transformed into proper form
with respect to their last column.

During a positive step (a similar discussion holds for a negative step), a generator
matrix Gi will be reduced to proper form by implementing the hyperbolic transfor-
mation Θi as a sequence of orthogonal transformations followed by a 2× 2 hyperbolic
rotation (see also [18]). The 2× 2 rotation is implemented along the lines of [4], e.g.,
via mixed downdating [3], or the OD method, or the H procedure (see Appendices A
and B for a description of the OD and H procedures [4]). Details are given below.

5.1. Implementation of the J -unitary rotations Θi. When the generalized
Schur algorithm is applied to (G,F) in (5.3), we proceed through a sequence of gen-
erator matrices (G,G2,G3, . . .) of decreasing number of rows (2n, 2n − 1, 2n − 2, . . .).
Let gi denote the top row of the generator matrix Gi at step i. In a positive step,
it needs to be reduced to the form (3.3) via an (Ip ⊕ −Iq)-unitary rotation Θi. We
propose to perform this transformation as follows:

1. Apply a unitary (orthogonal) rotation (e.g., Householder) to the first p columns
of Gi so as to reduce the top row of these p columns into proper form,

gi =
[
x x x x x x

] unitary Θi,1−→ [
x 0 0 x x x

]
= gi,1,

with a nonzero entry in the first column. Let

Gi,1 = Gi
[

Θi,1 0
0 I

]
(5.4)

denote the modified generator matrix. Its last q columns coincide with those
of Gi.

2. Apply another unitary (orthogonal) rotation (e.g., Householder) to the last q
columns of Gi,1 so as to reduce the top row of these last q columns into proper

120 S. CHANDRASEKARAN AND A. SAYED

form with respect to their last column,

gi,1 =
[
x 0 0 x x x

] unitary Θi,2−→ [
x 0 0 0 0 x

]
= gi,2,

with a nonzero entry in the last column. Let

Gi,2 = Gi,1
[
I 0
0 Θi,2

]
(5.5)

denote the modified generator matrix. Its first p columns coincide with those
of Gi,1.

3. Employ an elementary hyperbolic rotation Θi,3 acting on the first and last
columns (in mixed-downdating [3] form, or according to the OD or the H
methods of [4]; see also Appendices A and B) in order to annihilate the
nonzero entry in the last column,

gi,2 =
[
x 0 0 0 x

] hyperbolic Θi,3−→ [
x 0 0 0 0 0

]
.

4. The combined effect of the above steps is to reduce gi to the proper form
(3.3) and, hence,

Ḡi = Gi
[

Θi,1 0
0 I

] [
I 0
0 Θi,2

]
Θi,3.(5.6)

Expression (5.6) shows that, in infinite precision, the generator matrices Gi and
Ḡi must satisfy the fundamental requirement

GiJGTi = ḠiJ ḠTi .(5.7)

Obviously, this condition cannot be guaranteed in finite precision. But with the
above implementation of the transformation (5.6) (as a sequence of two orthogonal
transformations and a hyperbolic rotation in mixed, OD, or H forms), equality (5.7)
can be guaranteed to within a “small” error (see (5.8)). Indeed, it follows from (5.4)
and (5.5), and from the orthogonality of Θi,1 and Θi,2, that

‖Ĝi,2J ĜTi,2 − GiJGTi ‖ ≤ c2ε‖Gi‖2,

and ∣∣∣ ‖Ĝi,2‖2 − ‖Gi‖2 ∣∣∣ ≤ c3ε‖Gi‖2.

It further follows from the error bound (A.3) (in the Appendix) that

‖ ˆ̄GiJ ˆ̄GTi − Ĝi,2J ĜTi,2‖ ≤ c4ε
(
‖ ˆ̄Gi‖2 + ‖Ĝi,2‖2

)
.

Combining the above error bounds we conclude that the following holds:

‖ ˆ̄GiJ ˆ̄GTi − GiJGTi ‖ ≤ c5ε
(
‖ ˆ̄Gi‖2 + ‖Gi‖2

)
.(5.8)

A similar analysis holds for a negative step, where the hyperbolic rotation Θi,3

is again implemented as a sequence of two unitary rotations and one elementary

A FAST AND STABLE SOLVER FOR STRUCTURED SYSTEMS 121

hyperbolic rotation in order to guarantee the transformation (3.7). We forgo the
details here.

We finally remark that in the algorithm, the incoming generator matrix Gi will in
fact be the computed version, which we denote by Ĝi. This explains why in the error
analysis of the next section (see (5.11) and (5.13)) we replace Gi by Ĝi in the error
bound (5.8).

Note that we are implicitly assuming that the required hyperbolic rotation Θi,3

exists. While that can be guaranteed in infinite precision, it is possible that in finite
precision we can experience breakdowns. This matter is handled in section 5.3.

5.2. Error analysis of the first n steps. After the first n steps of the gener-
alized Schur algorithm applied to (F ,G) in (5.3), we let[

R̂T

Q̂

]

denote the computed factors that correspond to expression (4.7). We further define
the matrix Sn+1 that solves the displacement equation

Sn+1 − ZnSn+1Z
T
n = Ĝn+1J ĜTn+1.(5.9)

Note that Sn+1 is an n× n matrix, which in infinite precision would have been equal
to the Schur complement −I (cf. (4.7)). We can now define

M̂ =

[
R̂T

Q̂

] [
R̂ Q̂T

]
+

[
0 0
0 Sn+1

]
.(5.10)

We also define the difference

Ni = ˆ̄GiJ ˆ̄GTi − ĜiJ ĜTi ,(5.11)

and introduce the error matrix E = M − M̂ . Using (5.8), the error analysis in [4,
sect. 7, eq. (41)] can be extended to show that the 2n× 2n error matrix satisfies the
equation

E −FEFT =
n∑
i=1

Ni.

Consequently, since F = (Zn ⊕ Zn) is nilpotent,

E =

n−1∑
k=0

Fk

(
n∑
i=1

Ni

)
(Fk)T .

