
SIAM J. MATRIX ANAL. APPL. c© 2006 Society for Industrial and Applied Mathematics
Vol. 28, No. 3, pp. 603–622

A FAST ULV DECOMPOSITION SOLVER FOR HIERARCHICALLY
SEMISEPARABLE REPRESENTATIONS∗

S. CHANDRASEKARAN† , M. GU‡ , AND T. PALS†

Abstract. We consider an algebraic representation that is useful for matrices with off-diagonal
blocks of low numerical rank. A fast and stable solver for linear systems of equations in which the
coefficient matrix has this representation is presented. We also present a fast algorithm to construct
the hierarchically semiseparable representation in the general case.

Key words. fast multipole method, hierarchically semiseparable, fast algorithms, orthogonal
factorizations

AMS subject classification. 65F05

DOI. 10.1137/S0895479803436652

1. Introduction. In this paper we consider a representation of structured dense
matrices that we term hierarchically semiseparable (HSS). This representation is a
direct generalization of the one presented in [3]. It is also a special case of the FMM
(fast multipole method) representations [20, 2, 29, 30, 31]. It has also been discussed
as H2 matrices in [24].

This representation is useful for matrices characterized by a hierarchical low nu-
merical rank structure in the off-diagonal blocks. Examples of such matrices are
shown in Figure 1. The matrix in Figure 1(a) is obtained,1 for example, for the ma-
trix [log |xi − xj |], where 0 ≤ xi < xi+1 ≤ 1. Similarly the matrix in Figure 1(b) is
obtained for the matrix [log | sinπ(xi − xj)|]. This class of matrices arises frequently
in the numerical solution of partial differential and integral equations.

This work arose in an effort to stabilize the fast solver presented in [30, 31]. Our
initial efforts in this direction were presented in [5, 6, 7, 8, 9, 27, 28]. During this
time we learned about some work in linear time-varying systems theory [13], and
other independent work [17, 15, 16, 23, 24], that encouraged us to generalize our ideas
and present them in a more algebraic framework [3]. The corresponding technical
report [4] is more comprehensive and will give some indication to the reader of how
far the methods presented in this paper can be taken.

However, the FMM [20, 2, 29] is our most direct motivation for this work. In fact,
the ideas presented here can be viewed as a stable approach to a fast inverse multipole
method. There has been some significant work in this regard in the computational
electromagnetics literature [1, 12, 19, 22, 26, 30, 31]. The method presented here is
the first stable fast solver. In addition it also presents an algebraic generalization.

For applications of the fast solver we currently refer to [30, 31] and [4]. However,
the applications are much wider than indicated in these references. Some of these will
be presented in forthcoming papers.

∗Received by the editors October 23, 2003; accepted for publication (in revised form) by V. Mehr-
mann October 25, 2005; published electronically August 25, 2006.

http://www.siam.org/journals/simax/28-3/43665.html
†Electrical and Computer Engineering Department, University of California, Santa Barbara, CA

93106-9560 (shiv@ece.ucsb.edu, tim@kipling.ece.ucsb.edu).
‡Mathematics Department, University of California, Berkeley, CA (mgu@math.berkeley.edu).
1In both cases the particular choice of the diagonal entries is not important.

603

604 S. CHANDRASEKARAN, M. GU, AND T. PALS

�

�

�

� �

�

�

�� �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� �

�

(a) log |x − y| on a straight
line.

�

�

�

� �

�

�

�� �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� � �

� ��

��

(b) log |x− y| on a circle.

Fig. 1. Submatrices labeled with a black dot are full-rank. All other submatrices have low
numerical rank.

For completeness we also present an algorithm to construct a numerical HSS
representation of a general matrix. This algorithm requires O(n2) flops and O(n)
space. It is similar to the sequentially semiseparable (SSS) construction algorithm
presented in [3, 13]. A construction algorithm for H2 matrices is presented in [25].
The algorithm we present also ensures that the computed HSS representation satisfies
some properties required to enable stability in the solver. We also present two cases
where the construction can be carried out in O(n) flops.

