
FAST AND STABLE ALGORITHMS FOR BANDED PLUS
SEMISEPARABLE SYSTEMS OF LINEAR EQUATIONS∗

S. CHANDRASEKARAN† AND M. GU‡

SIAM J. MATRIX ANAL. APPL. c© 2003 Society for Industrial and Applied Mathematics
Vol. 25, No. 2, pp. 373–384

Abstract. We present fast and numerically stable algorithms for the solution of linear systems
of equations, where the coefficient matrix can be written in the form of a banded plus semiseparable
matrix. Such matrices include banded matrices, banded bordered matrices, semiseparable matri-
ces, and block-diagonal plus semiseparable matrices as special cases. Our algorithms are based on
novel matrix factorizations developed specifically for matrices with such structures. We also present
interesting numerical results with these algorithms.

Key words. banded matrix, bordered matrix, semiseparable matrix, H-matrix, fast algorithms,
stable algorithms

AMS subject classifications. 15A09, 15A23, 65F05, 65L10, 65R20

DOI. 10.1137/S0895479899353373

1. Introduction. In this paper we consider fast and numerically stable solutions
of the n× n linear system of equations

Ax = b,(1.1)

where A is the sum of a banded matrix and a semiseparable matrix (see (1.2) below
for a definition).

This class of matrices includes banded bordered matrices, which have been dis-
cussed in van Huffel and Park [12] and Govaerts [6]. It also includes block-diagonal
plus semiseparable matrices, which appear in the numerical solution of boundary-
value problems for ordinary differential equations (ODEs) and certain integral equa-
tions (see Greengard and Rokhlin [7], Starr [14], and Lee and Greengard [8]). The
coefficient matrices generated from domain decomposition methods for partial differ-
ential equations (PDEs) tend to have block-diagonal plus bordered structure. Some
related work on (1.1) can also be found in Eidelman and Gohberg [3, 4].

1.1. Contributions. The most important feature of problem (1.1) is that A is a
generally dense but highly structured matrix. When A is symmetric positive definite,
such a structure can be fully exploited in computing the Cholesky factorization of A.
However, the picture changes completely when A is not symmetric positive definite.
Although direct methods have been developed for efficient and numerically stable LU
and QR factorizations of banded matrices (see Demmel [2, Chap. 2]), such methods
do not currently exist for semiseparable matrices, let alone banded plus semisepara-
ble matrices. The main difficulty is that LU and QR factorizations have tremendous
difficulties in maintaining both numerical stability and banded plus semiseparable

∗Received by the editors March 8, 1999; accepted for publication (in revised form) by L. Reichel
July 31, 2002; published electronically August 19, 2003.

http://www.siam.org/journals/simax/25-2/35337.html
†Department of Electrical and Computer Engineering, University of California, Santa Barbara,

CA 93106-9560 (shiv@ece.ucsb.edu).
‡Department of Mathematics, University of California, Berkeley, CA 94720-3840 (mgu@math.

berkeley.edu). The research of this author was supported in part by NSF Career Award CCR-
9702866 and by Alfred Sloan Research Fellowship BR-3720.

373



374 S. CHANDRASEKARAN AND M. GU

structure and, consequently, require O(n3) flops1 to stably compute such factoriza-
tions of A in (1.1).

In this paper, we present a number of fast and numerically stable direct methods
for solving (1.1). For banded bordered linear systems of equations, these methods
work equally well and are more stable and efficient than those of [12, 6]. Our methods
are based on some new matrix factorizations we developed specifically for banded
plus semiseparable matrices. We also present interesting results from our numerical
experiments with these methods in MATLAB.

1.2. Notation. To describe the problem precisely, we first introduce some no-
tation. Reminiscent of MATLAB notation, we use triu (A,k) to denote the matrix
which is identical to the matrix A on and above the kth diagonal. k = 0 is the main
diagonal, k > 0 is above the main diagonal, and k < 0 is below the main diagonal.
Similarly, tril (A,k) denotes the matrix which is identical to the matrix A on and
below the kth diagonal. For example,

triu




α β γ
δ ζ η
θ λ µ


,1


 =


 0 β γ
0 0 η
0 0 0


, tril




α β γ
δ ζ η
θ λ µ


,−1


 =


 0 0 0
δ 0 0
θ λ 0


 .