If we further invoke the fact that F is contractive we conclude that

‖E‖ ≤
n−1∑
k=0

∥∥∥∥∥
n∑
i=1

Ni

∥∥∥∥∥ ≤
n−1∑
k=0

n∑
i=1

‖Ni‖ = n
n∑
i=1

‖Ni‖,(5.12)

where, according to (5.8),

‖Ni‖ ≤ c5ε
(
‖ ˆ̄Gi‖2 + ‖Ĝi‖2

)
.(5.13)

122 S. CHANDRASEKARAN AND A. SAYED

But since all columns of Ĝi+1 and ˆ̄Gi coincide, except for one column in ˆ̄Gi that is
shifted down (multiplied by Fi) to produce the corresponding column in Ĝi+1, then
we clearly have

‖Ĝi+1‖2 ≤ ‖ ˆ̄Gi‖2.

We can therefore rewrite (5.13) as

‖Ni‖ ≤ c6ε
(
‖Ĝi+1‖2 + ‖Ĝi‖2

)
.(5.14)

Substituting into (5.12) we obtain the following error bound:

‖E‖ ≤ c7ε
n∑
i=1

(
‖Ĝi+1‖2 + ‖Ĝi‖2

)
≤ c8ε

n∑
i=1

‖Ĝi‖2.(5.15)

5.3. Avoiding breakdown. The above error analysis assumes that the first
n steps of the generalized Schur algorithm applied to (G,F) in (5.3) do not break
down. That is, during the first n steps, the J -unitary rotations Θi are well defined.
This further requires that the leading submatrices of the first n successive Schur
complements remain positive definite. We now show that this can be guaranteed by
imposing a lower bound on the minimum singular value of the matrix T (see (5.19);
this corresponds to requiring a well-conditioned T , an assumption that will be dropped
in section 7 when the algorithm is extended for ill-conditioned T).

The argument is inductive. We assume that the algorithm has successfully com-
pleted the first (i − 1) steps and define the matrix Si that solves the displacement
equation

Si −FiSiFT
i = ĜiJ ĜTi , 1 ≤ i ≤ (n+ 1),(5.16)

where Fi is the submatrix obtained from F in (5.3) by deleting its first (i − 1) rows
and columns. In particular, F1 = F and Fn = Zn. Note that Si is an (2n− i+ 1)×
(2n − i + 1) matrix, which in infinite precision would have been equal to the Schur
complement of M with respect to its leading (i− 1)× (i− 1) submatrix.

We further define, for 1 ≤ i ≤ n+ 1, the matrices M̂i,

M̂i =

i−1∑
j=1

l̂i l̂
T
i + Si,(5.17)

where the l̂i are the computed triangular factors, given by (cf. (3.4) and (3.5)). We
can again establish, by following the arguments of [4, sect. 7.1], that the error matrices
Ei = M − M̂i satisfy

Ei −FiEiFT
i =

i−1∑
j=1

Nj .

This relation again establishes, along the lines of (5.15), that

‖M − M̂i‖ ≤ c9ε
i−1∑
j=1

‖Ĝj‖2.

A FAST AND STABLE SOLVER FOR STRUCTURED SYSTEMS 123

Therefore, if the minimum eigenvalue of the leading n× n submatrix of M (which is
equal to TTT) meets the lower bound

λmin(TTT) > c9ε
i−1∑
j=1

‖Ĝj‖2,(5.18)

then the leading n×n submatrix of M̂i will be guaranteed to be positive definite and
the algorithm can continue to the next iteration.

This analysis suggests the following lower bound on the minimum singular value
of T in order to avoid breakdown in the first n steps of the algorithm:

σ2
min(T) > 2 c9ε

n∑
j=1

‖Ĝj‖2.(5.19)

We refer to a matrix T that satisfies the above requirement as being well conditioned
(the scalar multiple 2 is made explicit for convenience in later discussion; see (5.29)).

Theorem 5.1 (error bound). The first n steps of the generalized Schur algorithm
applied to (F ,G) in (5.3), for a matrix T satisfying (5.19), and with the rotations Θi

implemented as discussed in section 5.1, guarantee the following error bound on the
matrix (M − M̂) (with M̂ defined in (5.10)):

‖M − M̂‖ ≤ c9ε

n∑
j=1

‖Ĝj‖2.(5.20)

5.4. Growth of generators. The natural question then is, How big can the
norm of the generator matrices be? The analysis that follows is motivated by an
observation in [18] that for matrices of the form TTT , with T Toeplitz, there is no
appreciable generator growth.

To establish an upper bound on the generator norm, we consider the generator
matrix Ĝi (at the ith step) and recall from the discussion that led to (5.6) that, in a
positive step, Ĝi is transformed via three rotation steps: a unitary rotation Θi,1 that

reduces the first p columns of Ĝi into proper form, a second unitary rotation Θi,2 that

reduces the last q columns of Ĝi into proper form, and a last elementary hyperbolic
rotation Θi,3 that reduces the overall generator matrix Ĝi into proper form.

We denote the first and last columns of Ĝi by ûi and v̂i, respectively, and denote
the remaining columns by the block matrices Ûi and V̂i, i.e., we write

Ĝi =
[
ûi Ûi V̂i v̂i

]
.

After the above sequence of three rotations we obtain a new generator matrix ˆ̄Gi that
we partition accordingly,

ˆ̄Gi =
[

ˆ̄ui
ˆ̄U i

ˆ̄V i ˆ̄vi

]
.

The last (r−1) columns of ˆ̄Gi remain unchanged and provide the columns of the next
generator matrix Ĝi+1, while the first column ˆ̄ui is multiplied by Fi (which essentially
corresponds to a simple shifting operation). Hence, we have

Ĝi+1 =
[
ûi+1 Ûi+1 V̂i+1 v̂i+1

]
=
[
Fi ˆ̄ui ˆ̄U i

ˆ̄V i ˆ̄vi

]
.

124 S. CHANDRASEKARAN AND A. SAYED

The first unitary rotation Θi,1 operates on {ûi, Ûi} and provides {ũi, ˆ̄U i}. This
step guarantees the following norm relation:

‖ ˆ̄U i‖ ≤ (1 + c10ε)
(
‖Ûi‖ + ‖ûi‖

)
.

But since ˆ̄U i = Ûi+1, we also have

‖Ûi+1‖ ≤ (1 + c10ε)
(
‖Ûi‖ + ‖ûi‖

)
.

By repeatedly applying the above inequality we obtain

‖Ûi+1‖ ≤ (1 + c11ε)
i

i∑
j=1

‖ûj‖.