2. HSS representation. The representation is identical to the one presented
in [30, 31], except that we view it more generically.

The HSS representation is a hierarchical representation that is based on a recursive
row and column partitioning of the matrix. For example, for a 2×2 block partitioning
of the matrix A its HSS representation is given by

A =

(
D1;1 U1;1B1;1,2V

H
1;2

U1;2B1;2,1V
H
1;1

)
,

where the subscripted D, U , V , and B matrices are in the representation. To see
the recursive hierarchical nature we consider a block 4 × 4 partitioning of A and the
resultant two-level HSS representation:

A =

⎛
⎜⎜⎝

(
D2;1 U2;1B2;1,2V

H
2;2

U2;2B2;2,1V
H
2;1 D2;2

)
(U1;1B1;1,2V

H
1;2)

(U1;2B1;2,1V
H
1;1)

(
D2;3 U2;3B2;3,4V

H
2;4

U2;4B2;4,3V
H
2;3 D2;4

)
⎞
⎟⎟⎠ .

We first observe that only the two diagonal blocks D1;1 and D1;2 from the one-level
HSS representation have been partitioned at the second level, each of them seemingly
assigned their own HSS representations. However, that view is slightly misleading. In
fact, in the two-level HSS representation of the matrix A, we do not store the matrices
U1;i and V1;i for i = 1, 2. Rather we store only the U2;i and V2;i for i = 1, 2, 3, 4 and the
translation operators W2;i and R2;i for i = 1, 2, 3, 4, which can be used to reconstruct
the missing U1;i and V1;i via the defining relations

U1;1 =

(
U2;1R2;1

U2;2R2;2

)
,

FAST ULV SOLVERS FOR HSS FORMS 605

U1;2 =

(
U2;3R2;3

U2;4R2;4

)
,

V1;1 =

(
V2;1W2;1

V2;2W2;2

)
,

V1;2 =

(
V2;3W2;3

V2;4W2;4

)
.

These translation operators are an integral part of the FMM representation and lit-
erature, and their use in getting linear complexity algorithms is well known.

In general in a multilevel HSS representation the diagonal blocks at the ith level
are labeled Di;j . The Ui;j at the lowest levels are used in conjunction with the
translation operators Ri;j at that level to reconstruct the Ui−1,j ’s at the higher levels
via

Ui−1;j =

(
Ui;2jRi;2j−1

Ui;2jRi;2j

)
.(1)

Similarly for Vi;j we have

Vi−1;j =

(
Vi;2jWi;2j−1

Vi;2jRi;2j

)
.(2)

At every level only the diagonal blocks are eligible for partitioning. The off-
diagonal blocks in the upper-triangular part of the ith level are of the form
Ui;2j−1Bi;2j−1,2jV

H
i;2j and in the lower-triangular part of the form Ui;2jBi;2j,2j−1V

H
i;2j−1.

Therefore, the complete HSS representation of the matrix A consists of the Di;j , Ui;i,
and Vi;j at the lowest levels along with Bi;2j,2j−1, Bi;2j−1,2j , Ri;j , and Wi;j at every
level.

In the FMM literature it has been convenient to use a (binary in this case) tree
on which all these matrices can be represented. In this notation the root of the tree
corresponds to the whole matrix; the two children of the root correspond to the two
row (and column) partitions, and so on. In Figure 2 we depict the HSS tree (also
called a merge tree) for a uniform three-level HSS representation. We will refer to the
ith node at the k-level of the tree as Node(k, i).

It should be observed that every matrix has an HSS representation. However, HSS
representations are useful only when the translation operators are small compared to
the size of the original matrix. These representations can be constructed in O(n2) flops
and O(n) space; see [10, 24]. In special cases these representations can be constructed
in O(n) flops. The FMM literature is rife with such results. Some other interesting
instances can also be found in [10].

