
AN EFFICIENT AND STABLE ALGORITHM FOR THE
SYMMETRIC-DEFINITE GENERALIZED EIGENVALUE PROBLEM∗

S. CHANDRASEKARAN†

SIAM J. MATRIX ANAL. APPL. c© 2000 Society for Industrial and Applied Mathematics
Vol. 21, No. 4, pp. 1202–1228

Abstract. A new, efficient, and stable algorithm for computing all the eigenvalues and eigen-
vectors of the problem Ax = λBx, where A is symmetric indefinite and B is symmetric positive
definite, is proposed.

Key words. generalized eigenvalues, eigenvalues, eigenvectors, error analysis, deflation, pertur-
bation bounds, pencils, stable algorithms

AMS subject classifications. 15A18, 15A22, 15A23, 15A42, 47A75, 65F15

PII. S0895479897316308

1. Introduction. In this paper we consider the problem of computing the eigen-
values and eigenvectors of the pencil Ax = λBx, where A is a real symmetric-indefinite
matrix and B is a real symmetric positive-definite matrix. Mathematically, this
problem is equivalent to computing the eigendecomposition of the symmetric matrix
G−1AG−T , where B = GGT . Unfortunately, the approach is not numerically stable,
but it does reveal some important properties about the eigenvalues and eigenvectors.
First, all the eigenvalues must be real. Second, the eigenvector matrix diagonalizes
both A and B simultaneously. In finite precision, the transformation G−1AG−T leads
to violation of the second property, while the QZ algorithm violates the first property.

In this paper we propose a new algorithm which satisfies both properties and is
numerically stable and efficient.

Previous work on this problem, when the matrices are dense, has involved either
trying to implement the transformation G−1AG−T accurately or extending Jacobi,
QZ, or other iterative type methods. See section 8.7 in [2], section 5.68 in [8], and
chapter 15 in [6] for a summary of earlier work. Iterative methods, which can be used
for both dense and sparse problems, have been studied more extensively. See [7] for
a more extensive guide to the literature.

The outline of this paper is as follows. To convey the basic ideas we first outline
the algorithm assuming that the symmetric eigenvalue problem can be solved exactly.
We then point out the difficulties introduced by inexact calculations and the methods
we propose for overcoming them. This is followed by an error analysis to prove the
stability of the algorithm. We then discuss implementation issues and describe the
experimental results which validate our claims. As part of the error analysis, we also
establish a perturbation bound for the smallest eigenvalues in magnitude, which we
believe to be new.

1.1. The key idea. The problem can be viewed as the simultaneous LDLT

factorization of the matrices A and B, where L is now no longer constrained to be
a triangular matrix. As is well known, while the LDLT factorization of B (which is
symmetric positive definite) is stable even without pivoting (Cholesky factorization),
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the LDLT factorization of A, which is symmetric indefinite, can be severely unstable
without pivoting. When viewed from this framework, the problem is to discover a
“permutation” (actually, any orthogonal transform) such that both A and B can be
simultaneously factored into LDLT , while assuring at the same time that stability
is maintained in the factorization of A. This is a difficult task. The key idea in
this paper is that the correct pivoting order is obtained when the eigenvalues are
deflated in decreasing order of magnitude. This is an oversimplification, but it helps
in understanding the rest of the paper.

2. Notation. We will follow Householder’s convention [3] and denote matrices
by capital Roman letters and vectors by small Roman letters. Scalars will be denoted
by small Greek letters. Due to the necessity of keeping track of the various variables
of the algorithm in the error analysis, we will avoid statements such as A := A + I.
Instead the same statement will be denoted by A;i+1 ← A;i + I. That is, the letters
after the semicolon in the suffix help keep track of the position in the algorithm where
the particular variable was created. The letters after the semicolon also give cues to
where the particular variable was created. For example, A;i;q is used to indicate the
matrix A;i after a similarity transformation by a matrix labeled by Q. Similarly the
letters w, t, and s also appear in subscripts after semicolons and their cues can be
inferred from their definition contexts. Also the notation A2,3;i denotes the element in
the (2, 3) position of the matrix A;i, and Aj;i denotes the jth column of the matrix A;i.
We will use Matlab-type notation [5] for submatrices. Therefore, A[i:n,p:q];i denotes
the submatrix of A;i formed from those elements in rows i to n which are also in
columns p to q. When there is no necessity to refer to the elements of a matrix we
will drop the semicolon in the suffix. This will be clear from the context. A bar over
a variable indicates that it is a submatrix.

We use ≡ when variables are being defined for the first time. In the description of
algorithms we use left and right arrows to denote assignment. Therefore, X;i ← A;iB;i

means that the product of the matrices A;i and B;i is assigned to the variable X;i.
Whereas,

A;iB;i → U;iΣ;iV
T
;i , compute SVD,

means that the SVD of the product A;iB;i is computed, and U;i is assigned the left
singular vector matrix, Σ;i is assigned the matrix of singular values, and V;i is assigned
the right singular vector matrix.

3. In infinite precision. In this section we first present the algorithm assuming
that all calculations (including some eigendecompositions!) can be done exactly. This
is to enable us to present the basic ideas in an uncluttered manner.

We assume that A is nonsingular. If it is not, then the zero eigenvalues can be
easily deflated from the problem, as detailed in section 5.

We note that the main difficulty in finding the eigenvalues and eigenvectors is
due to finite precision effects. So the objective is to try to design an algorithm which
will work for problems, where the symmetric positive-definite matrix B is almost
numerically singular. For otherwise, if the matrix B is well-conditioned, we can
compute the transformation G−1AG−T with little loss of accuracy.

One key observation we make now is that even when both A and B are highly
ill-conditioned we can compute the matrix GTA−1G to sufficient accuracy so as to
enable us to compute its largest eigenvalues in magnitude to backward accuracy. One
way to proceed now is to deflate these computed eigenvalues from A and B and to
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work recursively on the smaller pencil. Unfortunately, the deflation requires transfor-
mations whose cumulative condition number is as high as the condition number of B.
So we seem to fare no better.

This is where our next key observation comes in: if we deflate the eigenvalues of
GTA−1G in the order of decreasing size in magnitude, then we can ensure that the
resulting sequence of deflating transformations can be implemented in a numerically
stable manner. The rest of this paper is devoted to showing why and how this can be
done.

We first begin by showing why it is necessary to deflate the eigenvalues in the
order of decreasing size in magnitude. For that purpose we present a version of the
algorithm here which assumes that all computations can be done exactly, including
some eigenvalue decompositions.

Algorithm I. Using Exact Eigendecompositions.

Begin

1. A;1 ≡ A; B ≡ B;1 → UΣUT ; compute eigendecomposition of B.

2.
√
ΣUTA−1

;1 U
√
Σ → V ΛV T ; compute the eigendecomposition of equivalent

symmetric matrix such that the eigenvalues are ordered from largest to small-
est in magnitude.

3. X;1 ≡ X ← A−1
;1 U
√
ΣV ; compute the generalized eigenvectors of the pencil.

4. We now deflate the eigenvectors from the pencil.
For i = 1 to n do
(a) Compute Householder transform Q;i such that Q;iXi;i is parallel to ei.
(b) A;i;q ← Q;iA;iQ

T
;i , B;i;q ← Q;iB;iQ

T
;i , X;i;q ← Q;iX;i.

(c) Compute Householder transform Wi such that WiAi;i;q has zeros below
the (i + 1)st component. It follows that WiBi;i;q also has zeros below
the (i+ 1)st component.

(d) A;i;w ←WiA;i;qW
T
i , B;i;w ←WiB;i;qW

T
i , X;i;w ←WiX;i;q.

(e) Note that Xi;i;w is still parallel to ei. Therefore, Ai;i;w and Bi;i;w are
parallel and in the span of ei and ei+1. Therefore, we can find one
elementary Gauss transform L−1

i such that L−1
i Ai;i;w and L−1

i Bi;i;w are
both parallel to ei.