Consequently,

∥∥[ûi+1 Ûi+1

]∥∥ ≤ (1 + c12ε)
i
i+1∑
j=1

‖ûj‖.(5.21)

But the ûi, for i = 2, . . . , n+ 1, are shifted versions of the (nonzero parts of the)
columns of the block matrix [

R̂T

Q̂

]
.

Therefore,

i+1∑
j=1

‖ûj‖ ≤ n

∥∥∥∥
[
R̂T

Q̂

]∥∥∥∥ + ‖û1‖.

Now further recall that

Si+1 −Fi+1Si+1FT
i+1 = Ĝi+1J ĜTi+1,

where Fi+1 is nilpotent (in fact, composed of shift matrices). It thus follows that∥∥[V̂i+1 v̂i+1

]∥∥2 ≤ ∥∥[ûi+1 Ûi+1

]∥∥2
+ 2‖Si+1‖.(5.22)

Combining (5.21) and (5.22) we conclude that

‖Ĝi+1‖2 ≤ 8n2(1 + c12ε)
2i

∥∥∥∥
[
R̂T

Q̂

]∥∥∥∥
2

+ 8‖û1‖2 + 4‖Si+1‖.(5.23)

We will now show that ‖Si+1‖ is bounded (at least in infinite precision).
For this purpose, we partition T into T =

[
T1 T2

]
, where T1 has i columns

and T2 has (n− i) columns. Commensurately partition M as follows:

M =


 TT

1 T1 TT
1 T2 TT

1

TT
2 T1 TT

2 T2 TT
2

T1 T2 0


 .

A FAST AND STABLE SOLVER FOR STRUCTURED SYSTEMS 125

Therefore, the Schur complement Si+1 in infinite precision is given by

Si+1 =

[
TT

2 T2 − TT
2 T1(T

T
1 T1)

−1TT
1 T2 TT

2 − TT
2 T1(T

T
1 T1)

−1TT
1

T2 − T1(T
T
1 T1)

−1TT
1 T2 −T1(T

T
1 T1)

−1TT
1

]
.

Let the partitioned QR factorization of T in infinite precision be

T =
[
Q1 Q2

] [R11 R12

0 R22

]
.

Then

T1(T
T
1 T1)

−1TT
1 = Q1Q

T
1 ,

which is an orthogonal projector with 2-norm equal to one. It then follows that ‖Si+1‖
is bounded as follows:

‖Si+1‖ ≤ 1 + 2‖T‖2 + 2‖T‖.(5.24)

The derivation of the above bound can be extended to finite precision by following
the technique used in the next section for ‖Sn+1‖. We omit the details here.

Therefore, a first-order bound for the sum of the norms of the generators in (5.20)
is given by

n∑
i=1

‖Gi‖2 ≤
n∑
i=1

[
8n2

∥∥∥∥
[
R̂T

Q̂

]∥∥∥∥
2

+ 8‖û1‖2 + 4‖Si+1‖
]

+ O(ε2)

≤ 8n3‖M‖+ 8n‖M‖ + 4n(1 + 2‖T‖2 + 2‖T‖) + O(ε2)

≤ 16n(1 + n2)(1 + ‖T‖+ ‖T 2‖) + O(ε2).(5.25)

5.5. Error analysis of the last n steps. It follows from (5.10), and from the
definition of E = M − M̂ , that

M − E =

[
R̂T

Q̂

] [
R̂ Q̂T

]
+

[
0 0
0 Sn+1

]
.(5.26)

If we partition the error matrix −E into subblocks, say

−E =

[
E11 E12

E21 E22

]
, E21 = ET

12 ,

and use the definition of M in (5.2), we obtain from (5.26) that

Sn+1 = E22 − (T + E21)(T
TT + E11)

−1(TT + E12).

Therefore,

Sn+1 = E22 − T (TTT + E11)
−1TT − T (TTT + E11)

−1E12

−E21(T
TT + E11)

−1TT − E21(T
TT + E11)

−1E12

= −(I + T−TE11T
−1)−1 + Ē,(5.27)

where several terms have been collected into the matrix Ē,

Ē = E22 − T (TTT + E11)
−1E12 − E21(T

TT + E11)
−1TT − E21(T

TT + E11)
−1E12.

126 S. CHANDRASEKARAN AND A. SAYED

Its norm satisfies the bound

‖Ē‖ ≤ ‖E‖+
2 ‖T‖ ‖E‖

λmin(TTT)− ‖E‖ +
‖E‖2

λmin(TTT)− ‖E‖ ,

and the denominator is positive in view of (5.19) and (5.20). At this stage we make
the following normalization assumption:

‖T‖ ≤ 1

5
,(5.28)

which can always be guaranteed by proper scaling (as explained in the statement of
the algorithm in section 10).

We also recall that the well-conditioned assumption (5.19), along with (5.25) and
the error bound (5.20), guarantees the following condition:

λ−1
min(TTT)‖E‖ ≤ 1

2
.(5.29)

Remark. This essentially means that the condition number of T should be smaller
than 1/

√
ε. We will relax this condition in section 7.

From assumptions (5.28) and (5.29) we obtain ‖E‖2 ≤ ‖T‖ ‖E‖, since

‖E‖ ≤ σ2
min(T)

2
≤ ‖T‖

2

2
≤ 1

5

‖T‖
2
≤ ‖T‖.

Therefore,

‖Ē‖ ≤ ‖E‖+
3 ‖T‖ ‖E‖

λmin(TTT)− ‖E‖ .

Applying Corollary 8.3.2 in [10] to expression (5.27), we get

σmin(Sn+1) ≥ 1

1 + λ−1
min(TTT)‖E‖ − ‖Ē‖.(5.30)

Using (5.28) and (5.29) we get

σmin(Sn+1) ≥ 2

3
− ‖Ē‖,(5.31)

and

‖Ē‖ ≤ 11

5
‖E‖ ≤ 11

25
.(5.32)

It then follows from (5.31) that

σmin(Sn+1) ≥ 17

75
≥ 1

5
.(5.33)

We now derive an upper bound for ‖Sn+1‖. Applying Corollary 8.3.2 in [10] to
expression (5.27), and using (5.29) and (5.32), we get

σmax(Sn+1) ≤ 1

1− λ−1
min(TTT)‖E‖ + ‖Ē‖ ≤ 2 +

11

25
< 3.(5.34)

A FAST AND STABLE SOLVER FOR STRUCTURED SYSTEMS 127

Therefore, the condition number of Sn+1 satisfies

κ(Sn+1) ≤ 15.(5.35)

This establishes that Sn+1 is a well-conditioned matrix.
By Corollary 8.3.2 in [10], the matrix (I + T−TE11T

−1)−1 in (5.27) is positive
definite since by (5.29) 1− λ−1

min(TTT)‖E‖ ≥ 1/2 > 0. Furthermore,

‖Ē‖ ≤ 11

25
<

1

2
<

1

1− λ−1
min(TTT)‖E‖ ≤ 2.