As a banded plus semiseparable matrix, the matrix A in (1.1) can be written as

A = D + triu
(
uvT,bu + 1

)
+ tril

(
pqT,−bl − 1

)
,(1.2)

where D is an n × n banded matrix, with bu nonzero diagonals strictly above the
main diagonal and bl nonzero diagonals strictly below the main diagonal; u and v are
n× ru matrices and p and q are n× rl matrices.

When bu = bl = 0, D is a diagonal matrix, and A is a diagonal plus semiseparable
matrix. When ru = rl = 0, A = D is a banded matrix. We are interested in the
numerical solution of the linear system (1.1). The rest of this paper provides a set
of numerically backward stable algorithms which take O

(
n(bu + bl + ru + rl)

2
)
flops

to solve (1.1) as opposed to O(n3) by using traditional methods involving LU and
QR factorizations. The exact constant hidden in the O(·) notation varies among our
algorithms.

Throughout this paper, we will take the liberty of using I to denote an identity
matrix of any dimension.

The rest of this paper is organized as follows. In section 2 we illustrate the basic
ideas behind our algorithms through a simple example. In section 3 we describe the
algorithms in some detail. In section 4 we present our numerical results with these
algorithms.

2. Basic idea. In this section we give a description of the basic idea in the
simple case when D is a diagonal matrix (bu = bl = 0), and u, v, p, and q have only
one column (ru = rl = 1).

The idea is to compute a two-sided decomposition of the form

A =W LH ,(2.1)

where W and H can be written as the product of elementary matrices, and L is a
lower triangular matrix. The three matrices W , L, H themselves are never explicitly

1A flop is a floating point operation such as +,−,×, or ÷.



ALGORITHMS FOR BANDED PLUS SEMISEPARABLE SYSTEMS 375

formed but inverted efficiently online as the algorithm proceeds. In this section, we
will choose the matrices W and H to be the products of elementary Givens rotations.
When we discuss our algorithms in full detail in section 3, we will allow ourselves the
additional freedom of choosing W and H to be products of elementary Householder
reflections or Gaussian elimination matrices with column and/or row permutations.

More specifically, consider the 5× 5 case,

A =




D0 u0v1 u0v2 u0v3 u0v4
p1q0 D1 u1v2 u1v3 u1v4
p2q0 p2q1 D2 u2v3 u2v4
p3q0 p3q1 p3q2 D3 u3v4
p4q0 p4q1 p4q2 p4q3 D4


 .

For future convenience we also assume that the right-hand side is of the form

b̄ =



b0
b1
b2
b3
b4


− τ−1




0
0
p2

p3

p4


 ,

where τ−1 = 0. (Of course, the second term on the right-hand side has no effect at
this stage, but it will capture the general form of the recursion as we proceed.)

Now suppose that W0 is a Givens rotation such that

W0


u0

u1

w


 =


 0√

u2
0 + u2

1

w


 ≡


 0
û1

w


(2.2)

for any vector w. Then if we apply W0 from the left to A, we obtain

Â =W0A =



Â00 Â01 0 0 0
Â10 Â11 û1v2 û1v3 û1v4
p2q0 p2q1 D2 u2v3 u2v4
p3q0 p3q1 p3q2 D3 u3v4
p4q0 p4q1 p4q2 p4q3 D4


 .

We also apply W0 to b̄ to obtain

b̂ =W0 b̄ =W0





b0
b1
b2
b3
b4


− τ−1




0
0
p2

p3

p4




 =



b̂0
b̂1
b2
b3
b4


− τ−1




0
0
p2

p3

p4


 ,

where we have deliberately written the formula in such a way that it would be correct
even if τ−1 had not been zero.