(f) A;i+1 ← L−1
i A;i;wL

−T
i , B;i+1 ← L−1

i B;i;wL
−T
i , X;i+1 ← LT

i X;i;w.
endfor

5. We now have

(L−1
n WnQ;n) · · · (L−1

1 W1Q;1)A((L
−1
n WnQ;n) · · · (L−1

1 W1Q;1))
T ≡ DA,

(L−1
n WnQ;n) · · · (L−1

1 W1Q;1)B((L
−1
n WnQ;n) · · · (L−1

1 W1Q;1))
T ≡ DB ,

where DA and DB are diagonal matrices. Now define

C ≡ QT
;1W

T
1 L1 · · ·QT

;nW
T
n Ln.(1)

Then we have CDAC
T = A and CDBC

T = B, where DA and DB are
diagonal matrices. Therefore, the generalized eigenvalues can be obtained
as the ratios of the diagonal elements of DA and DB , and the generalized
eigenvectors can be obtained from the inverse of C by using the factored
form (1).

End
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We now look in more detail at the transforms Q;i, Wi, and Li used during the
deflation process. We claim that

X;i ≡
( i− 1 1 n− i

i− 1 D;X;i 0 0
n− i+ 1 0 xi X̄;i

)
,(2)

A;i ≡
( i− 1 n− i+ 1

i− 1 D̄;A;i 0
n− i+ 1 0 Ā;i

)
,(3)

B;i ≡
( i− 1 n− i+ 1

i− 1 D̄;B;i 0
n− i+ 1 0 B̄;i

)
,(4)

where D’s denote diagonal matrices. These facts will be proved by induction. It is
obviously true for i = 1. Invoking the induction hypothesis, we see that

Q;i ≡
( i− 1 n− i+ 1

i− 1 I 0
n− i+ 1 0 Q̄i

)
, Q̄ixi = ±‖xi‖ei,

X;i;q ≡


i− 1 1 n− i

i− 1 D;X;i 0 0
1 0 ±‖xi‖ hTi
n− i 0 0 X̄;i;q


,

A;i;q ≡


i− 1 1 n− i

i− 1 D̄;A;i 0 0
1 0 αi aT;i;q
n− i 0 a;i;q Ā;i;q


,

B;i;q ≡


i− 1 1 n− i

i− 1 D̄;B;i 0 0
1 0 βi bT;i;q
n− i 0 b;i;q B̄;i;q


, λia;i;q = b;i;q,

where Λ ≡ diag(λ1, . . . , λn). Therefore,

Wi ≡
( i n− i

i I 0
n− i 0 W̄i

)
, W̄ia;i;q = ±‖a;i;q‖ei,

X;i;w ≡


i− 1 1 n− i

i− 1 D;X;i 0 0
1 0 ±‖xi‖ hTi
n− i 0 0 X̄;i;w


,

A;i;w ≡


i− 1 1 n− i

i− 1 D̄;A;i 0 0
1 0 αi ±‖a;i;q‖eT1
n− i 0 ±‖a;i;q‖e1 Ā;i;w


,
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B;i;w ≡


i− 1 1 n− i

i− 1 D̄;B;i 0 0
1 0 βi ±‖b;i;q‖eT1
n− i 0 ±‖b;i;q‖e1 B̄;i;w


,

(
βi

±‖b;i;q‖
)
= λi

(
αi

±‖a;i;q‖
)
.

Therefore, we have that

L−1
i ≡



i− 1 1 n− i

i− 1 I 0 0
1 0 1 0
n− i 0 ρie1 I


, ρi = −±‖b;i;q‖

βi
= −±‖a;i;q‖

αi
,

X;i+1 =



i− 1 1 n− i

i− 1 D;X;i 0 0
1 0 ±‖xi‖ 0
n− i 0 0 X̄;i;w


,

A;i+1 ≡


i− 1 1 n− i

i− 1 D̄;A;i 0 0
1 0 αi 0

n− i 0 0 Ā;i;w − ‖a;i;q‖2

αi
e1e

T
1


,

B;i+1 ≡



i− 1 1 n− i

i− 1 D̄;B;i 0 0
1 0 βi 0

n− i 0 0 B̄;i;w − ‖b;i;q‖2

βi
e1e

T
1


,

where the structure of the ith row of X;i+1 is obtained by looking at the form of A;i+1

and B;i+1. This completes our induction and proves the structures assumed in (2),
(3), and (4).

We now show that the norms of the Schur complements of A generated by the
transforms Li grow no faster than those which occur in Gaussian elimination with
partial pivoting. This is one of the reasons why our approach leads to a numerically
stable algorithm.

Define the following two submatrices of A;i;w and B;i;w:

Ā;i;l ≡
( 1 1

1 αi ±‖a;i;q‖
1 ±‖a;i;q‖ Ā1,1;i;w

)
,

B̄;i;l ≡
( 1 1

1 βi ±‖b;i;q‖
1 ±‖b;i;q‖ B̄1,1;i;w

)
=

(
λiαi ±‖a;i;q‖λi

±‖a;i;q‖λi B̄1,1;i;w

)
.

Note that B̄;i;l is symmetric positive definite. From this we get, using determinants,
that

B̄1,1;i;wλiαi > ‖a;i;q‖2λ2
i ,
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which implies that

|λi| < B̄1,1;i;w
|αi|
‖a;i;q‖2 .(5)

Since we required the following ordering of the eigenvalues

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|,
it follows that λi is also the largest eigenvalue in magnitude of the pencil λĀ;i;lx =
B̄;i;l. Using the variational characterization of eigenvalues, we get

|λi| > B̄1,1;i;w

|Ā1,1;i;w| .(6)

From inequalities (5) and (6) we get

|Ā1,1;i;w| > ‖a;i;q‖
2

|αi| .

Therefore, ∣∣∣∣Ā1,1;i;w − ‖a;i;q‖
2

αi

∣∣∣∣ < 2|Ā1,1;i;w|.(7)

This indicates that the elements of DA can grow at most like 2n. Also,

√
|αi||ρi| =

√
‖a;i;q‖2
|αi| <

√
|Ā1,1;i;w|.

These facts by themselves are not sufficient to establish the numerical stability of
the algorithm. We now proceed to look at the effects of errors in the eigendecompo-
sition computation.

4. Error propagation. In this section we assume that ‖B‖ = ‖A‖ = 1. We
consider the effects of the truncation error

G ≡ U
√
Σ, GTA−1G→ V̂ Λ̂V̂ T + E,

where ‖E‖ ≤ ε‖Λ̂‖. Recovering the generalized eigenvector, we have that
GGT (A−1Gv̂i) +GEv̂i = λ̂iA(A

−1Gv̂i).

Define x̂i ≡ A−1Gv̂i and rearrange the above expression to get it in normalized
backward error form:

GGT x̂i
‖x̂i‖ +

GEv̂i
‖x̂i‖ = λ̂iA

x̂i
‖x̂i‖ if |λ̂i| < 1,

1

λ̂i
GGT x̂i

‖x̂i‖ +
GEv̂i

λ̂i‖x̂i‖
= A

x̂i
‖x̂i‖ if |λ̂i| ≥ 1.

From the above two equations it is clear that not all computed eigenpairs, (λ̂i, x̂i),
will be sufficiently accurate, and possibly no eigenpair is exact.

We modify the algorithm to take care of these possibilities. The new variables in
the modified algorithm will have a “; t” in their suffix to distinguish them from similar
variables occurring in Algorithm I.
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Algorithm II. Using Inexact Eigendecompositions.

Begin

1. Assume ‖A‖ = ‖B‖; else rescale A and B.
2. Assume A is nonsingular.
3. A ≡ A;1;t; B ≡ B;1;t → U;1;tΣ;1;tU

T
;1;t; compute eigendecomposition of B.

4.
√
Σ;1;tU

T
;1;tA

−1
;1;tU;1;t

√
Σ;1;t → V;1;tΛ;1;tV

T
;1;t +E;1;t; compute the eigendecom-

position of the equivalent symmetric matrix such that the eigenvalues are
ordered from largest to smallest in magnitude.

5. X;1;t ← A−1
;1;tU;1;t

√
Σ;1;tV;1;t; compute the generalized eigenvectors of the

pencil.
6. i← 1; we now deflate the eigenvectors from the pencil.

While (i < n) do
(a) While (i < n) and

(‖(λi;i;tA;i;t−B;i;t)Xi;i;t‖ ≤ ε‖Xi;i;t‖(|λi;i;t| ‖A[i:n],[i:n];i;t‖+‖B[i:n],[i:n];i;t‖)
do
(i) Compute Householder transform Q;i;t such that Q;i;tXi;i;t is parallel

to ei.
(ii) A;i;q;t ← Q;i;tA;i;tQ

T
;i;t, B;i;q;t ← Q;i;tB;i;tQ

T
;i;t, X;i;q;t ← Q;i;tX;i;t

(iii) If |λi;i;t| ≥ 1, then
A. (Ai;i;q;t ← Bi;i;q;t/λi;i;t; Ai,[1:n];i;q;t ← AT

i;i;q;t) → A;i;p;t; make
ith column and row of A;i;q;t exactly parallel to that of B;i;q;t.