In this paper we restrict ourselves to HSS trees that are (almost) complete binary
trees. In a future paper we will generalize our methods to incomplete binary trees.

3. Fast multiplication. In this section, for the convenience of the reader, we
present the standard FMM algorithm for multiplying a matrix in HSS form with a
regular vector (or unstructured dense matrix). In particular consider the matrix-
vector product z = Ab, where A is in HSS form, with K + 1 levels in its HSS tree,
and mi indices in Node(K, i). Let (bk;i) denote a block row partitioning of b such
that bk;i has the rows whose indices belong to Node(k, i). We partition z similarly.

We begin by observing that we need to do the multiplication

U1;1B1;1,2V
H
1;2b1;2(3)

606 S. CHANDRASEKARAN, M. GU, AND T. PALS

R1;1

W1;1

B1;2,1

B1;1,2

D2;4

U2;4

V2;4

B2;1,2

B2;1,2

B2;3,4

B2;4,3

D2;3

U2;3

V2;3

D2;2

U2;2

V2;2

D2;1

U2;1

V2;1

R2;2

W2;2

R2;1

W2;1

R2;3

W2;3

R2;4

W2;4

R1;2

W1;2

Fig. 2. Three-level HSS representation on a binary tree.

and the multiplication

U2;3B2;3,4V
H
2;4b2;4.

Since

V H
1;2b1;2 =

(
V2;3W2;3

V2;4W2;4

)H (
b2;3
b2;4

)
= WH

2;3V
H
2;3b2;3 + WH

2;4V
H
2;4b2;4,

we can reduce the number of flops required to compute V H
1;2b1;2 in (3) if the number of

columns in W2;3 and W2;4 is small compared to the number of rows in V1;2. (This is
the basis of all the super-fast algorithms and was first used by Greengard and Rokhlin
in the design of FMMs.)

To formalize this idea we define the intermediate quantities

Gk;i = V H
k;ibk;i

and observe that the following recursions, as deduced from the preceding discussion,
are available to compute them:

GK;i = V H
K;ibK;i,(4)

Gk;i = WH
k+1;2i−1Gk+1;2i−1 + WH

k+1;2iGk+1;2i.(5)

With this notation we have that

U1;1B1;1,2V
H
1;2b1;2 = U1;1B1;1,2G1;2.

We now observe that we need to perform the multiplication U1;1B1;1,2G1;2. We also
observe that we need to do the multiplication

U2;1B2;1,2G2;2.

FAST ULV SOLVERS FOR HSS FORMS 607

Using (1) we see that

U1;1B1;1,2G1;2 =

(
U2;1R2;1B1;1,2G1;2

U2;2R2;2B1;1,2G1;2

)
.

Therefore the computation of U1;1B1;1,2G1;2 can be merged with the computations of
U2;1B2;1,2G2;2 when computing

z2;1 = · · · + U2;1 (B2;1,2G2;2 + R2;1B1;1,2G1;2) + · · · ,

where · · · denotes other terms that have to be added to produce the correct z2;1. Sim-
ilarly the term U2;2R2;2B2;1,2G2;2 from the computation of A1;1,2b1;2 can be merged
into other terms involving U2;2 in the computation of z2;2. Clearly there is a recur-
sive process occurring here. This motivates us to define the following intermediate
quantities recursively:

F0;1 = 0,(6)

Fk,2i−1 = Bk;2i−1,2iGk;2i + Rk;2i−1Fk−1,i,(7)

Fk,2i = Bk;2i,2i−1Gk;2i−1 + Rk;2iFk−1;i.(8)

We then observe that

zK;i = DK;ibK;i + UK;iFK;i.

With that we have described how to compute z = Ab rapidly when A has an
HSS representation. Equations (4) and (5) are called the up-sweep recursions, and
equations (6), (7), and (8) are called the down-sweep recursions for multiplication in
the FMM literature.