We next choose a Givens rotation, H0, such that

HT
0


 Â00

Â01

w


 =




√
Â2

00 + Â2
01

0
w


 ≡


 Ã00

0
w


(2.3)



376 S. CHANDRASEKARAN AND M. GU

for any vector w. Further let

HT
0

(
q0
q1

)
=

(
q̃0
q̃1

)
and HT

0

(
Â10

Â11

)
=

(
Ã10

Ã11

)
.

Then

Ã =W0AH0 = ÂH0 =



Ã00 0 0 0 0
Ã10 Ã11 û1v2 û1v3 û1v4
p2q̃0 p2q̃1 D2 u2v3 u2v4
p3q̃0 p3q̃1 p3q2 D3 u3v4
p4q̃0 p4q̃1 p4q2 p4q3 D4


 .

Now let

H−1
0 x = H−1

0



x0

x1

x2

x3

x4


 ≡



χ̃0

x̃1

x2

x3

x4


 ≡ x̃.(2.4)

Then it follows from W0AH0H
−1
0 x = Ã x̃ =W0 b = b̂ that

χ̃0 =
b̂0

Ã00

.

Also let

τ0 = τ−1 + χ̃0 q̃0, b̃1 = b̂1 − χ̃0 Ã10, and b̃2 = b2 − τ0 p2.(2.5)

To reach this stage we needed to compute all the “tilde” and “hat” quantities
except x̃1. They can be computed in constant time, independent of the size of the
matrix A.

Now we can proceed to solve the smaller 4× 4 system of equations,

Ã11 û1v2 û1v3 û1v4
p2q̃1 D2 u2v3 u2v4
p3q̃1 p3q2 D3 u3v4
p4q̃1 p4q2 p4q3 D4






x̃1

x2

x3

x4


 =



b̃1
b̃2
b3
b4


− τ0




0
0
p3

p4


 ,

which is exactly like the original 5 × 5 system of equations in form. That is, the
coefficient matrix is a diagonal matrix plus a semiseparable matrix, and the right-hand
side is also of the requisite form. Hence we can use this recursion ((2.2) through (2.5))
three times until the problem size becomes two, at which point we solve the system
directly. Let the five numbers obtained by this recursion, χ̃0, χ̃1, χ̃2, χ̃3, and χ̃4, be
the components of the five-dimensional vector χ. Then it follows from (2.4) that the
actual solution x to the original 5× 5 system of equations is given by

x = H0H1H2 χ,(2.6)

where theHi’s are the successive Givens transforms computed from the recursion (2.3)
but set up in such a way that they only affect rows i and i+ 1. Since there are only
three of these transforms, we retain the linear time complexity of the algorithm.



ALGORITHMS FOR BANDED PLUS SEMISEPARABLE SYSTEMS 377

The backward stability of the algorithm follows from the fact that we use only
orthogonal transforms and a single forward substitution.

Our factorization is similar in form to the ULV factorization proposed by Stew-
art [15]. However, the ULV factorization of Stewart is developed primarily to reveal
potential numerical rank-deficiency in a general matrix and can take O(n3) flops to
compute, whereas our factorization is designed primarily to take advantage of the
banded plus semiseparable structure for large savings in computational cost without
sacrificing numerical stability.

There are two places in the recursion where elimination is necessary. In (2.2) we
chose W0 to be a Givens rotation to eliminate u0, and in (2.3) we chose P0 to be

another Givens rotation to eliminate Â01. These transformations can be replaced by
Householder transformations or Gaussian elimination matrices with row or column
pivoting for general banded plus semiseparable matrices. This results in several algo-
rithms with different efficiency and numerical stability properties. In the next section,
we describe a general procedure for solving (1.1) via the computation of the factor-
ization (2.1). We also discuss efficiency and numerical stability issues for different
choices of W and H in (2.1).

3. The algorithms. We now describe fast algorithms for solving (1.1), where
A is a general banded plus semiseparable matrix of the form (1.2).