Therefore, applying Corollary 8.3.2 in [10] again to expression (5.27) we conclude that
Sn+1 is negative definite.

Lemma 5.2. The matrix Sn+1 defined in (5.9) is negative definite and well con-
ditioned. In particular, its condition number is at most 15 (cf. (5.35)).

We can now proceed with the last n steps of the generalized Schur algorithm
applied to Ĝn+1, since Ĝn+1 is a generator matrix for Sn+1:

Sn+1 − ZnSn+1Z
T
n = Ĝn+1J ĜTn+1.

All steps will now be negative steps. Hence, the discussion of section 5.1 applies.
The only difference will be that we make the generator proper with respect to its
last column. In other words, the third step of the algorithm in section 5.1 should be
modified as follows:

gi,2 =
[
x 0 0 0 x

] hyperbolic Θi,3−→ [
0 0 0 0 0 x

]
.(5.36)

Let −∆∆T be the computed triangular factorization of Sn+1. A similar error
analysis to that of section 5.2 (or the results of [4]) can be used to show that

‖Sn+1 − (−∆∆T)‖ ≤ c13ε
2n∑

i=n+1

‖Ĝi‖2.(5.37)

The norm of the generators {Ĝi} appearing in the above error expression can be shown
to be bounded as follows. Similar to (5.21) we have

∥∥[V̂i+1 v̂i+1

]∥∥ ≤ (1 + c14ε)
i−n

i∑
j=n+1

‖v̂j‖.(5.38)

Moreover, the v̂i, for i = n + 2, . . . , 2n, are shifted versions of the (nonzero parts of
the) columns of ∆. Hence,

i∑
j=n+1

‖v̂j‖ ≤ n‖∆‖ + ‖v̂n+1‖.

By using the fact that Zn is lower triangular and contractive and that Sn+1 is negative
definite, Lemma B.2 in [4] can be extended to show that∥∥[ûi+1 Ûi+1

]∥∥ ≤ ∥∥[V̂i+1 v̂i+1

]∥∥ .

128 S. CHANDRASEKARAN AND A. SAYED

Therefore,

‖Ĝi‖ ≤
∥∥[ûi+1 Ûi+1

]∥∥+
∥∥[V̂i+1 v̂i+1

]∥∥
≤ 2

∥∥[V̂i+1 v̂i+1

]∥∥
≤ 2(1 + c14ε)

i−n[n‖∆‖+ ‖v̂n+1‖],(5.39)

where in infinite precision

‖∆‖2 = ‖Sn+1‖ ≤ 3,

from relation (5.34). Similarly, the bound for v̂n+1 follows from (5.23) and (5.24).

Summary. We have shown so far that if we apply 2n steps of the generalized
Schur algorithm to the matrices (F ,G) in (5.3), with proper implementation of the
J -unitary rotations (as explained in section 5.1), then the error in the computed
factorization of M is bounded as follows:∥∥∥∥M −

[
R̂T 0

Q̂ ∆

] [
R̂ Q̂T

0 −∆T

]∥∥∥∥ ≤ c15ε
2n∑
i=1

‖Ĝi‖2.(5.40)

We have also established (at least in infinite precision) that the norm of the gener-
ators is bounded. Therefore, the computed factorization is (at least asymptotically)
backward stable with respect to M .

6. Solving linear systems. We now return to the problem of solving the linear
system of equations Tx = b, where T is a well-conditioned nonsymmetric shift struc-
tured matrix (e.g., Toeplitz, quasi-Toeplitz, and product of two Toeplitz matrices).

Note from the bound (5.40) that

‖Q̂Q̂T −∆∆T ‖ ≤ c15ε

2n∑
i=1

‖Ĝi‖2.

Therefore,

‖(∆−1Q̂)(∆−1Q̂)T − I‖ ≤ c15ε‖∆−1‖2
2n∑
i=1

‖Ĝi‖2.

It follows from (5.33) and (5.35) that

σmin(∆∆T) ≥ σmin(Sn+1)− c15ε
2n∑

i=n+1

‖Ĝi‖2 ≥ 1

5
− c15ε

2n∑
i=n+1

‖Ĝi‖2 ≈ 1

5
.

Therefore, ‖∆−1‖2 is bounded by 1/5 (approximately), from which we can conclude
that ∆−1Q̂ is numerically orthogonal.

Furthermore, from (5.40) we also have

‖T − Q̂R̂‖ ≤ c15ε

2n∑
i=1

‖Ĝi‖2.

This shows that we can compute x by solving the nearby linear system

∆∆−1Q̂R̂x = b,

A FAST AND STABLE SOLVER FOR STRUCTURED SYSTEMS 129

in O(n2) flops by exploiting the fact that ∆−1Q̂ is numerically orthogonal and ∆ is
triangular as follows:

x̂ ← R̂−1(Q̂T∆−T)∆−1b.(6.1)

The fact that this scheme for computing x is backward stable will be established in
section 8 (see the remark after expression (8.2)).

7. Ill-conditioned T . We now consider modifications to the algorithm when
the inequality (5.29) is not satisfied by T . This essentially means that the condition
number of T is larger than the square root of the reciprocal of the machine precision.
We will refer to such matrices T as being ill conditioned.

There are several potential numerical problems now, all of which have to be
eliminated. First, the (1, 1) block of M can fail to factorize as it is not sufficiently
positive definite. Second, even if the first n steps of the Schur algorithm are completed
successfully, the Schur complement Sn+1 of the (2, 2) block may no longer be negative
definite, making the algorithm unstable. Third, the matrix ∆ may no longer be well
conditioned, in which case it is not clear how one can solve the linear system Tx = b
in a stable manner. We now show how these problems can be resolved.