B. Compute Householder transform Wi;t such that Wi;tBi;i;q;t has
zeros below the (i+ 1)st component.

C. A;i;w;t ← Wi;tA;i;p;tW
T
i , B;i;w;t ← Wi;tB;i;q;tW

T
i;t, X;i;w;t ←

Wi;tX;i;q;t.
D. Find an elementary Gauss transform L−1

;i;t such that L
−1
;i;tBi;i;w;t

is parallel to ei.
E. A;i+1;t ← L−1

;i;tA;i;w;tL
−T
;i;t , B;i+1;t ← L−1

;i;tB;i;w;tL
−T
;i;t , X;i+1;t ←

LT
;i;tX;i;w;t.

(iv) else; (|λi;i;t| < 1)
A. (Bi;i;q;t ← λi;i;tAi;i;q;t; Bi,[1:n];i;q;t ← BT

i;i;q;t) → B;i;p;t; make
ith column and row of B;i;q;t exactly parallel to that of A;i;q;t.

B. Compute Householder transform Wi;t such that Wi;tAi;i;q;t has
zeros below the (i+ 1)st component.

C. B;i;w;t ← Wi;tB;i;p;tW
T
i , A;i;w;t ← Wi;tA;i;q;tW

T
i;t, X;i;w;t ←

Wi;tX;i;q;t.
D. Find an elementary Gauss transform L−1

;i;t such that L
−1
;i;tAi;i;w;t

is parallel to ei.
E. B;i+1;t ← L−1

;i;tB;i;w;tL
−T
;i;t , A;i+1;t ← L−1

;i;tA;i;w;tL
−T
;i;t , X;i+1;t ←

LT
;i;tX;i;w;t.

endif
(v) Λ;i+1;t ← Λ;i;t.
(vi) i← i+ 1.
endwhile

(b) If (i < n), then
(i) B;i;t → U;i;tΣ;i;tU

T
;i;t; recompute eigendecomposition of B;i;t.

(ii)
√
Σ;i;tU

T
;i;tA

−1
;i;tU;i;t

√
Σ;i;t→V;i;tΛ;i;tV

T
;i;t+E;i;t; recompute the eigen-

decomposition of equivalent symmetric matrix corresponding to the
lower-right (n− i+1)× (n− i+1) block, such that the eigenvalues
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of the submatrix are ordered from largest to smallest in magnitude.
(iii) X;i;t ← A−1

;i;tU;i;t

√
Σ;i;tV;i;t; recompute the generalized eigenvectors

of the pencil.
endif

endwhile
7. We now have the two diagonal matrices

DA;t ≡ A;n;t, DB;t ≡ B;n;t,

and the accumulated transform

C;t ≡ QT
;1;tW

T
;1;tL;1;t · · ·QT

;n;tW
T
;n;tL;n;t,

such that

C;tDB;tC
T
;t = B + E;B;t,

‖E;B;t‖ ≤ 2nε(‖A‖+ n‖B‖) +O(ε2),(8)

‖(Di,i;B;tA−Di,i;A;tB)C
−T
;t ei‖

‖C−T
;t ei‖ (|Di,i;B;t| ‖A‖+ |Di,i;A;t| ‖B‖)

≤ 5n2ε+O(ε2).(9)

End
The important difference between Algorithm I and Algorithm II is that the latter

deflates eigenvectors only after checking that they are sufficiently accurate, and if they
are not it recomputes them.

Inequality (9) establishes that each computed eigenpair is computed to backward
accuracy. Inequality (8) establishes that all the eigenpairs have been computed, in
the sense that the eigenvector matrix diagonalizes B to backward accuracy. We now
prove the claims in step 7 of Algorithm II.

We first claim that

A;i;t ≡
( i− 1 n− i+ 1

i− 1 D̄;A;i;t 0
n− i+ 1 0 Ā;i;t

)
,(10)

B;i;t ≡
( i− 1 n− i+ 1

i− 1 D̄;B;i;t 0
n− i+ 1 0 B̄;i;t

)
.(11)

These facts will be proved by induction. It is obviously true for i = 1. For general
i, two cases are possible: either X;i;t has been computed in step 6(b)(iii) (or step 5)
of Algorithm II or we have successfully passed the test of the while loop in step 6(a)
and are entering step 6(a)(i).

We first consider the case when X;i;t is being computed in step 6(b) (or step 5).
Since this is obviously true for i = 1, we can invoke the induction hypothesis. We
now establish that we will pass the test

‖(λi;i;tA;i;t −B;i;t)Xi;i;t‖ ≤ ε‖Xi;i;t‖(|λi;i;t| ‖A[i:n],[i:n];i;t‖+ ‖B[i:n],[i:n];i;t‖)(12)

in step 6(a). Using the induction hypothesis we can conclude that

U;i;t ≡
( i− 1 n− i+ 1

i− 1 I 0
n− i+ 1 0 Ū;i;t

)
,
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Σ;i;t ≡
( i− 1 n− i+ 1

i− 1 Σ̄;i;u;t 0
n− i+ 1 0 Σ̄;i;l;t

)
,

such that B̄;i;t = Ū;i;tΣ̄;i;l;tŪ
T
;i;t. Therefore, we have

V;i;t ≡
( i− 1 n− i+ 1

i− 1 I 0
n− i+ 1 0 V̄;i;t

)
,

Λ;i;t ≡
( i− 1 n− i+ 1

i− 1 Λ̄;i;u;t 0
n− i+ 1 0 Λ̄;i;l;t

)
,

where we assume that∥∥∥∥
√
Σ̄;i;l;tŪ

T
;i;tĀ

−1
;i;tŪ;i;t

√
Σ̄;i;l;t − V̄;i;tΛ̄;i;l;tV̄

T
;i;t

∥∥∥∥ = ‖Ē;i;t‖ ≤ ε‖Λ̄;i;l;t‖.(13)

Therefore, this establishes that in step 6(b)(iii) we will have

X;i;t ≡
( i− 1 n− i+ 1

i− 1 D;X;i;t 0
n− i+ 1 0 X̄;i;t

)
.

Therefore, the test (12) can be rewritten as

‖(λi;i;tĀ;i;t − B̄;i;t)X̄i;i;t‖ ≤ ε‖X̄;i;t‖(|λi;i;t| ‖Ā;i;t‖+ ‖B̄;i;t‖).(14)

From (13) we have that

B̄;i;t

(
Ā−1

;i;tŪ;i;t

√
Σ̄;i;l;tV̄j;i;t

)
+ Ū;i;t

√
Σ̄;i;l;tĒ;i;tV̄j;i;t

= λj;i;l;tĀ;i;t

(
Ā−1

;i;tŪ;i;t

√
Σ̄;i;l;tV̄j;i;t

)
, j = 1, . . . , n− i+ 1,

or

B̄;i;tX̄j;i;t + Ū;i;t

√
Σ̄;i;l;tĒ;i;tV̄j;i;t = λj;i;l;tĀ;i;tX̄j;i;t, j = 1, . . . , n− i+ 1.(15)

Since ‖Λ̄;i;l;t‖ = |λ1;i;l;t|, we have that

|λ1;i;l;t|(1− ε) ≤
∥∥∥∥Ū;i;t

√
Σ̄;i;l;t

∥∥∥∥
∥∥∥∥Ā−1

;i;tŪ;i;t

√
Σ̄;i;l;tV̄1;i;t

∥∥∥∥
=

∥∥∥∥Ū;i;t

√
Σ̄;i;l;t

∥∥∥∥ ∥∥X̄1;i;t

∥∥ .
Therefore,

‖Ū;i;t

√
Σ̄;i;l;tĒ;i;tV̄1;i;t‖
‖X̄1;i;t‖ ≤ ε

1− ε‖Σ̄;i;l;t‖.(16)
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Using arguments similar to the derivation of (6), we can show that

|λ1;i;l;t|(1 + ε) ≥ ‖B̄;i;t‖
‖Ā;i;t‖ .

Hence it follows that

|λ1;i;l;t|‖Ā;i;t‖+ ‖B̄;i;t‖ ≥ ‖B̄;i;t‖2 + ε
1 + ε

.(17)

Since

2 + ε

1 + ε
≥ 1

1− ε ,

for sufficiently small ε, it follows from (15), (16), and (17) that the test (14) will be
passed by at least X̄1;i;t.