3.1. Preprocessing and basic linear algebra procedures. Some prepro-
cessing is needed before the algorithms formally start. We make u lower triangular
by computing a QR factorization uT = QR and resetting

u := RT and v := v Q.(3.1)

This operation takes roughly 6nr2u flops using the fact that Q is computed in factored
form [5, Chap. 5].

We also review a few well-known basic linear algebra routines needed in our
algorithms. Let L be an m× s lower triangular matrix with m > s,

L =




l11 0 · · · 0
l21 l22 · · · 0
...

...
. . .

...
ls1 ls2 · · · lss
...

...
...

lm1 lm2 · · · lms




.

Algorithm 3.1 below is a standard procedure for efficiently zeroing out entries
l11, l22, . . . , lss on the main diagonal of L by using sGivens rotations (see [5, Chap. 12]).

Algorithm 3.1. Elimination with Givens rotations.

for i := s to 1 step −1 do

• Choose c2i + s2i = 1 such that(
ci si
−si ci

) (
li,i
li+1,i

)
=

(
0
ρi

)
, where ρi =

√
l2i,i + l2i+1,i.

• Set li,i := 0, li+1,i := ρi, and compute(
li,1 · · · li,i−1

li+1,1 · · · li+1,i−1

)
:=

(
ci si
−si ci

) (
li,1 · · · li,i−1

li+1,1 · · · li+1,i−1

)
.

endfor



378 S. CHANDRASEKARAN AND M. GU

Let W be the product of all the Givens rotations used in the above algorithm. Then
its output can be written via a matrix-matrix product as L :=W L.

Similarly, we can zero out the main diagonal of L by using a banded Gaussian
elimination procedure with row pivoting. See Golub and Van Loan [5, Chap. 4] for
details.

Let G ∈ Rm×s be a general dense matrix. Then we can choose a Householder
transformation

H = I − 2uuT with ‖u‖2 = 1

to zero out all the entries in the first row of G except the (1, 1) entry as follows:

GH =

(
γ̂ 0

ĝ Ĝ

)
.(3.2)

The cost for computing u is O(s), and the cost for computing GH is about 4ms flops
(see [5, Chap. 5]).

Alternatively, we can choose H in (3.2) to be a Gaussian elimination matrix of
the form

H =

(
1 −hT
0 I

)
.

Column pivoting can be used to enhance numerical stability. The cost for computing
GH is about 2ms flops (see Golub and Van Loan [5, Chap. 3]).

3.2. New algorithms. Let - = bu + ru +1 and m = -+ bl; we begin by writing
A in the form

A =

(
G E
C F

)
,(3.3)

where G ∈ Rm×� is a dense matrix (its banded plus semiseparable structure will be
ignored); F ∈ R(n−ru−1)×(n−�) is a banded plus semiseparable rectangular matrix;
and both C ∈ R(n−m)×� and E ∈ R(ru+1)×(n−�) are low rank matrices. We caution
that, strictly speaking, (3.3) is not a block partitioning of A, since the row dimension
of G is larger than that of E in general.

In further detail, we write C = p̄ q̄T , where p̄ ∈ R(n−m)×rl and q̄ ∈ R�×rl contain
the last n −m rows of p and the first - rows of q, respectively. Similarly, E = ū v̄T ,
where ū ∈ R(ru+1)×ru and v̄ ∈ R(n−�)×ru contain the first ru + 1 rows of u and the
last n − - rows of v, respectively. As suggested in section 3.1, we assume that ū is a
lower triangular matrix.

As in section 2, we will solve (1.1) by recursively solving the linear system

Ax = b̄ ≡ b−
(

0
p̄ τ

)
,(3.4)

where τ−1 = 0 ∈ Rrl is an auxiliary vector that will play the role of scalar τ−1 in the
example in section 2. As before, we will compute a two-sided decomposition (2.1) of
A and invert matrices W , L, and H on the fly.