To resolve the first two problems we add small multiples of the identity matrix
to the (1, 1) and (2, 2) blocks of M , separately:

M =

[
TTT + αI T

TT −βI
]
,(7.1)

where α and β are positive numbers that will be specified later.1 This leads to an
increase in the displacement rank of M . For Toeplitz matrices the rank increases only
by one and the new generators are given as follows:

M − (Zn ⊕ Zn)M(Zn ⊕ Zn)T = GJ GT ,(7.2)

where J is 6× 6,

J = diag[1, 1, 1,−1,−1,−1],(7.3)

and G is 2n× 6,

G =




√
α s0 0 0 0 0

0 s1 t−1 s1 tn−1 0
...

...
...

...
...

...
0 sn−1 t−n+1 sn−1 t1 0
0 c0 1 c0 0

√
1 + β

0 c1 0 c1 0 0
...

...
...

...
...

0 cn−1 0 cn−1 0 0



.(7.4)

Had we instead started with the embedding (4.2) for more general shift structured
matrices, we would then modify the generators as explained later in the remark in
section 9.

1We continue to use M for the new matrix in (7.1) for convenience of notation.

130 S. CHANDRASEKARAN AND A. SAYED

Assume α is chosen such that

α ≥ c16ε
n∑

j=1

‖Ĝj‖2;(7.5)

then since

λmin(TTT + αI) > c16ε

n∑
j=1

‖Ĝj‖2 ,(7.6)

it follows from the analysis in section 5.3 that the first n steps of the generalized
Schur algorithm applied to G in (7.4) will complete successfully. As in (5.10), define
the matrix

M̂ =

[
R̂T

Q̂

] [
R̂ Q̂T

]
+

[
0 0
0 Sn+1

]
,(7.7)

where Sn+1 is the solution of

Sn+1 − ZnSn+1Z
T
n = Ĝn+1J Ĝn+1.

(Recall that Ĝn+1 now has six columns and J is 6× 6.) Then following the analysis
of the first n steps of section 5.2 we obtain (cf. (5.20))

‖E‖ =
∥∥∥M − M̂

∥∥∥ ≤ c19ε
n∑

j=1

‖Ĝj‖2,

where, as shown earlier in (5.23),

‖Ĝi+1‖2 ≤ 8n2(1 + c16ε)
2i

∥∥∥∥
[
R̂T

Q̂

]∥∥∥∥
2

+ 8‖û1‖2 + 4‖Si+1‖2.(7.8)

The proof that Si+1 is bounded is similar to the proof that Sn+1 is bounded, which
we now give. First, we assume that β satisfies the following bound:

β ≥ 1 + c16ε

1− c16ε
(‖E‖+ 4) .(7.9)

Recall that Sn+1 satisfies the relation

M − E =

[
R̂T

Q̂

] [
R̂ Q̂T

]
+

[
0 0
0 Sn+1

]
.(7.10)

If we partition the error matrix −E into subblocks, say

−E =

[
E11 ET

12

E12 E22

]
,

and use the definition of M in (7.1), we obtain from (7.10) that

Sn+1 = −βI + E22 − (T + E12)(T
TT + αI + E11)

−1(TT + ET
12).(7.11)

A FAST AND STABLE SOLVER FOR STRUCTURED SYSTEMS 131

Since α and β satisfy (7.5) and (7.9), we have that

α ≥ ‖E‖ ≥ ‖E11‖, β ≥ 1 + c16ε

1− c16ε
(‖E‖+ 4) ≥ ‖E‖ ≥ ‖E22‖.

Therefore, (αI + E11) is positive definite and (−βI + E22) is negative definite. This
shows, in view of (7.11), that Sn+1 is negative definite. We now proceed to bound
the smallest and the largest eigenvalues of Sn+1.

Using (7.11) we write

Sn+1 = −βI + E22 − (I + E12T
−1)(I + αT−TT−1 + T−TE11T

−1)−1(I + T−TET
12),

and note that

‖(I + αT−TT−1 + T−TE11T
−1)−1‖ =

∥∥∥∥∥
(
I + αT−T

[
I +

E11

α

]
T−1

)−1
∥∥∥∥∥ ≤ 1,

since ‖E11‖/α < 1.
We now make the assumption

‖T−1‖ ‖E‖ ≤ 1,(7.12)

which is considerably weaker than the assumption (5.29) used in the well-conditioned
case. Assumption (7.12) essentially means that the condition number of T should be
less than the reciprocal of the machine precision.

It then follows that

‖Sn+1‖ ≤ β + ‖E‖ + 4.

Since, technically, ‖E‖ depends upon ‖Sn+1‖, we have only shown that ‖Sn+1‖ is
bounded to first order in ε. With more effort, this restriction can be removed.

Before proceeding, we mention that the error in factorizing Sn+1 into −∆∆T by
the generalized Schur algorithm can be written in the form

‖Sn+1 − (−∆∆T)‖ ≤ c17ε‖Sn+1‖,
where c17 can be obtained by extending the analysis of section 5.2.

As mentioned earlier (cf. (5.18)), Sn+1 can be factorized by the Schur algorithm
if its minimum eigenvalue satisfies

|λmin(Sn+1)| ≥ c17ε‖Sn+1‖ .
But since |λmin(Sn+1)| ≥ β−‖E22‖, the above condition can be guaranteed by choos-
ing

β ≥ c17ε‖Sn+1‖ + ‖E22‖
≥ c17ε(β + ‖E‖+ 4) + ‖E‖
≥ 1

1− c17ε
[c17ε(‖E‖+ 4) + ‖E‖]

≥ 1 + c17ε

1− c17ε
(‖E‖+ 4),

which is assumption (7.9) on β (with c17 = c16).

132 S. CHANDRASEKARAN AND A. SAYED

Therefore, the last n steps of the generalized Schur algorithm can be completed
to give the following error bound in the factorization of M in (7.1):

∥∥∥∥M −
[
R̂T 0

Q̂ ∆

] [
R̂ Q̂T

0 −∆T

]∥∥∥∥ ≤ α + β + c18ε
2n∑
i=1

‖Ĝi‖2 ,(7.13)

where the norm of the generators is again bounded by arguments similar to those in
section 5.4. In other words, we have a backward stable factorization of M .