Now we go ahead and analyze step 6(a) of Algorithm II. By the induction hy-
pothesis and the preceding discussion, it is clear that

Q;i;t ≡
( i− 1 n− i+ 1

i− 1 I 0
n− i+ 1 0 Q̄i;t

)
, Q̄iXi;i;t = ±‖Xi;i;t‖ei,(18)

X;i;q;t ≡


i− 1 1 n− i

i− 1 D;X;i;t 0 0
1 0 ±‖Xi;i;t‖ hTi;t
n− i 0 0 X̄;i;q;t


,

A;i;q;t ≡


i− 1 1 n− i

i− 1 D̄;A;i;t 0 0
1 0 αi;t aT;i;q;t
n− i 0 a;i;q;t Ā;i;q;t


,(19)

B;i;q;t ≡


i− 1 1 n− i

i− 1 D̄;B;i;t 0 0
1 0 βi;t bT;i;q;t
n− i 0 b;i;q;t B̄;i;q;t


,(20)

where we now have that∥∥∥∥λi;i;t
(
αi;t

a;i;q;t

)
−
(
βi;t
b;i;q;t

)∥∥∥∥ ≤ ε(|λi;i;t| ‖Ā;i;t‖+ ‖B̄;i;t‖).(21)

That is, (αi;t aT;i;q;t )
T
and (βi;t bT;i;q;t )

T
are no longer perfectly parallel.

At this stage the algorithm can follow two paths, depending on λi;i;t (step 6(a)(iii)).
We will first follow the path taken when |λi;i;t| ≥ 1.

In step 6(a)(iii)(A) we perturb A;i;q;t such that its ith column is parallel to that
of B;i;q;t. Hence we have that

A;i;p;t ≡


i− 1 1 n− i

i− 1 D̄;A;i;t 0 0
1 0 βi;t/λi;i;t bT;i;q;t/λi;i;t
n− i 0 b;i;q;t/λi;i;t Ā;i;q;t


.(22)
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Since |λi;i;t| ≥ 1, it follows from (21) that

‖A;i;q;t −A;i;p;t‖ ≤ ε(‖Ā;i;t‖+ ‖B̄;i;t‖).(23)

The remaining steps in 6(a)(iii) are similar to Algorithm I and we have accordingly
that

W;i;t ≡
( i n− i

i I 0
n− i 0 W̄;i;t

)
, W̄ib;i;q;t = ±‖b;i;q;t‖ei,(24)

X;i;w;t ≡


i− 1 1 n− i

i− 1 D;X;i;t 0 0
1 0 ±‖Xi;i;t‖ hT;i;t
n− i 0 0 X̄;i;w;t


,

A;i;w;1;t ≡


i− 1 1 n− i

i− 1 D̄;A;i;t 0 0
1 0 βi;t/λi;i;t ±‖b;i;q;t‖eT1 /λi;i;t
n− i 0 ±‖b;i;q;t‖e1/λi;i;t Ā;i;w;t


,

B;i;w;t ≡


i− 1 1 n− i

i− 1 D̄;B;i;t 0 0
1 0 βi;t ±‖b;i;q;t‖eT1
n− i 0 ±‖b;i;q;t‖e1 B̄;i;w;t


.

Next we apply a suitable elementary Gauss transform to complete the deflation of the
eigenvector:

L−1
;i;t ≡



i− 1 1 n− i

i− 1 I 0 0
1 0 1 0
n− i 0 ρi;te1 I


, ρi;t = −±‖b;i;q‖

βi
,(25)

X;i+1;t =



i− 1 1 n− i

i− 1 D;X;i;t 0 0
1 0 ±‖Xi;i;t‖ ∗
n− i 0 0 X̄;i;w;t


,

A;i+1;t ≡



i− 1 1 n− i

i− 1 D̄;A;i;t 0 0
1 0 βi;t/λi;i;t 0

n− i 0 0 Ā;i;w;t − ‖b;i;q;t‖2

λi;i;tβi;t
e1e

T
1


,(26)

B;i+1;t ≡



i− 1 1 n− i

i− 1 D̄;B;i;t 0 0
1 0 βi;t 0

n− i 0 0 B̄;i;w;t − ‖b;i;q;t‖2

βi;t
e1e

T
1


,

where ∥∥∥∥‖b;i;q;t‖2λi;i;tβi;t
e1e

T
1

∥∥∥∥ ≤
∥∥∥∥‖b;i;q;t‖2βi;t

e1e
T
1

∥∥∥∥ ,(27)
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since |λi;i;t| ≥ 1.
Therefore, as long as |λi;i;t| ≥ 1, the application of L−1

i;t to A;i;w;t is numerically
stable (actually, backward stable with respect to A). This will follow from the more
general analysis to be carried out below. We now analyze the case when |λi;i;t| < 1.

In step 6(a)(iv)(A) we perturb B;i;q;t such that its ith column is parallel to that
of A;i;q;t. Hence we have that

B;i;p;t ≡


i− 1 1 n− i

i− 1 D̄;B;i;t 0 0
1 0 αi;tλi;i;t λi;i;ta

T
;i;q;t

n− i 0 λi;i;ta;i;q;t B̄;i;q;t


.(28)

It follows from (21) that

‖B;i;q;t −B;i;p;t‖ ≤ ε(|λi;i;t|‖Ā;i;t‖+ ‖B̄;i;t‖).(29)

The remaining steps in 6(a)(iv) are similar to the steps in 6(a)(iii) and we have
accordingly that

W;i;t ≡
( i n− i

i I 0
n− i 0 W̄;i;t

)
, W̄ia;i;q;t = ±‖a;i;q;t‖ei,(30)

X;i;w;t ≡


i− 1 1 n− i

i− 1 D;X;i;t 0 0
1 0 ±‖Xi;i;t‖ hT;i;t
n− i 0 0 X̄;i;w;t


,

B;i;w;1;t ≡


i− 1 1 n− i

i− 1 D̄;B;i;t 0 0
1 0 λi;i;tαi;t ±‖a;i;q;t‖λi;i;teT1
n− i 0 ±‖a;i;q;t‖λi;i;te1 B̄;i;w;t


,

A;i;w;t ≡


i− 1 1 n− i

i− 1 D̄;A;i;t 0 0
1 0 αi;t ±‖a;i;q;t‖eT1
n− i 0 ±‖a;i;q;t‖e1 Ā;i;w;t


.

Next we apply a suitable elementary Gauss transform to complete the deflation of the
eigenvector:

L−1
;i;t ≡



i− 1 1 n− i

i− 1 I 0 0
1 0 1 0
n− i 0 ρi;te1 I


, ρi;t = −±‖a;i;q‖

αi
,(31)

X;i+1;t =



i− 1 1 n− i

i− 1 D;X;i;t 0 0
1 0 ±‖Xi;i;t‖ ∗
n− i 0 0 X̄;i;w;t


,

B;i+1;t ≡



i− 1 1 n− i

i− 1 D̄;B;i;t 0 0
1 0 λi;i;tαi;t 0

n− i 0 0 B̄;i;w;t − λi;i;t‖a;i;q;t‖2

αi;t
e1e

T
1


,
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A;i+1;t ≡



i− 1 1 n− i

i− 1 D̄;A;i;t 0 0
1 0 αi;t 0

n− i 0 0 Ā;i;w;t − ‖a;i;q;t‖2

αi;t
e1e

T
1


.(32)

This completes the proof by induction of (10) and (11). We are now ready to
determine the global error of Algorithm II.

We first consider the case when the eigenvalues are larger than one in magnitude.
Then the only error which affects the accuracy of the final answer is when we perturb
A;i;q;t to get A;i;p;t. Let

E;i;A;t ≡ A;i;p;t −A;i;q;t,(33)

where, by (23),

‖E;i;A;t‖ ≤ ε(‖Ā;i;t‖+ ‖B̄;i;t‖).(34)

We will show that this error can be written as a small backward error in A;i−1;p;t or
A;i−1;t, depending on whether |λi−1;i−1;t| was strictly smaller than one or not. Let

A;i−1;s;t ≡
{
A;i−1;t if |λi−1;i−1;t| < 1,
A;i−1;p;t otherwise,

and extend the definition of E;i;A;t by E;i;A;t ≡ A;i;s;t −A;i;q;t. From an examination
of Algorithm II it follows that

A;i;q;t = L
−1
;i−1;tW;i−1;tQ;i−1;tA;i−1;s;tQ

T
;i−1;tW

T
;i−1;tL

−T
;i−1;t.