4. Fast backward stable solver. In this section we present our fast solver.
The algorithm we describe computes a ULV H decomposition implicitly, where U and
V are unitary matrices, and L is a lower-triangular matrix. By implicit, we mean
that the factors are not computed and stored explicitly. However, the algorithm
and techniques can be modified to compute the factors explicitly if so desired. That
will be the subject of a future paper. The algorithm can also be easily modified to
permit U and V to be represented as a product of elementary Gauss transforms and
permutation matrices. This would lead to a more efficient algorithm but with some
chance of numerical instability.

The basic idea of the algorithm is akin to that for the SSS representation. The
one major difference is that we operate on all block rows at the same time, whereas
in the SSS representation, each block row is operated on in a sequential fashion.

The algorithm is recursive in nature, and the recursion takes one of three possible
forms.

4.1. Compressible off-diagonal blocks. This is the first possible way in which
the recursion can proceed.

We begin by observing that block row i, excluding the diagonal block DK;i, has
its column space spanned by the columns of UK;i. Hence if the number of columns of
UK;i, denoted by nK;i, is strictly smaller than mi, the number of rows in that block,
we can find a unitary transformation qK;i such that

ŪK;i = qHK;iUK;i =

(
mi − nK;i 0

nK;i ÛK;i

)
.

608 S. CHANDRASEKARAN, M. GU, AND T. PALS

qH3;8 →

D3

D6

D8

D1

D2

D4

D5

D7

qH3;1 →

qH3;2 →

qH3;3 →

qH3;4 →

qH3;5 →

qH3;6 →

qH3;7 →

Fig. 3. A pictorial representation showing the qK;i’s compressing the off-diagonal portions of
each block row. The black rectangles and triangles show the nonzero positions in the column bases
of each off-diagonal block after compression by the qK;i’s.

In the above expression (and in the rest of the paper), variables written to the
left of block matrices in parenthesis denote row partition sizes.

We now multiply block row i by qHi . (See Figure 3.) The change in the off-
diagonal blocks is represented by the above equation since all of them have UK;i as
the leading term. The ith block of the right-hand side changes to become

qHK;ibK;i =

(
mi − nK;i βK;i

nK;i γK;i

)
.

We also observe that DK;i, the diagonal block, has become qHK;iDK;i. Now we pick a
unitary transformation wK;i such that

D̄K;i = (qHK;iDK;i)w
H
K;i =

(mi − nK;i nK;i

mi − nK;i DK;i;1,1 0
nK;i DK;i;2,1 DK;i;2,2

)
.

We then multiply the block column i from the right by wH
K;i. (See Figure 4.) The

change in the diagonal block is represented by the above equation. The off-diagonal
blocks in block column i have V H

K;i as the common last term. Hence we just need to
multiply VK;i to obtain

V̄K;i = wK;iVK;i =

(
mi − nK;i V̆K;i

nK;i V̂K;i

)
.

FAST ULV SOLVERS FOR HSS FORMS 609

wH
3;8

↓
wH

3;1

↓
wH

3;2

↓
wH

3;3

↓
wH

3;4

↓
wH

3;5

↓
wH

3;6

↓
wH

3;7

↓

Fig. 4. A pictorial representation showing the wK;i’s lower triangularizing the diagonal blocks
after the compression of the off-diagonal blocks by the qK;i’s (see Figure 3). The black rectangles
and triangles show the nonzero positions in the column bases and the diagonal blocks.

Since we multiplied block column i from the right by wH
K;i, we need to replace the

unknowns xK;i by wK;ixK;i:

wK;ixK;i =

(
mi − nK;i zK;i

nK;i x̂K;i

)
.(9)

At this stage the first mi − nK;i equations in block row i read as follows:

DK;i;1,1zK;i = βK;i,

which can be solved for zK;i to obtain zK;i = D−1
K;i;1,1βK;i. We now need to multiply

the first mi − nK;i columns in the block column i by zK;i and subtract it from the
right-hand side. To do this efficiently we observe that the system of equations has
been transformed as follows:(

diag qHK;i A diagwH
K;i

)
(diagwK;i x) = diag qHK;i b.