ALGORITHMS FOR BANDED PLUS SEMISEPARABLE SYSTEMS 379

To start the recursion, we use Algorithm 3.1 to compute a matrix W0 so that
W0 ū is a lower triangular matrix with zeros on its main diagonal. Compute(

0
û

)
:=W0 ū, Ĝ :=

(
W0 0
0 I

)
G, and b̂ :=

(
W0 0
0 I

)
b−

(
0

p̄ τ−1

)
.(3.5)

Linear system (3.4) now becomes
 Ĝ

(
0
û

)
v̄T

p̄ q̄T F


x = b̂.

We further choose H0 to zero out the first row of Ĝ except the (1, 1) entry.
Compute 

 γ̃ 0

g̃ G̃


 := ĜH0 and


 ρ̃T

q̃


 := HT

0 q̄.(3.6)

Linear system (3.4) now has the following form:


γ̃ 0 0

g̃ G̃ û v̄T

p̄ ρ̃ p̄ q̃T F


 x̃ = b̂,(3.7)

where

x̃ =


H−1

0 0

0 I


 , x =



χ̃0

x̃1

x̃2


 , and b̂ =




β̂

b̂1

b̂2 − p̄ τ−1


 .

Now we can perform one step of forward substitution in (3.7) to get χ̃0 = β̂/γ̃ and
 G̃ û v̄T

p̄ q̃T F


 x̃ =


 b̂1 − χ̃0 g̃

b̂2 − p̄ (τ−1 + χ̃0 ρ̃)


 ≡


 b̃1

b̂2 − p̄ τ0


 .(3.8)

This is a system smaller in dimension than (3.4). To complete the recursion, in the
following we rewrite it in the form of (3.4):

v̄ =


 ν̃T

ṽ


 , p̄ =


 π̃T

p̃


 , and F =


 f̃1 f̃T

2

f̃3 F̃


 ,

where ν̃T and π̃T are the first rows of v̄ and p̄, respectively; f̃1 ∈ Rm−ru ; and f̃2 and
f̃3 are column vectors of appropriate dimensions. Similarly to (3.3), the block form of

F above is, strictly speaking, not a block partitioning of F , since the length of f̃1 is
larger than 1 in general. F̃ is itself a banded plus semiseparable rectangular matrix.



380 S. CHANDRASEKARAN AND M. GU

With this notation, we can now rewrite (3.8) in the form of (3.4) as

(
Ġ Ė

Ċ F̃

)
x̃ = ḃ−


 0

p̃ τ0


 ,(3.9)

where

Ġ =


 G̃ û ν̃

π̃T q̃T f̃1


 , Ċ = p̃

(
q̃T φ̃

)
, Ė =


 û

µ̂T


 ṽT , ḃ =




b̃1

b̂2 −
(
π̃T τ0
0

)

 ,

with φ̃T and µ̂T being the (-+1)th and (ru+2)th rows of q and u, respectively. Once
again the block form of Ġ is not a block partitioning.

As in section 2, we can perform elimination and forward substitution steps using
formulas (3.4) through (3.9) recursively for some k times to obtain solution compo-
nents χ̃0, χ̃1, . . . , χ̃k−1. We stop the recursion when the problem size n − k in (3.9)
becomes so small that n− k ≈ m, at which point we solve it directly to get a solution
χ̃.

To recover the solution to our original problem (1.1), let H0, H1, . . . , Hk−1 be the
elimination matrices used at the second elimination step defined by (3.6) and (3.7).
We compute the solution to (1.1) as

x =


 I 0 0
0 H0 0
0 0 I





 I 0 0
0 H1 0
0 0 I


 · · ·


 I 0 0
0 Hk−1 0
0 0 I







χ̃0
...

χ̃k−1

χ̃


 ,(3.10)

where the various identity matrices I are, in general, of different dimensions.

3.3. Efficiency and numerical stability considerations. In this section we
consider special choices of matrices W and H in the recursion and how they affect the
efficiency and numerical stability of the procedure. To make flop counting simpler, in
this section we assume that 1 	 rl, ru, bl, bu 	 n even though our algorithms work
for general banded plus semiseparable matrices.