Substituting in (33) we get

A;i;p;t = L
−1
;i−1;tW;i−1;tQ;i−1;t(A;i−1;s;t + E;i;A;b;t)Q

T
;i−1;tW

T
;i−1;tL

−T
;i−1;t,(35)

where

E;i;A;b;t = Q
T
;i−1;tW

T
;i−1;tL;i−1;tE;i;A;tL

T
;i−1;tW;i−1;tQ;i−1;t.

From the structure equations (19), (22), and (25), we can conclude that

L;i−1;tE;i;A;tL
T
;i−1;t = E;i;A;t.

Therefore,

‖E;i;A;b;t‖ = ‖E;i;A;t‖.(36)

Furthermore, observe that E;i;A;b;t, like E;i;A;t, is nonzero only in the lower-right
(n− i+1)× (n− i+1) block. Therefore, it follows from the structure equations (18),
(24), and (25) that the matrix

QT
;i−2;tW

T
;i−2;tL;i−2;tE;i;A;b;tL

T
;i−2;tW;i−2;tQ;i−2;t

is nonzero only in the lower-right (n− i+ 1)× (n− i+ 1) block, and that

L;i−2;tE;i;A;b;tL
T
;i−2;t = E;i;A;b;t.
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Since this can be extended by induction, we can conclude using (35) and (36) that

D;A;t = A;n;p;t = C
−1
;t (A+ E;A;t)C

−T
;t ,

where

‖E;A;t‖ ≤
n∑

i=1

µi‖E;i;A;t‖ ≤ ε
(

n∑
i=1

µi‖Ā;i;t‖+
n∑

i=1

µi‖B̄;i;t‖
)
.

The last inequality follows from (34), and µi is defined as follows:

µi =

{
1 if |λi;i;t| ≥ 1,
0 otherwise.

We can carry out a similar analysis when |λi;i;t| < 1. Now the only error which
affects the accuracy of the final answer is

E;i;B;t ≡ B;i;p;t −B;i;q;t,(37)

where, by (29),

‖E;i;B;t‖ ≤ ε(|λi;i;t| ‖Ā;i;t‖+ ‖B̄;i;t‖).(38)

We will show that this error can be written as a small backward error in B;i−1;p;t or
B;i−1;t, depending on whether |λi−1;i−1;t| was strictly smaller than one or not. Let

B;i−1;s;t ≡
{
B;i−1;t if |λi−1;i−1;t| ≥ 1,
B;i−1;p;t otherwise,

and extend the definition of E;i;B;t by E;i;B;t ≡ B;i;s;t −B;i;q;t. From an examination
of Algorithm II it follows that

B;i;q;t = L
−1
;i−1;tW;i−1;tQ;i−1;tB;i−1;s;tQ

T
;i−1;tW

T
;i−1;tL

−T
;i−1;t.

Substituting in (37) we get

B;i;p;t = L
−1
;i−1;tW;i−1;tQ;i−1;t(B;i−1;s;t + E;i;B;b;t)Q

T
;i−1;tW

T
;i−1;tL

−T
;i−1;t,(39)

where

E;i;B;b;t = Q
T
;i−1;tW

T
;i−1;tL;i−1;tE;i;B;tL

T
;i−1;tW;i−1;tQ;i−1;t.

From the structure equations (20), (28), and (31), we can conclude that

L;i−1;tE;i;B;tL
T
;i−1;t = E;i;B;t.

Therefore,

‖E;i;B;b;t‖ = ‖E;i;B;t‖.(40)

Furthermore, observe that E;i;B;b;t, like E;i;B;t, is nonzero only in the lower-right
(n− i+1)× (n− i+1) block. Therefore it follows from the structure equations (18),
(30), and (31) that the matrix

QT
;i−2;tW

T
;i−2;tL;i−2;tE;i;B;b;tL

T
;i−2;tW;i−2;tQ;i−2;t
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is nonzero only in the lower-right (n− i+ 1)× (n− i+ 1) block, and that

L;i−2;tE;i;B;b;tL
T
;i−2;t = E;i;B;b;t.

Since this can be extended by induction, we can conclude using (39) and (40) that

D;B;t = B;n;p;t = C
−1
;t (B + E;B;t)C

−T
;t ,

where

‖E;B;t‖ ≤
n∑

i=1

(1− µi)‖E;i;B;t‖

≤ ε
(

n∑
i=1

(1− µi)|λi;i;t| ‖Ā;i;t‖+
n∑

i=1

(1− µi)‖B̄;i;t‖
)
.(41)

The last inequality follows from (38).
Therefore, the error analysis boils down to obtaining good bounds on ‖Ā;i;t‖ and

‖B̄;i;t‖. We proceed to do that now.
We shall assume that

‖B−1‖−1 > ‖E;B;t‖,(42)

so that B;i;t is always symmetric positive definite. (We shall give more practical
conditions later.) Therefore, B̄;i;t is the Schur complement of a symmetric positive-
definite matrix and it follows that

n∑
i=1

‖B̄;i;t‖ ≤ n‖B‖+O(ε).(43)

Now consider
n∑

i=1

(1− µi)|λi;i;t| ‖Ā;i;t‖.

From (26) and (32) we obtain

Ā;i+1;t = Ā;i;w;t − (1− µi)‖a;i;q;t‖
2

αi;t
e1e

T
1 − µi

‖b;i;q;t‖2
λi;i;tβi;t

e1e
T
1 .(44)

By the assumption (42), B;i;w;t and B;i;w;1;t are symmetric positive definite. Hence
we have that

µi

∥∥∥∥‖b;i;q;t‖2λi;i;tβi;t
e1e

T
1

∥∥∥∥ ≤ µi‖B;i;w;t‖ = µi‖B‖+O(ε)(45)

and

(1− µi)
∥∥∥∥λi;i;t ‖a;i;q;t‖2αi;t

e1e
T
1

∥∥∥∥ ≤ (1− µi)‖B;i;w;1;t‖ = (1− µi)‖B‖+O(ε).(46)

From (44), (45), and (46), we get

|λi+1;i+1;t| ‖Ā;i+1;t‖ ≤
∣∣∣∣λi+1;i+1;t

λi;i;t

∣∣∣∣ |λi;i;t| ‖Ā;i;t‖

+

(
(1− µi)

∣∣∣∣λi+1;i+1;t

λi;i;t

∣∣∣∣+ µi
)
‖B‖+O(ε).(47)
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Let k be the smallest integer such that |λk;k;t| < 1. Then it follows from (44) and (45)
that

‖Ā;i;t‖ ≤ ‖A‖+ i‖B‖, i < k,(48)

|λk;k;t| ‖Ā;k;t‖ ≤ ‖A‖+ k‖B‖.(49)

Now let

τi ≡ max
(
1,

∣∣∣∣λi+1;i+1;t

λi;i;t

∣∣∣∣
)
.

Then we get from (47) and (49) that

|λi+1;i+1;t| ‖Ā;i+1;t‖ ≤ (‖A‖+ 2i ‖B‖) Πi
j=kτj +O(ε), i ≥ k.(50)

This inequality is very loose.
Note that we cannot expect τi = 1, because Algorithm II does not compute the

exact eigenvalues of the pencil. From (58) it follows that

τi ≤ 1 + c1εκ(B̄;i;t) + c2ε|λi;i;t| ‖Ā;i;t‖ ‖B̄−1
;i;t‖+O(ε2),

where c1 and c2 are constants. Using (47), (49), and the fact that ‖A‖ = ‖B‖, we
obtain

τi ≤ 1 + c3iεκ(B) +O(ε2) for i ≥ k,
where c3 is a constant. Henceforth we make the assumption

c3n
2κ(B)ε < 1,(51)

which is stronger than the previous assumption (42). Under this assumption it follows
that

Πi
j=kτj ≤ 2 +O(ε2).