If we define the vector

z̄K;i =

(
mi − nK;i zK;i

nK;i 0

)
,

610 S. CHANDRASEKARAN, M. GU, AND T. PALS

we then observe that the stated subtraction can be rewritten as follows:

b̄ = diag qHK;ib−
(
diag qHK;i A diagwH

K;i

)
z̄.

We can do this operation rapidly by observing that(
diag qHK;i A diagwH

K;i

)
has the HSS representation {D̄K;i}2K

i=1, {ŪK;i}2K

i=1, {V̄K;i}2K

i=1, {{Rk;i}2k

i=1}Kk=0,

{{Wk;i}2k

i=1}Kk=0, {{Bk;2i−1,2i}2k−1

i=1 }Kk=0, {{Bk;2i,2i−1}2k−1

i=1 }Kk=0 and by using the fast
multiplication algorithm in section 3. Of course, the algorithm can (and should) be
modified to take advantage of the zeros in D̄K;i, ŪK;i, and z̄K;i.

Once the subtraction has been done, we discard the first mi − nK;i columns of
block column i and the first mi−nK;i rows of block row i. We observe that this leads
to a new system of equations of the form

Âx̂ = b̂,

where

b̄K;i =

(
mi − nK;i ∗
nK;i b̂K;i

)
,

and Â has the HSS representation {DK;i;2,2}2K

i=1, {ÛK;i}2K

i=1, {V̂K;i}2K

i=1, {{Rk;i}2k

i=1}Kk=0,

{{Wk;i}2k

i=1}Kk=0, {{Bk;2i−1,2i}2k−1

i=1 }Kk=0, {{Bk;2i,2i−1}2k−1

i=1 }Kk=0.
Therefore we are left with a system of equations identical to the one we started

with, and we can proceed to solve it recursively. Once we have done that we can
recover the unknowns x from z and x̂ using the formulas

xK;i = wH
K;i

(
zK;i

x̂K;i

)
.

Note that we have tacitly assumed that all block rows are such that mi > nK;i.
However, it is easy to modify the equations so that only those block rows that satisfy
mi > nK;i have their off-diagonal blocks compressed.

4.2. Incompressible off-diagonal blocks. This is the second possibility for
the recursion. It occurs when all block rows for the system cannot be compressed any
further by invertible transformations from the left. In this case we proceed to merge
block rows and columns that correspond to siblings in the merge tree. In particular
consider the first two block rows:(

D3;1;2,2 U3;1B3;1,2V
H
3;2 U3;1R3;1B2;1,2W

H
3;3V

H
3;3 U3;1R3;1B2;1,2W

H
3;4V

H
3;4 · · ·

U3;2B3;2,1V
H
3;1 D3;2;2,2 U3;2R3;2B2;1,2W

H
3;3V

H
3;3 U3;2R3;2B2;1,2W

H
3;4V

H
3;4 · · ·

)
.

We observe that these two block rows can be rewritten as((
D3;1;2,2 U3;1B3;1,2V

H
3;2

U3;2B3;2,1V
H
3;1 D3;2;2,2

) ((
U3;1R3;1

U3;2R3;2

)
B2;1,2

(
V3;3W3;3

V3;4W3;4

)H)
· · ·

)
.

This immediately suggests that we merge as follows:

D̂K−1;i =

(
DK;2i−1;2,2 UK;2i−1BK;2i−1,2iV

H
K;2i

UK;2iBK;2i,2i−1V
H
K;2i−1 DK;2i;2,2

)
,

ÛK−1;i =

(
UK;2i−1RK;2i−1

UK;2iRK;2i

)
,

V̂K−1;i =

(
VK;2i−1WK;2i−1

VK;2iWK;2i

)
.