For complete backward stability, we can choose the W0 matrices in (3.5) to be
the product of ru Givens rotations as suggested by Algorithm 3.1. The costs for
computing û, Ĝ, and b̂ are about 3r2u flops, 6ru- flops, and 6ru flops, respectively.
Hence the total cost for one step of (3.5) is about 3ru(ru + 2-) flops.

We then choose H0 in (3.6) as a Householder transformation. The costs for

computing ĜH0 and HT
0 q̄ are about 4m- flops and 4rl- flops, respectively. Hence the

total cost for one step of (3.6) is about 4(m+ rl)- flops.

In (3.8), the costs for computing b̃1 and τ0 are about 2m flops and 2rl flops,
respectively, leading to a total of 2(m+ rl) flops.

In (3.9), the main cost is to explicitly form the last row and column of Ġ. The
costs for computing û ν̃ and π̃T q̃T are about 2r2u flops and 2rl- flops, respectively.

There is essentially no cost for f̃1, which consists of the nonzero components of a
column in the banded matrix D. Hence the total cost in (3.9) is about 2(r2u + rl-)
flops.



ALGORITHMS FOR BANDED PLUS SEMISEPARABLE SYSTEMS 381

Since there are k ≈ n steps of recursion, the total cost for the procedure is about(
3ru(ru + 2-) + 4(m+ rl)-+ 2(r2u + rl-)

)
n

=
(
5r2u + 2 (2bu + 2bl + 3rl + 5ru) (bu + ru)

)
n flops.(3.11)

Additionally, there is a cost of about 6r2un flops for the preprocessing step (3.1).
With such choices of W0 and H0, we obtain a factorization (2.1) with orthog-

onal matrices W and H. Since only orthogonal transformations and one forward
substitution are used for the solution of (1.1), this algorithm is backward stable.

To reduce computational cost, we can also choose W0 via the banded Gaussian
elimination procedure with row pivoting in Golub and Van Loan [5, Chap. 4]. Also,
we can choose H0 as a Gaussian elimination matrix with column pivoting. This choice
of W0 and H0 leads to a factorization (2.1) with upper triangular matrices W and
H. It is quite interesting to note that factorizations of this form do not seem to have
been previously discussed in the literature.

With this choice of W0 and H0, the cost for one step of (3.5) is about ru(ru +2-)
flops; the cost for one step of (3.6) is about 2(m+rl)- flops; and the total cost in (3.9)
is about 2(r2u + rl-) flops. With k ≈ n steps of recursion, the total cost for the
procedure is about(

ru(ru + 2-) + 2(m+ rl)-+ 2(r2u + rl-)
)
n

=
(
3r2u + 2 (bu + 2bl + 2rl + 2ru) (bu + ru)

)
n flops.(3.12)

Additionally, there is a cost of about 6r2un flops for the preprocessing step (3.1).
It is well known that Gaussian elimination with partial pivoting could occasionally

become numerically unstable if certain element growth is too large (see Golub and Van
Loan [5, Chap. 3]). Thus, the numerical stability of Gaussian elimination procedures
in (3.5) and (3.6) could not be guaranteed for a large value of ru or bu. In fact, the
above procedure will be unstable for the case where rl = ru = 0, bl = bu = k 
 1,
and the first k rows of A are all zero, except leading k columns which contain the
k × k matrix A1 where (see Golub and Van Loan [5, Chap. 3])

A′
1 =




1 1
−1 1 1
...

. . .
. . .

...
−1 · · · −1 1 1
−1 · · · −1 −1 1


 .

Alternatively, we can choose only one of W0 and H0 to be orthogonal, leading to
a factorization (2.1) with one of W and H orthogonal and the other upper triangular.
Furthermore, the choices ofW0 and H0 can change from one recursion step to another,
leading to a factorization (2.1) with no obvious structures in W and H.