Since ∆ is no longer provably well conditioned, we cannot argue that ∆−1Q̂ is
numerically orthogonal. For this reason, we now discuss how to solve the linear system
of equations Tx = b in the ill-conditioned case.

8. Solving the linear system. Note that if x solves Tx = b, then it also
satisfies [

TTT TT

T 0

] [
x
−b

]
=

[
0
b

]
.

Using the above backward stable factorization (7.13) we can solve the above linear
system of equations to get([

TTT TT

T 0

]
+ H

)[
ŷ
ẑ

]
=

[
0
b

]
,(8.1)

where the error matrix H satisfies

‖H‖ ≤ α + β + c18ε
2n∑
i=1

‖Ĝi‖2 + c19ε

∥∥∥∥
[
R̂T 0

Q̂ ∆

]∥∥∥∥
2

.

Note that ŷ is computed by the expression

R−1Q̂T∆−T∆−1b,(8.2)

which is identical to the earlier formula (6.1) we obtained by assuming ∆−1Q̂ is
numerically orthogonal! Therefore, the subsequent error analysis holds equally well
for the well-conditioned case.

Moreover, it follows from (8.1) that

(T +H21)ŷ +H22ẑ = b.

Therefore, we can write this as(
T +H21 +

H22ẑŷ
T

ŷT ŷ

)
ŷ = b,(8.3)

where ∥∥∥∥H21 +
H22ẑŷ

T

ŷT ŷ

∥∥∥∥ ≤ ‖H21‖ + ‖H22‖‖ẑ‖‖ŷ‖ .(8.4)

If we assume

‖T‖ ≤ 1(8.5)

A FAST AND STABLE SOLVER FOR STRUCTURED SYSTEMS 133

(which is implied by (5.28)), then in infinite precision

‖ẑ‖
‖ŷ‖ =

‖b‖
‖x‖ =

‖b‖
‖T−1b‖ ≤

‖b‖
‖b‖ ‖T‖ ≤ 1.

Under the assumptions in Theorem C.1, which are of a similar nature to as-
sumptions we have already made, we can show that ‖ẑ‖/‖ŷ‖ is also bounded in finite
precision. Therefore, our algorithm is backward stable for solving shift structured
linear systems.

Theorem C.1 imposes a bound on κ(M), the condition number of M . We now
verify that κ(M) is of the same order as κ(T). First, note that

‖M‖ ≤ 2‖T‖ + ‖T‖2 ≤ 3‖T‖,
since ‖T‖ ≤ 1. Moreover,

M−1 =

[
0 T−1

T−T −I
]
,

from which we conclude that

‖M−1‖ ≤ 1 + 2‖T−1‖.
Hence,

κ(M) ≤ (1 + 2‖T−1‖)(3‖T‖) ≤ 9κ(T).

Therefore, the restriction on κ(M) can be considered a restriction on κ(T), which will
be similar to our earlier assumption (7.12).

For convenience we now give a simple first-order bound for the backward error in
(8.3). Indeed,∥∥∥∥H21 +

H22ẑŷ
T

ŷT ŷ

∥∥∥∥ ≤ ‖H21‖ + ‖H22‖ + O(ε2)

≤ 2‖H‖ + O(ε2)

≤ 2

[
α + β + c20ε

2n∑
i=1

‖Ĝi‖2 + c21ε

∥∥∥∥
[
R̂T 0

Q̂ ∆

]∥∥∥∥
2
]

+ O(ε2)

≤ 2(α + β)

+c22ε

[
‖M‖ +

2n∑
i=1

(
8n2‖M‖+ 4(1 + 2‖T‖2 + 2‖T‖))

]
+ O(ε2)

≤ 2(α + β) + c23ε
[‖M‖ + 4n(1 + 2‖T‖2 + 2‖T‖)] + O(ε2)

≤ 2(α + β) + c24ε[‖M‖+ 1] + O(ε2)

≤ 2(α + β) + c25ε[‖T‖+ 1] + O(ε2).(8.6)

Note that ‖T‖ should be approximately one for the algorithm to be backward stable.
This can be satisfied by appropriately normalizing ‖T‖.

8.1. Conditions on the coefficient matrix. For ease of reference, we list
here the conditions imposed on the coefficient matrix T in order to guarantee a fast
backward stable solver of Tx = b:

1. ‖T‖ is suitably normalized to guarantee ‖T‖ ≈ 1 (cf. (5.28) and (8.5)).
2. ‖T−1‖ satisfies (7.12), which essentially means that the condition number of

T should be less than the reciprocal of the machine precision.

134 S. CHANDRASEKARAN AND A. SAYED

9. A remark. Had we instead started with the embedding (4.2), we first perform
n steps of the generalized Schur algorithm to get a generator matrix Ĝn+1 for the
computed version of the 2n× 2n embedding (4.6). We then add two columns to Ĝn+1

as follows:




√
α 0

0 0
0

√
β

... Ĝn+1

...
0 0
0 0



,

where the entry
√
β occurs in the (n + 1)th row of the last column. The new first

column has a positive signature and the new last column has a negative signature.

10. Pseudocode of the algorithm for Toeplitz systems. For convenience
we summarize the algorithm here for the case of nonsymmetric Toeplitz systems. We
hasten to add though that the algorithm also applies to more general shift structured
matrices T (such as quasi Toeplitz or with higher displacement ranks, as demonstrated
by the analysis in the earlier sections). The only difference will be in the initial
generator matrix G and signature matrix J for M in (7.1) and (7.2). The algorithm
will also be essentially the same, apart from an additional n Schur steps, if we instead
employ the embedding (4.2).

Input: A nonsymmetric n × n Toeplitz matrix T and an n-dimensional column
vector b. The entries of the first column of T are denoted by [t0, t1, . . . , tn−1]

T , while
the entries of the first row of T are denoted by [t0, t−1, . . . , t−n+1].

Output: A backward stable solution of Tx = b.

Algorithm:

• Normalize T and b. Since the Frobenius norm of ‖T‖ is less than

γ =

√√√√n
n−1∑

i=−n+1

t2i ,

we can normalize T by setting ti to be ti/(5γ) for all i. Similarly, divide the
entries of b by 5γ. In what follows, T and b will refer to these normalized
quantities.
• Define the vectors


 c0

...
cn−1


 =

Te1
‖Te1‖ ,


 s0

...
sn−1


 = TT


 c0

...
cn−1


 .