FAST ULV SOLVERS FOR HSS FORMS 611

We then see that A has an HSS representation (with a merge tree with K, as op-

posed to K + 1, levels) given by the sequences {D̂K−1;i}2K−1

i=1 , {Û}2K−1

i=1 , {V̂ }2K−1

i=1 ,

{{Rk;i}2k

i=1}K−1
k=0 , {{Wk;i}2k

i=1}K−1
k=0 , {{Bk;2i−1,2i}2k−1

i=1 }K−1
k=0 , {{Bk;2i,2i−1}2k−1

i=1 }K−1
k=0 . Let

us denote by Â the matrix with this HSS representation (of course, A = Â). We then
observe that the system of equations is now in the form

Âx = b,(10)

which is exactly in the form we started with, except that the new HSS representation
has only K levels in the merge tree. Hence we can solve this system of equations
recursively for x. That is, we check if there are compressible off-diagonal blocks. If
so, we use the algorithm in section 4.1. If it is not compressible, we use the algorithm
in this section. If the tree is just a leaf, we use the algorithm in section 4.3.

4.3. No off-diagonal blocks. Observe that if K = 0, the equations read D1x =
b, which can be solved by traditional means for x. This case terminates the recursion.

With this we have given a complete account of the algorithm.

4.4. Flop count. We use the flop counts in Table 1 of the basic matrix opera-
tions that can be found, for example, in [18].

Table 1

Flop counts of basic matrix operations.

Operation Flops

QL factorization of skinny m× n matrix 2n2(m− n/3)
Q times m× k matrix 2kn(2m− n)
Forward substitution of n× n matrix with k right-hand sides n2k
m× n times n× k matrix 2mnk

We begin by estimating the flop count for the fast multiplication algorithm, as
that is an integral part of the solver. For simplicity we will assume that the ranks nk;i

are independent of i, and that there are l indices in each of the leaves of the merge
tree.

Computing GK;i will cost us 2lnKr2K flops, where r is the number of columns in
the right-hand side. Computing Gk;i from Gk+1;i costs 4nknk+1r2

k flops. Computing
Fk+1;i from Fk;i costs 42k+1nknk+1r flops. Finally computing zK;i costs 2lr(l+nK)2K

flops. Summing these costs over k we obtain

2lr(l + nK)2K + 2lnKr2K + 8r

K−1∑
k=1

nknk+12
k

as the total cost. Letting N = 2K l be the order of the matrix, we can simplify this
to obtain

2Nr(l + 2nK) + 8r

K−1∑
k=1

nknk+12
k

as the number of flops for the fast multiplication algorithm.
We now proceed to estimate the flops for the fast backward stable solver. To

keep the calculations simple we will assume that each level of the tree undergoes a

612 S. CHANDRASEKARAN, M. GU, AND T. PALS

compression step before going through a merge step. We will also assume that mk;i,
the size of the block rows at the kth stage, is independent of i.

Let us start with the compression step. We first need to compute the QL factor-
izations of Uk;i. This will cost us 2n2

k(mk − nk/3)2k flops. Then we need to apply
qk;i to the right-hand side. This costs us 2rmk(2mk − nk)2

k flops. We also need to
apply qk;i to Di (at the kth level), which costs us 2mknk(2mk−nk)2

k flops. Next the
LQ factorization of the diagonal blocks costs us 4m3

k2
k/3 flops. Applying wk;i to Vk;i

costs 2nkm
2
k2

k flops. The partial forward-substitution at level k costs (mk − nk)
2r2k

flops. Subtracting the computed unknowns from the right-hand side costs

2k2mkr(mk + 2nk) + 8r

k−1∑
s=1

nsns+12
s

flops. Recovering xk;i from zk;i will cost 2rm2
k2

k flops. That completes the compres-
sion stage.