Therefore, we can conclude from (50) that

n∑
i=1

(1− µi)|λi;i;t| ‖Ā;i;t‖ ≤ 2n(‖A‖+ n‖B‖) +O(ε).(52)

Substituting (52) and (43) in (41) we obtain

‖E;B;t‖ = ‖C;tD;B;tC
T
;t −B‖ ≤ 2nε(‖A‖+ n‖B‖) +O(ε2).(53)

In other words the factorization C;tD;B;tC
T
;t is backward stable (to first order) with

respect to B, which is the first claim (8) of step 7 of Algorithm II. The main difficulty
in proving this claim is that the perturbation in B depends upon the norms of the
Schur complements of A, which can theoretically grow exponentially. The surprise is
that the decomposition of B is backward stable in spite of this possibility.

We now turn our attention to proving the second claim (9), namely, that each
eigenpair has a small residual with respect to A and B.

Let C;i;t denote the partially accumulated transform

C;i;t ≡ QT
;1;tW

T
;1;tL;1;t · · ·QT

;i;tW
T
;i;tL

T
;i;t.
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Then note that the ith eigenvector is also given by

C−1
;t ei = C

−1
;i;tei.

This follows from (18), (24), and (25). Therefore, it is enough to prove that

‖(λi;i;tA−B)C−T
;i;t ei‖ ≤ 5n2ε ‖C−T

;i;t ei‖ (|λi;i;t| ‖A‖+ ‖B‖) +O(ε2)
in order to establish our claim. From (10) and (11), and the arguments leading to
(36) and (40), it follows that

‖A− C;i;tA;i+1;tC
T
;i;t‖ ≤

i∑
l=1

‖E;l;A;t‖,

‖B − C;i;tB;i+1;tC
T
;i;t‖ ≤

i∑
l=1

‖E;l;B;t‖.

Therefore,

‖(λi;i;tA−B)C−T
;i;t ei‖ ≤ ‖(λi;i;tDi,i;A;t −Di,i;B;t)C;i;tei‖

+ ‖C−T
;i;t ei‖

i∑
l=1

(|λi;i;t| ‖E;l;A;t‖+ ‖E;l;B;t‖).

Since

λi;i;tDi,i;A;t = Di,i;B;t,

we have

‖(λi;i;tA−B)C−T
;i;t ei‖ ≤ ‖C−T

;i;t ei‖
i∑

l=1

(|λi;i;t| ‖E;l;A;t‖+ ‖E;l;B;t‖).

Note that ‖E;l;A;t‖ is multiplied by |λi;i;t|. This is crucial in the analysis which follows.
From inequalities (41) and (53) it follows that

i∑
l=1

‖E;l;B;t‖ ≤ 2nε(‖A‖+ n‖B‖) +O(ε2).

Now using our previous definition that k is the smallest integer such that |λk;k;t| < 1,
we observe that if i < k, then from (34), (43), and (48) it follows that

|λi;i;t|
i∑

l=1

‖E;l;A;t‖ ≤ |λi;i;t| 2nε(‖A‖+ n‖B‖) +O(ε2), i < k.

When i ≥ k, it follows from (49) that

|λi;i;t| ‖Ā;l;t‖ = |λi;i;t||λl;l;t| |λl;l;t| ‖Ā;l;t‖ ≤ 2(‖A‖+ 2l‖B‖) +O(ε2), l ≤ i.

Combining this with (34) we obtain

i∑
l=1

|λi;i;t| ‖E;l;A;t‖ ≤ 2nε(‖A‖+ n‖B‖) +O(ε2), i ≥ k.
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Therefore, we can conclude that

‖(λi;i;tA−B)C−T
;i;t ei‖ ≤ ‖C−T

;i;t ei‖(2 + |λi;i;t|)2nε(‖A‖+ n‖B‖) +O(ε2).
Since ‖A‖ = ‖B‖, this can be rewritten as

‖(λi;i;tA−B)C−T
;i;t ei‖ ≤ 5n2ε ‖C−T

;i;t ei‖ (|λi;i;t| ‖A‖+ ‖B‖) +O(ε2),
which establishes our claim that each eigenpair has a small residual with respect to
A and B. This is true in spite of the fact that the factorization of A is potentially
unstable theoretically!

In fact using an analysis similar to that used to establish (53) we can show that

‖E;A;t‖ ≤ p(n)γ(‖A‖+ ‖B‖)ε,
where p(n) is a low-order polynomial in n, and γ is the “growth factor” defined to be

γ ≡ max
i

‖Ā;i;t‖
‖A‖ .

From (7) it follows that γ can grow at most exponentially in n, but in numerous
numerical experiments (see section 6) we have never observed it. This is similar to
the situation in Gaussian elimination with partial pivoting where the growth factor can
potentially grow exponentially but is rarely observed [4]. Nevertheless, our algorithm
will compute all eigenpairs reliably no matter how large or small γ happens to be.

We have now established that Algorithm II computes each eigenpair to backward
accuracy (see (9)), and that it also computes all the eigenvectors, in the sense that
they diagonalize B to backward accuracy (see (8)). Furthermore, by establishing
inequality (see (12)), we have proved that Algorithm II is an O(mn3) algorithm,
where m is the number of times step 6(b) is executed (m < n).

In extensive numerical experiments with Algorithm II the largest m we have
observed is 7 for a pencil of size 500 by 500. Usually m is smaller than 4. Therefore,
we conjecture that m is O(log(1/ε)). The reasoning for the conjecture is as follows.

We examine how many of the eigenvectors computed in step 6(b) will pass the
residual test in step 6(a).

The analysis is an extension of the one used to prove inequality (14). We will
continue to use the same notation. Immediately after step 6(b) we have (15), which
we repeat here for convenience:

B̄;i;tX̄j;i;t + Ū;i;t

√
Σ̄;i;l;tĒ;i;tV̄j;i;t = λj;i;l;tĀ;i;tX̄j;i;t, j = 1, . . . , n− i+ 1.(15)

Furthermore, from (13) we have that√
Σ̄;i;l;tŪ

T
;i;tĀ

−1
;i;tŪ;i;t

√
Σ̄;i;l;t − V̄;i;tΛ̄;i;l;tV̄

T
;i;t = Ē;i;t,

where

‖Ē;i;t‖ ≤ ε‖Λ̄;i;l;t‖.
Therefore,

|λj;i;l;t| − ε‖Λ̄;i;l;t‖ ≤
∥∥∥∥Ū;i;t

√
Σ̄;i;l;t

∥∥∥∥
∥∥∥∥Ā−1

;i;tŪ;i;t

√
Σ̄;i;l;tV̄j;i;t

∥∥∥∥
=

∥∥∥∥Ū;i;t

√
Σ̄;i;l;t

∥∥∥∥ ∥∥X̄j;i;t

∥∥ .
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Hence

‖Ū;i;t

√
Σ̄;i;l;tĒ;i;tV̄j;i;t‖
‖X̄j;i;t‖ ≤ ε

|λj;i;l;t|
‖Λ̄;i;l;t‖ − ε

‖Σ̄;i;l;t‖.(54)

From the variational characterization of eigenvalues we have

‖Λ̄;i;l;t‖(1 + ε) ≥ ‖B̄;i;t‖
‖Ā;i;t‖ .

Therefore,

|λj;i;l;t|‖Ā;i;t‖+ ‖B̄;i;t‖ = |λj;i;l;t||λ1;i;l;t| |λ1;i;l;t|‖Ā;i;t‖+ ‖B̄;i;t‖

≥ |λj;i;l;t||λ1;i;l;t|
‖B̄;i;t‖
1 + ε

+ ‖B̄;i;t‖

= ‖B̄;i;t‖
|λj;i;l;t|
|λ1;i;l;t| + 1 + ε

1 + ε
.(55)

Now, if

|λj;i;l;t|
|λ1;i;l;t| >

√
5− 1
2

+ 3ε,(56)

then

1
|λj;i;l;t|
‖Λ̄;i;l;t‖ − ε

<

|λj;i;l;t|
|λ1;i;l;t| + 1 + ε

1 + ε
.

Therefore, from (15), (54), and (55), we can conclude that

‖(λj;i;tĀ;i;t − B̄;i;t)X̄j;i;t‖ ≤ ε‖X̄;i;t‖(|λj;i;t| ‖Ā;i;t‖+ ‖B̄;i;t‖)
for all j between 1 and n− i+ 1 such that inequality (56) is satisfied.

In other words, the eigenvectors corresponding to the eigenvalues in a significant
interval around the largest eigenvalue will be sufficiently accurate to pass the residual
test. The algorithm proceeds by deflating the eigenvector corresponding to the largest
eigenvalue in magnitude, λ1;i;t. The important question now is how many of the orig-
inally accurate eigenvectors will continue to pass the residual test after the deflation.
In numerical experiments most of these eigenvectors continue to pass the residual test
after the deflation. Our best explanation of this phenomenon is that the eigenvectors
seem to be ordered in rank-revealed form and that the total loss of accuracy due to
the nonorthogonal transforms is O(κ(B)ε). This explains our conjecture. Doubtless,
more extensive investigations are needed and they are being carried out.