While our algorithms were presented in such a way that only one variable in (3.4)
is eliminated in forward substitution at every recursion step, it is possible to reorga-
nize the computation to develop a block version where a number of variables are all
eliminated at the same time. Given the success of blocking in the recent linear algebra
package LAPACK [1], it seems clear that when the dimension becomes very large, the
problem (1.1) can be solved more efficiently by block versions of our algorithms.

Finally, we note that the problem (1.1) can be rewritten in the form

B y = S b, B = S AS, and x = S y,(3.13)



382 S. CHANDRASEKARAN AND M. GU

where S is the matrix with ones on the main antidiagonal and zero elsewhere.2 It is
easy to verify that

B = (S DS) + tril
(
(Su) (Sv)

T
,−bu − 1

)
+ triu

(
(Sp) (Sq)

T
,bl + 1

)
.

It can be verified that (S DS) is a banded matrix with bu nonzero diagonals strictly
below the main diagonal and bl nonzero diagonals strictly above the main diagonal.
Hence, B is itself a banded plus semiseparable matrix with the banded plus semisep-
arable structure of A′. Applying the two algorithms we just discussed to solve (3.13),
we see that the total costs are(

5r2l + 2 (2bl + 2bu + 3ru + 5rl) (bl + rl)
)
n flops(3.14)

and (
3r2l + 2 (bl + 2bu + 2ru + 2rl) (bl + rl)

)
n flops,(3.15)

respectively. This suggests that one should choose among the two forms (1.1) and (3.13)
according to formulas (3.11), (3.12), (3.14), and (3.15) to reduce computational cost.

4. Numerical experiments. In this section, we summarize the results from our
numerical experiments with the algorithms that were presented in section 3. These
experiments were performed on an UltraSparc 2 workstation in MATLAB with double
precision ε ≈ 2× 10−16.

We tested the following two algorithms:
• Algorithm I: Only Gaussian elimination steps with partial pivoting were used
in computing (2.1).

• Algorithm II: Only Givens rotations and Householder reflections were used
in computing (2.1).

In all of the test matrices, we chose rl = n/10, ru = n/250, bu = 10, and bl = 10. The
matrix entries were generated randomly.

In Table 4.1, we compared Algorithms I and II in terms of the numbers of flops
required to solve (1.1). The column marked GEPP is the number of flops required
for Gaussian elimination with partial pivoting to solve (1.1) by treating A as a dense
matrix. We see that Algorithm I requires less flops than Algorithm II, and both
Algorithms I and II require significantly fewer flops than GEPP to solve (1.1).

In Table 4.2, we compared Algorithms I and II in terms of execution times and
backward errors. The execution times are in seconds, and the backward error is
defined as

‖A x̂− b‖∞
‖A‖∞ ‖x̂‖∞ ,

where x̂ is the computed solution to (1.1). This backward error is the smallest relative
backward error in the ∞-norm (see [5, Chap. 3]). Clearly Algorithm I is faster than
Algorithm II as expected. Both are comparable in terms of backward errors. However,
as we mentioned in section 3, the numerical stability of Algorithm I could not be
guaranteed for a large value of bu or ru.

2For example, when n = 2, we have

S =

(
0 1
1 0

)
.



ALGORITHMS FOR BANDED PLUS SEMISEPARABLE SYSTEMS 383

Table 4.1
Numbers of flops.

n Algorithm I Algorithm II GEPP

250 5.5×105 8.7×105 1.0×107

500 2.1×106 3.2×106 8.3×107

750 4.7×106 7.2×106 2.8×108

1000 8.7×106 1.3×107 6.7×108

1250 1.4×107 2.2×107 1.3×109

1500 2.2×107 3.3×107 2.3×109

1750 3.1×107 4.7×107 3.6×109

2000 4.3×107 6.4×107 5.3×109

2250 5.6×107 8.4×107 7.6×109

2500 7.3×107 1.1×108 1.0×1010

Table 4.2
Execution times and backward errors.