For the merge step, forming the new diagonal blocks costs 8mkn
2
k2

k flops. Merging
Uk;i and Vk;i costs 8mkn

2
k2

k flops.
Therefore the total cost of the fast backward stable solver is

K∑
k=1

(
2n2

k(mk − nk/3)2k + 2rmk(2mk − nk)2
k + 2mknk(2mk − nk)2

k

+ 4m3
k2

k/3 + 2nkm
2
k2

k + (mk − nk)
2r2k + 2k2mkr(mk + 2nk)

+ 8r

k−1∑
s=1

nsns+12
s + 16mkn

2
k2

k

)
,

which can be simplified to

K∑
k=1

2k

(
4

3
m3

k + 6m2
knk − 2

3
n3
k + r

(
7m2

k + n2
k + 8

k−1∑
s=1

nsns+12
s

))
.

The terms not involving r can be thought of as the cost of factorization.
We now observe that under our assumptions mk = 2nk+1 for k < K. Making

this substitution we can simplify the count to

2Km2
K

(
4

3
mK + 6nK

)
+ 24

K−1∑
k=1

2kn2
k+1nk +

14

3

K∑
k=2

2kn3
k − 4

3
n3

1

+ r

(
7m2

K2K + 15

K∑
k=2

2kn2
k + n2

1 + 8

K∑
k=1

k−1∑
s=1

2snsns+1

)
.

To simplify further we assume that nk ≥ nk+1. Then we can get an upper bound
on the flop count

2Km2
K

(
4

3
mK + 6nK

)
+

86

3

K∑
k=1

2kn3
k − 4

3
n3

1

+ r

(
7m2

K2K + 15

K∑
k=2

2kn2
k + n2

1 + 8

K∑
k=1

k−1∑
s=1

2sn2
s

)
.

FAST ULV SOLVERS FOR HSS FORMS 613

We now compute the flop counts for some canonical examples. First we consider
the case when nk = p, a constant. In this case the upper bound on the flop count
simplifies to

2Km2
K

(
4

3
mK + 6p

)
+

86

3
p32K+1 + r

(
7m2

K2K + 23p22K+1
)
.

Using N = 2KmK , and assuming that mK = 2p, we get

46Np2 + 37Npr.

As can be seen, the constants are modest. By switching to Gauss transforms rather
than Householder transforms we can reduce the constants even further.

In many cases this flop count is sufficient to give an indication of the performance
of the algorithm. However, for theoretical purposes we also provide an upper bound
on the flop count under the assumption that nk ≤ γkn0. This model is useful when
applying the algorithm to matrices of the form Aij = f(xi, xj), when the points xi lie
in high-dimensional spaces.

For example, when f(xi, xj) = log |xi−xj |, and xi is a point in the two-dimensional

plane, we can take n0 = αN
1
2 and γ = 1√

2
. For there to be any speed-up possible at

all we must have that

α ≤ N
1
2

√
2
.

For simplicity, and since it is common in practice, we assume that α ≥ 1. We then
observe that mk = N2−k ≥ 2αN1/42−k/2, provided k < log2 N −2(log2 α+1). Hence
we take the depth of the tree to be

K = �log2 N − 2 log2 α− 1	 .

Note that mK is approximately 4α2 in this scenario. Under these assumptions the
flop count for the fast solver is not more than

98N
3
2α3 + 70Nα4 + Nα2r(4 log2

2 N + 11 log2 N + 28).

As can be seen the constant is quite sensitive to the size of α.
Next we consider three-dimensional problems. For example, when f(xi, xj) =

‖xi−xj‖−1, and xi is a point in three-dimensional space, we can take n0 = αN
2
3 and

γ = 1
3√4

. To obtain any speed-up at all, we must ensure that α < (N/2)1/3. For the

sake of simplicity we will also assume that α ≥ 1. We can determine the maximum
depth of the tree from the constraint mk ≥ 2nk, which yields

K ≤ �log2 N − 3 log2 α− 1	 .

Under this scenario mK is approximately 2α3. With these assumptions the flop count
for the fast solver is less than

58N2α3 + 18Nα6 + r(39N
4
3 log2 Nα2 + 74N

4
3α2 + 14Nα3).