5. Implementation issues. Algorithm II was structured to make the error
analysis easy. Here we present some necessary details for a practical implementation.

Singular A. So far, throughout our analysis, we had assumed that Ā;i;t was
nonsingular. This is hard to maintain, since we have no real control on the growth
of the condition number of Ā;i;t. Furthermore, the additive perturbations can make
some Ā;i;t singular. Therefore, we need to explicitly deal with singular Ā;i;t.
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In step 6(b) we explicitly check if the condition number of Ā;i;t is bigger than
a small constant times the reciprocal of the machine precision. If it is, we compute
all the eigenvectors of Ā;i;t corresponding to its small eigenvalues (of the size of the
machine precision). Compute the Householder transform which maps the eigenvector
corresponding to the smallest eigenvalue in magnitude to e1. Apply this to Ā;i;t and
B̄;i;t. The first column and row of Ā;i;t will be numerically zero. They should be
explicitly set to zero. Now by elementary Gauss transforms the first column and row
of B̄;i;t are eliminated. This will have no effect on Ā;i;t. This process is continued
until all the eigenvectors of Ā;i;t corresponding to the small eigenvalues (in magnitude)
have been deflated. Note that this procedure has no adverse effect on the accuracy
and speed of Algorithm II.

Residual test. The residual test in step 6(a) is too strong and should be weakened
as follows:

‖(λi;i;tA;i;t −B;i;t)Xi;i;t‖ ≤ ε‖Xi;i;t‖(|λi;i;t| max
j≤i
‖Ā;j;t‖+max

j≤i
‖B̄;j;t‖).

This is to account for the fact that the Schur complements of A and B might decrease
in norm during the deflation process.

Well-conditioned submatrices. If either Ā;i;t or B̄;i;t happen to be well-conditioned,
then it improves performance to directly compute the eigenvalues and eigenvectors
of either B̄;i;tĀ

−1
;i;t or Ā;i;tB̄

−1
;i;t , respectively (in symmetric form, of course), and avoid

deflating them.
QR factorization of C;t. The matrix C;t can be stored in factorized form as in

step 7 of Algorithm II, or it can be stored in QR-factored form, which might be more
convenient for the user. To do this we observe that

C;t = Q
T
;1;tW

T
;1;t · · ·QT

;n;tW
T
;n;tL̃;1;t · · · L̃;n;t,

where L̃;i;t is still an elementary Gauss transform of the type

L̃;i;t ≡


i− 1 1 n− i

i− 1 I 0 0
1 0 1 0
n− i 0 y;i;t I


,

and y;i;t can be obtained easily from ρi;t and the transforms Q;j;t and W;j;t for j > i.
Due to this, the QR factorization of C;t can be computed efficiently in O(n

3) flops.
Numerical issues. So far we have tacitly assumed that we can compute the

large eigenvalues and corresponding eigenvectors of
√
Σ;i;tU

T
;i;tA

−1
;i;tU;i;t

√
Σ;i;t in step

6(b)(ii) to sufficient accuracy. That task is nontrivial numerically, and in this section
we detail the mechanism for carrying it out.

We first compute the eigendecomposition of A;i;t = Z;i∆;iZ
T
;i . Then we compute

the required product as√
Σ;i;t

(
(UT

;i;tZ;i)∆;i(Z
T
;iU;i;t)

)√
Σ;i;t

in the order suggested by the parentheses. It is important to follow the suggested
order of operations. When the expression (UT

;i;tZ;i)∆;i(Z
T
;iU;i;t) is being evaluated it

should be done in outer-product form, exploiting the fact that ∆;i is diagonal. Then a
round-off error analysis can be used to show that if Y;i denotes the computed product,
then

Y;i + E;Y ;i =
√
Σ;i;tU

T
;i;t(A;i;t + E;A;m;i)

−1U;i;t

√
Σ;i;t,
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where

‖E;A;m;i‖ ≤ n2ε‖A;i;t‖,
‖E;Y ;i‖ ≤ n2ε‖√Σ;i;t‖ ‖A−1

;i;tU;i;t

√
Σ;i;t‖.

Since ‖Y;i‖ can be as small as σmin(Σ;i;t)/‖A;i;t‖, it follows that the computed Y;i

can fail to be stable by approximately ε
√
κ(Σ;i;t) digits. Since we have assumed that

κ(B)ε < 1, it follows that Y;i is accurate to at least half the digits. Therefore, if the
computed eigenvectors of Y;i corresponding to the largest eigenvalues turn out to be
too inaccurate to pass the residual test, we can efficiently correct them by inverse
iteration (see chapter 5 in [1]).

Round-off errors. The analysis of the round-off errors incurred in the algorithm is
similar to the analysis of the eigenvalue decomposition truncation errors carried out
for Algorithm II. We just combine the standard error analysis techniques of Gaussian
elimination with the truncation error analysis of section 4. The final error bounds
have larger polynomials in n.

6. Numerical experiments. We now describe some numerical experiments
that were carried out to test the accuracy and efficiency of Algorithm II. The al-
gorithm was implemented in Matlab [5] and run on a Sun SPARCstation 20. The
machine precision was approximately 10−16 (denoted by εmach). The algorithm was
tested on three classes of randomly generated pencils with different characteristics.

The results for the first class of test matrices are shown in Figure 1, those for the
second class of test matrices in Figure 2, and those for the third class of test matrices
in Figure 3. In each class the matrices of all sizes from 10 to 100 were tested. In all
the figures the horizontal axis represents the matrix size.

Figures 1(a), 2(a), and 3(a) show nκ(A) for the experimental run being reported,
where n denotes the matrix size.

Figures 1(b), 2(b), and 3(b) similarly show nκ(B).
Figures 1(c), 2(c), and 3(c) show the error in the factorization of A, which is

defined as follows:

‖A− C;tDA;tC
T
;t ‖

‖A‖
εmach

nε
.

The reason for the normalization factor is that from inequality (8) we expect the
error to be bounded by a quadratic polynomial in n times ε. Since the bounds in
error analysis tend to be conservative we chose to normalize by a linear polynomial
instead.

Figures 1(d), 2(d), and 3(d) show the error in the factorization of B:

‖B − C;tDB;tC
T
;t ‖

‖B‖
εmach

nε
.

The plots in Figures 1(e), 2(e), and 3(e) display the accuracy of the computed
eigenvalues measured by the expression

max
i

σmin(Di,i;B;tA−Di,i;A;tB)

nσmax(Di,i;B;tA−Di,i;A;tB)
.

This expression measures the accuracy of the computed eigenvalues independently of
the computed eigenvectors.
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Fig. 1. First test class.

Finally, Figures 1(f), 2(f), and 3(f) display the number of times step 6(b) is
executed. This gives an indication of the efficiency of the algorithm since the cost of
Algorithm II is O(mn3), where m is the number of times step 6(b) is executed. We
remind the reader that in step 6(b) we compute eigenvalue decompositions of dense
matrices, and it can cost O(n3) flops. Hence it essentially determines how efficient
the algorithm will be. Of course, we want to ensure that step 6(b) is executed as few
times as possible.

For the experiments presented here we chose ε to be equal to 20n1.5εmach. This
was based on an estimate of the average accuracy of the solver for the symmetric
eigenvalue problem. Choosing a smaller ε can make the algorithm inefficient with
little gain in accuracy.

The first class of test matrices is generated as follows. To create the matrix A of
order n, we generate a random (normal distribution) n×n matrix, take its symmetric
part, and normalize it by its 1-norm. The matrix tends to have a moderately high
condition number, as can be seen from Figure 1(a). To generate the matrix B of
order n, we take a random (normal distribution) matrix of order n, multiply it by its
transpose (to make it symmetric positive definite), and then normalize it by its 1-norm.
The matrix tends to be more ill-conditioned than A, as shown in Figure 1(b). As can
be seen from Figure 1(c) the computed eigenvectors diagonalize A in each instance
to full backward accuracy. That is, there is no evidence of a large growth factor.
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Fig. 2. Second test class.