Time (seconds) Backward Error

n Algorithm I Algorithm II Algorithm I Algorithm II

250 7.6×10−1 1.0×100 6.1×10−19 1.6×10−18

500 2.2×100 3.2×100 1.5×10−19 5.8×10−19

750 4.5×100 5.7×100 3.6×10−20 2.0×10−19

1000 8.4×100 1.1×101 6.1×10−20 2.0×10−19

1250 1.3×101 1.6×101 4.8×10−20 6.3×10−20

1500 1.9×101 2.3×101 5.4×10−20 3.8×10−19

1750 2.5×101 3.1×101 2.8×10−20 2.9×10−20

2000 3.3×101 4.1×101 4.3×10−20 5.3×10−20

2250 4.1×101 5.1×101 5.0×10−20 3.4×10−19

2500 5.2×101 6.3×101 5.5×10−20 2.2×10−19

5. Conclusions and future work. In this paper we presented fast and numer-
ically stable algorithms for the solution of linear systems of equations, where the co-
efficient matrix has the banded plus semiseparable structure (1.2). We also presented
numerical results that clearly showed the stability and efficiency of these methods.
It turns out that the two-sided elimination approach developed in this paper can be
applied to a much broader class of matrices, including the H-matrices of Hackbusch
and his colleagues [9, 10, 11]. Our future work will concentrate on generalizing our
methods to efficiently and stably solve linear systems of equations involving these and
other structured matrices.



384 S. CHANDRASEKARAN AND M. GU

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’
Guide, 3rd ed., SIAM, Philadelphia, 1999.

[2] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[3] Y. Eidelman and I. Gohberg, Inversion formulas and linear complexity algorithm for diagonal

plus semiseparable matrices, Comput. Math. Appl., 33 (1997), pp. 69–79.
[4] Y. Eidelman and I. Gohberg, A look-ahead block Schur algorithm for diagonal plus semisep-

arable matrices, Comput. Math. Appl., 35 (1998), pp. 25–34.
[5] G. Golub and C. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press,

Baltimore, MD, 1996.
[6] W. Govaerts, Stable solvers and block elimination for bordered systems, SIAM J. Matrix Anal.

Appl., 12 (1991), pp. 469–483.
[7] L. Greengard and V. Rokhlin, On the numerical solution of two-point boundary value prob-

lems, Comm. Pure Appl. Math., 44 (1991), pp. 419–452.
[8] J.-Y. Lee and L. Greengard, A fast adaptive numerical method for stiff two-point boundary

value problems, SIAM J. Sci. Comput., 18 (1997), pp. 403–429.
[9] W. Hackbusch and B. Khoromskij, A sparse H-matrix arithmetic: General complexity esti-

mates, J. Comput. Appl. Math., 125 (2000), pp. 479–501.
[10] W. Hackbusch, B. N. Khoromskij, and S. A. Sauter, On H2-matrices, in Lectures on

Applied Mathematics, H.-J. Bungartz, R. H. W. Hoppe, and C. Zenger, eds., Springer-
Verlag, Berlin, 2000, pp. 9–29.

[11] W. Hackbusch and B. N. Khoromskij, Towards H-matrix approximation of linear complex-
ity, in Problems and Methods in Mathematical Physics, J. Elschner, I. Hohberg, and B.
Silbermann, eds., Birkhäuser, Basel, 2001, pp. 194–220.

[12] S. van Huffel and H. Park, Efficient reduction algorithms for bordered band matrices, J.
Numer. Linear Algebra Appl., 2 (1995), pp. 95–113.

[13] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
[14] H. P. Starr, Jr., On the Numerical Solution of One-Dimensional Integral and Differential

Equations, Ph.D. thesis, Department of Computer Science, Yale University, New Haven,
CT, 1992.

[15] G. W. Stewart, Updating a rank-revealing ULV decomposition, SIAM J. Matrix Anal. Appl.,
14 (1993), pp. 494–499.