• Construct the 6× 6 signature matrix

J = diag[1, 1, 1,−1,−1,−1],

A FAST AND STABLE SOLVER FOR STRUCTURED SYSTEMS 135

and the 2n× 6 generator matrix G,

G =




√
α s0 0 0 0 0

0 s1 t−1 s1 tn−1 0
...

...
...

...
...

...
0 sn−1 t−n+1 sn−1 t1 0
0 c0 1 c0 0

√
1 + β

0 c1 0 c1 0 0
...

...
...

...
...

0 cn−1 0 cn−1 0 0



,

where the small positive numbers α and β are chosen as follows (by experi-
mental tuning):

α = n1/2ε ‖G‖2, β = 4(2n)1/4ε.

(If T is well conditioned, then we set β = 0 = α, and delete the first columns
of G and J , which then become 2n× 5 and 5× 5, respectively).
• Apply n steps of the generalized Schur algorithm starting with G1 = G and
F = (Zn ⊕Zn), and ending with Gn+1 and F = Zn. These are positive steps
according to the description of Algorithm 3.1 (step 2), where the successive
generators are reduced to proper form relative to their first column. Note
that this must be performed with care for numerical stability as explained in
section 5.1.
• Apply n more steps of the generalized Schur algorithm starting with Gn+1.

These are negative steps according to the description of Algorithm 3.1 (step
3), where the successive generators are reduced to proper form relative to
their last column. This also has to be performed with care as explained prior
to (5.36).
• Each of the above 2n steps provides a column of the triangular factorization

of the matrix M in (7.1), as described in Algorithm 3.1 (steps 2 and 3). The
triangular factor of M is then partitioned to yield the matrices {R̂, Q̂,∆},[

R̂T 0

Q̂ ∆

]
,

where R̂ is upper triangular and ∆ is lower triangular.
• The solution x̂ is obtained by evaluating the quantity

R−1Q̂T∆−T∆−1b,

via a sequence of back substitutions and matrix–vector multiplications. The
computed solution is backward stable. It satisfies

(T +H)x̂ = b,

where the norm of the error matrix is bounded by

‖H‖ ≤ 2(α + β) + c26ε[1 + ‖T‖] +O(ε2) ≤ c27ε ‖T‖+O(ε2).(10.1)

136 S. CHANDRASEKARAN AND A. SAYED

10.1. Operation count. The major computational cost is due to the applica-
tion of the successive steps of the generalized Schur algorithm. The overhead opera-
tions that are required for the normalization of T , and for the determination of the
generator matrix G, amount at most to O(n logn) flops. Table 10.1 shows the number
of flops needed at each step of the algorithm (i denotes the iteration number and it
runs from i = 2n down to i = 1). The operation count given below assumes that, for
each iteration, two Householder transformations are used to implement the reduction
to proper form of section 5.1, combined with an elementary hyperbolic rotation in
OD form.

Table 10.1
Complexity analysis of the algorithm.

During each iteration of the algorithm Count in flops

Compute two Householder transformations 3r
Apply the Householder transformations 4 · i · r
Compute the hyperbolic transformation 7
Apply the hyperbolic transformation using OD 6 · i
Shift columns i

Total for i = 2n down to 1 (14 + 8r)n2 + 10nr + 21n
Cost of three back substitution steps 3n2

Cost of matrix–vector multiplication 2n2

Startup costs n(24 logn+ r + 52)

Total cost of the algorithm (19 + 8r)n2 + n(24 logn+ 11r + 73)

Table 10.2 indicates the specific costs for different classes of structured matrices.

Table 10.2
Computational cost for some structured matrices.

Matrix type Cost

Well-conditioned Toeplitz matrix 59n2 + n(24 logn+ 128)
Ill-conditioned Toeplitz matrix 67n2 + n(24 logn+ 139)

11. Conclusions. We performed extensive experiments to verify the theoretical
bounds for both well-conditioned and ill-conditioned Toeplitz matrices. The error was
always better than the bounds predicted by the theory. Interested readers can get
Matlab codes of the algorithm by contacting the authors.

The results of this work can be extended to Toeplitz least-squares problems,
which will be addressed in a companion paper. Furthermore, there are also useful
applications of these ideas in filtering theory, which will be reported elsewhere.

Appendix A. The OD procedure. Let ρ = β/α be the reflection coefficient
of a hyperbolic rotation Θ,

Θ =
1√

1− ρ2

[
1 −ρ
−ρ 1

]
,

with |ρ| < 1. Let
[
x1 y1

]
and

[
x y

]
be the postarray and prearray rows,

respectively, [
x1 y1

]
=
[
x y

]
Θ.

A FAST AND STABLE SOLVER FOR STRUCTURED SYSTEMS 137

The advantage of the OD method is that the computed quantities x̂1 and ŷ1 satisfy
the equation [

x̂1 + e1 ŷ1 + e2
]

=
[
x+ e3 y + e4

]
Θ,(A.1)

with ∥∥[e1 e2
]∥∥ ≤ c28ε

∥∥[x̂1 ŷ1

]∥∥ , ∥∥[e3 e4
]∥∥ ≤ c29ε

∥∥[x y
]∥∥ ,(A.2)

and, consequently,

|(x̂2
1 − ŷ2

1)− (x2
1 − y2

1)| ≤ c30ε(x̂
2
1 + ŷ2

1 + x2 + y2).(A.3)

Algorithm A.1 (the OD procedure). Consider a hyperbolic rotation Θ with
reflection coefficient ρ = β/α, |ρ| < 1. Given a row vector

[
x y

]
as a prearray, the

transformed (postarray) row vector
[
x1 y1

]
=
[
x y

]
Θ is computed as follows:

[
x′ y′

]← [
x y

] [1 1
−1 1

]
,

[
x′′ y′′

]← [
x′ y′

]  1
2

√
α+β
α−β 0

0 1
2

√
α−β
α+β


 ,

[
x1 y1

]← [
x′′ y′′

] [1 −1
1 1

]
.

Appendix B. The H procedure. Let ρ = β/α be the reflection coefficient of
a hyperbolic rotation Θ,

Θ =
1√

1− ρ2

[
1 −ρ
−ρ 1

]
,

with |ρ| < 1. Let
[
x1 y1

]
and

[
x y

]
be the postarray and prearray rows,

respectively, [
x1 y1

]
=
[
x y

]
Θ, with |x| > |y|.