As expected from the error analysis, Figure 1(d) demonstrates that the computed
eigenvectors diagonalize B to full backward accuracy. From Figure 1(e) we see that
the eigenvalues are computed with better accuracy than the error analysis indicates.
Finally, Figure 1(f) shows that the algorithm is very efficient on this test class, as we
never require more than one execution of step 6(b).

The second class of test matrices was generated as follows. Let cb ≡ 10−8n,
where n denotes the order of the matrix. To create A, we first generated a random
(normal distribution) matrix, took its symmetric part, and computed its eigenvalues,
λ1 ≤ · · · ≤ λn. We then added −λ[n/2] + cbλn times the identity matrix to the
symmetric part, normalized the result by its 1-norm, and obtained A. The general
result is a symmetric indefinite matrix with a rather large condition number, as seen
in Figure 2(a). To create B, we generate a random (normal distribution) matrix of
order n, extract its symmetric part, compute its eigenvalues, µ1 ≤ · · · ≤ µn, and add
|µ1| + cbmax(µ1, µn) times the identity to the symmetric part. This almost always
results in a symmetric positive-definite matrix, with a moderately large condition
number, as can be seen in Figure 2(b). Note that in the run shown in Figure 2, the
matrix B is generally better conditioned than A, though both in general have rather
large condition numbers. Again Figure 2(c) indicates that the computed eigenvectors
diagonalize A to backward stability in each case, which is much better than what
the error analysis predicts. Figure 2(d) shows that the eigenvectors diagonalize B to
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Fig. 3. Third test class.

full backward accuracy (as the error analysis predicts). Figure 2(e) shows that the
individual eigenvalues are highly accurate. Figure 2(f) again shows the high efficiency
of the algorithm. In this run we never execute step 6(b) more than two times. The
main differences between the first test class and this one (the second) is that A is
generally more ill-conditioned in the latter class and that B is made ill-conditioned
by shifting (second class) rather than squaring (first class).

The third test class of matrices is deliberately chosen to try to make the algo-
rithm perform badly. From the error analysis we identify the following features which
such a test class must satisfy: First, the eigenvalues must not be too small or too
large in magnitude; second, the eigenvalues must be highly clustered, preferably with
eigenvalue gaps in a wide range; third, the eigenvalues must be highly ill-conditioned.
We generate such a test class of matrices as follows. We first generate a random (uni-
form distribution) lower-triangular matrix, L. We then generate a diagonal matrix, D,
whose ith element is a positive random number times (−1.25)i. Then D is normalized
by its 2-norm. The matrix A is taken to be equal to LDLT . We now multiply the ith
diagonal element of D by 1 + ci, where ci is a random number uniformly distributed
between −10−6 and 10−6. The matrix B is taken to be equal to LDLT , where we
use the new D now. From the way we created A and B we can see that eigenvalues
will be tightly clustered around +1 and −1. From Figures 3(a) and 3(b) we see that
the matrices A and B are highly ill-conditioned, making the eigenvalues also highly
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ill-conditioned. But from Figures 3(c) and 3(d) we see that the computed eigenvec-
tors diagonalize A and B to full backward accuracy. From Figure 3(e) we see that
eigenvalues are all accurate. From Figure 3(f) we see that now the algorithm executes
step 6(b) more frequently than for the previous two test classes, but nevertheless the
number of iterations never exceeds 4. This gives further evidence of the efficiency and
robustness of the algorithm.

6.1. Some numerical examples. In this section we give some examples where
conventional algorithms for the symmetric-definite generalized eigenvalue problem can
give erroneous answers.

We first provide an example where Matlab’s QZ algorithm computes eigenvalues
with large imaginary parts. The algorithm described in this paper has no such prob-
lems and returns all the eigenvalues and eigenvectors to full backward accuracy. To
proceed, we define the matrices A and B as follows:

A =

( −0.00116607575822 −0.00039530283170 −0.00076250811040 0.00112106013448 −0.00065381674531
−0.00039530283170 −0.00013392875708 −0.00025887606360 0.00038006880479 −0.00022125054686
−0.00076250811040 −0.00025887606360 −0.00049676987879 0.00073294540527 −0.00042943322558
0.00112106013448 0.00038006880479 0.00073294540527 −0.00107777377871 0.00062870745935

−0.00065381674531 −0.00022125054686 −0.00042943322558 0.00062870745935 −0.00036464347683

)

and

B =

(
0.00116607575822 0.00039530283170 0.00076250811040 −0.00112106013448 0.00065381674531
0.00039530283170 0.00013408869830 0.00025810855444 −0.00038001602253 0.00022204073848
0.00076250811040 0.00025810855444 0.00050045292133 −0.00073319869124 0.00042564133688

−0.00112106013448 −0.00038001602253 −0.00073319869124 0.00107779119829 −0.00062844668852
0.00065381674531 0.00022204073848 0.00042564133688 −0.00062844668852 0.00036854742882

)
.

When we computed the eigenvalues using “eig(A,B)” in Matlab, one of the eigenvalues
it returned was −0.96956258140331 + 0.00009155375727i, which as one can see has
a large imaginary part for a computation carried out with approximately 14 decimal
digits of accuracy.

The next example is one where the conventional idea of converting Ax = λBx
into G−1AG−Tx = λx, where B = GGT , fails to do well. Let

A =

(
0.21472417430628 0.17400616567923 −0.02769100324675 −0.13782812711118 0.34789671111569
0.17400616567923 −0.79254771778534 −0.06583322926616 −0.21873063212490 0.52253219013903

−0.02769100324675 −0.06583322926616 0.30681582819807 −0.85955850791110 −0.39898863450352
−0.13782812711118 −0.21873063212490 −0.85955850791110 −0.09425601545807 −0.38773515091776
0.34789671111569 0.52253219013903 −0.39898863450352 −0.38773515091776 0.36526373073906

)

and

B = diag



1.00000000000000
0.00050000000000
0.00000025000000
0.00000000012500
0.00000000000006


 .

When this example is solved in Matlab using “eig(G−1AG−T ),” the largest normalized
residual is approximately 10−9, which is too big for a computation carried out in
double-precision arithmetic for a 5× 5 problem.

7. Perturbation of generalized eigenvalues. In this section we develop the
necessary perturbation theory of generalized eigenvalues of symmetric-definite pencils.

Let

B = GGT ,

GTA−1G = V1Λ1V
T
1 + E1,

B + EB = GFFGT , F = FT ,

FGT (A+ EA)
−1GF = V2Λ2V

T
2 + E2,
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where

‖E1‖ ≤ ε‖Λ1‖,
‖E2‖ ≤ ε‖Λ2‖,
‖EB‖ ≤ ε‖B‖,
‖EA‖ ≤ ε‖A‖,
εκ(B) < 1.

Since FF = I +G−1EBG
−T , we have

G−GF = G(I − F ) = −EBG
−T (I + F )−1.

Using the fact that F is symmetric positive definite, we have

‖GF −G‖ ≤ ε1
2
‖B‖ ‖G−1‖+O(ε2).

Therefore, we can expand to first order in ε to obtain

V2Λ2V
T
2 + E2 = V1Λ1V

T
1 + E1 + (GF −G)TA−1G+GTA−1(GF −G)

+ GTA−1EAA
−1G+O(ε2).(57)

Also, since

A−1G = G−TV1Λ1V
T
1 +O(ε),

we obtain from (57) that

‖Λ2‖(1− ε) ≤ ‖Λ1‖(1 + ε+ εκ(B) + ε‖Λ1‖ ‖A‖ ‖B−1‖) +O(ε2),

where κ(B) = ‖B‖ ‖B−1‖ is the condition number of B. Therefore,

‖Λ2‖
‖Λ1‖ ≤ 1 + 3εκ(B) + ε‖Λ1‖ ‖A‖ ‖B−1‖+O(ε2).(58)

The important thing to observe here is that the first-order perturbation bound is not
directly dependent on the condition number of A.

8. Conclusion. We have presented a new technique for the stable deflation of
eigenpairs from the pencil Ax = λBx, where A is symmetric indefinite and B is
symmetric positive definite. We have given an error analysis to prove the stability
of the algorithm, as well as numerical evidence for its efficiency and robustness even
for almost singular problems. Hence we have shown that numerically reliable and
efficient software for the symmetric-definite generalized eigenvalue problem can be
written without unnecessarily restricting the class of problems on which it can work.
We also see that we do not need extra precision beyond what is available intrinsically
in the hardware. In addition we presented a new eigenvalue perturbation bound.
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