The advantage of the H method is that the computed quantities x̂1 and ŷ1 satisfy the
equation [

x̂1 + e′1 ŷ1 + e′2
]

=
[
x y

]
Θ,(B.1)

where the error terms satisfy

|e′1| ≤ c31ε|x̂1|, |e′2| ≤ c32ε(|x̂1|+ |ŷ1|).(B.2)

If |x| < |y|, then it can be seen that
[
y x

]
Θ =

[
y1 x1

]
. Therefore, without

loss of generality, we shall only consider the case |x| > |y|.
Algorithm B.1 (the H procedure). Given a hyperbolic rotation Θ with reflec-

tion coefficient ρ = β/α, |ρ| < 1, and a prearray
[
x y

]
with |x| > |y|, the postarray[

x1 y1

]
can be computed as follows:

138 S. CHANDRASEKARAN AND A. SAYED

If β
α
y
x < 1/2

then ξ ← 1− β
α
y
x

else

d1 ← |α|−|β|
|α| , d2 ← |x|−|y|

|x|
ξ ← d1 + d2 − d1d2

endif

x1 ← |α|xξ√
(α−β)(α+β)

y1 ← x1 −
√

α+β
α−β (x− y).

The H procedure requires 5n to 7n multiplications and 3n to 5n additions. It is
therefore costlier than the OD procedure, which requires 2n multiplications and 4n
additions. But the H procedure is forward stable (cf. (B.1)) whereas the OD method
is only stable (cf. (A.1)).

Appendix C. Miscellaneous error bounds. The following is an extension of
Lemma 2.7.1 and Theorem 2.7.2 of [10].

Theorem C.1. Suppose

M

[
y
z

]
= b,

where M is an n× n matrix, b is an n-dimensional vector, and ‖z‖ ≤ ‖y‖. Let

(M +H)

[
ŷ
ẑ

]
= b,

where H is an n× n matrix such that ‖H‖ ≤ c33ε‖M‖. If c33εκ(M) = r < 1
5 , where

κ(M) = ‖M‖ ‖M−1‖, then

‖ẑ‖
‖ŷ‖ ≤

1 + 3r

1− 5r
.

Proof. From Theorem 2.7.2 in [10] it follows that

‖y‖ − 2r

1− r
[‖y‖+ ‖z‖] ≤ ‖ŷ‖ ≤ ‖y‖+

2r

1− r
[‖y‖+ ‖z‖].

By interchanging y and z we can obtain a similar inequality for ẑ. Then

‖ẑ‖
‖ŷ‖ ≤

‖z‖+ 2r
1−r [‖y‖+ ‖z‖]

‖y‖ − 2r
1−r [‖y‖+ ‖z‖]

≤ 1 + 3r

1− 5r
,

since ‖z‖ ≤ ‖y‖.

REFERENCES

[1] A. W. Bojanczyk, R. P. Brent, and F. de Hoog, QR factorization of Toeplitz matrices,
Numer. Math., 49 (1986), pp. 81–94.

A FAST AND STABLE SOLVER FOR STRUCTURED SYSTEMS 139

[2] A. W. Bojanczyk, R. P. Brent, F. R. de Hoog, and D. R. Sweet, On the stability of
the Bareiss and related Toeplitz factorization algorithms, SIAM J. Matrix Anal. Appl., 16
(1995), pp. 40–57.

[3] A. W. Bojanczyk, R. P. Brent, P. van Dooren, and F. R. de Hoog, A note on downdating
the Cholesky factorization, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 210–221.

[4] S. Chandrasekaran and A. H. Sayed, Stabilizing the generalized Schur algorithm, SIAM J.
Matrix Anal. Appl., 17 (1996), pp. 950–983.

[5] J. Chun, Fast Array Algorithms for Structured Matrices, Ph.D. thesis, Stanford University,
Stanford, CA, 1989.

[6] J. Chun, T. Kailath, and H. Lev-Ari, Fast parallel algorithms for QR and triangular fac-
torization, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 899–913.

[7] G. Cybenko, A general orthogonalization technique with applications to time series analysis
and signal processing, Math. Comp., 40 (1983), pp. 323–336.

[8] G. Cybenko, Fast Toeplitz orthogonalization using inner products, SIAM J. Sci. Statist. Comp.,
8 (1987), pp. 734–740.

[9] I. Gohberg, T. Kailath, and V. Olshevsky, Fast Gaussian elimination with partial pivoting
for matrices with displacement structure, Math. Comp., 64 (1995), pp. 1557–1576.

[10] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd ed., The Johns Hopkins Uni-
versity Press, Baltimore, MD, 1989.

[11] M. Gu, Stable and Efficient Algorithms for Structured Systems of Linear Equations, Tech. re-
port LBL-37690, Lawrence Berkeley National Laboratory, University of California, Berke-
ley, CA, 1995.

[12] G. Heinig, Inversion of generalized Cauchy matrices and other classes of structured matrices,
in Linear Algebra for Signal Processing, A. Bojanczyk and G. Cybenko eds., IMA Vol.
Math. Appl. 69, Springer, New York, 1995, pp. 63–81.

[13] T. Kailath and J. Chun, Generalized displacement structure for block-Toeplitz, Toeplitz-block,
and Toeplitz-derived matrices, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 114–128.

[14] T. Kailath, S. Y. Kung, and M. Morf, Displacement ranks of a matrix, Bull. Amer. Math.
Soc., 1 (1979), pp. 769–773.

[15] T. Kailath and A. H. Sayed, Displacement structure: Theory and applications, SIAM Rev.,
37 (1995), pp. 297–386.

[16] A. H. Sayed, Displacement Structure in Signal Processing and Mathematics, Ph.D. thesis,
Stanford University, Stanford, CA, 1992.

[17] A. H. Sayed and T. Kailath, A look-ahead block Schur algorithm for Toeplitz-like matrices,
SIAM J. Matrix Anal. Appl., 16 (1995), pp. 388–413.

[18] M. Stewart and P. van Dooren, Stability issues in the factorization of structured matrices,
SIAM J. Matrix Anal. Appl., 18 (1997), pp. 104–118.

[19] D. R. Sweet, Fast Toeplitz orthogonalization, Numer. Math., 43 (1984), pp. 1–21.