As can be seen the constant is modest.
Observe that in both cases the fast dense solver matches the asymptotic com-

plexity of the corresponding sparse direct finite-element and finite-difference solvers

614 S. CHANDRASEKARAN, M. GU, AND T. PALS

Table 2

CPU run-times in seconds for both the fast stable algorithm and standard solver for random
HSS matrices with mi = nk;i = pk;i for all k and i. Timings are not reported when there was
insufficient main memory. (GEPP = Gaussian elimination with partial pivoting.)

Size
mi/nk;i/pk;i 256 512 1024 2048 4096 8192 16,384 32,768
16 0.03 0.06 0.13 0.27 0.49 0.99 2.10 4.74
32 0.05 0.12 0.27 0.56 1.14 2.34 4.75 9.81
64 0.09 0.26 0.58 1.27 2.60 5.33 11.11 23.19
128 0.09 0.63 1.71 3.92 8.45 17.14 35.16 74.07

GEPP 0.07 0.33 2.12 14.81 113.75 891.59

Size
mi/nk;i/pk;i 65,536 131,072 262,144 524,288 1,048,576
16 9.93 27.95 64.28 224.73 889.65
32 20.56 44.53 106.35 408.39 . . .
64 50.24 129.81 405.13
128 158.97 380.89

of the same dimension. Of course, many times the integral equations corresponding
to a particular PDE will be one dimension smaller, frequently yielding the advantage
to the integral equation method. However, the quadratic dependence on N for three-
dimensional problems makes this algorithm suitable only when the linear system is
highly ill-conditioned and a suitable preconditioner is lacking. In fact, this solver can
serve as an ideal preconditioner in this and other situations. Another situation where
this method is suitable even for three-dimensional problems is when there is a large
number of right-hand sides.

We remark that if many of the leaves at level K are empty, then the algorithm
we have specified will become inefficient. A more complicated algorithm that does
not suffer from this deficiency will be presented in a future paper.

4.5. Experimental run-times. We now present CPU run-times for our fast
solver. These timings were obtained on an Apple dual 1GHz PowerPC G4 machine
with 1.5GB of RAM, though no explicit use was made of the dual processors. Vendor
supplied BLAS [14] (uniprocessor) and LAPACK 3.0 were used in all routines. We
report on problem sizes ranging from 256 unknowns to 1,048,576 unknowns. Off-
diagonal ranks nk;i and pk;i were chosen to range from 16 to 128. In every instance
we chose mi = nk;i = pk;i for all i. The matrices were generated randomly to these
specifications.

The CPU run-times in seconds are reported in Table 2. Also shown are CPU
run-times in seconds for the standard Gaussian elimination with row pivoting solver
from LAPACK. This routine is highly tuned and essentially runs at peak flop-rates.
As can be seen our fast solver breaks even with the standard solver for reasonably
small matrix sizes, as predicted by the flop count. Entries marked by ellipses indicate
instances where there was insufficient memory to run the test. Again this also indicates
another reason why the fast solver might be preferred: memory efficiency.

4.6. Stability. The fast solver we presented can be shown to be numerically
backward stable, provided the HSS representation is in the proper form. However, the
proof would detract from the main ideas of this paper and will be presented elsewhere.
By proper form we mean that ‖Rk;i‖ ≤ 1 and ‖Wk;i‖ ≤ 1 for a submultiplicative norm.
We observe that the HSS construction algorithm presented in section 5 satisfies this
requirement for the 2-norm.

FAST ULV SOLVERS FOR HSS FORMS 615

However, the algorithm can also be shown to be backward stable to first order
in machine precision even if the weaker condition ‖Rk;iRk+1;2i(−1) · · · ‖ ≤ p(n) and
‖Wk;iWk+1;2i(−1) · · · ‖ ≤ q(n) is satisfied, where p(n) and q(n) are low-degree polyno-
mials in n. This condition is satisfied by the fast HSS construction algorithm presented
in subsection 5.1.

The reason for the claimed stability of the fast solver is due to the use of unitary
transformations and a single forward substitution. The proof is similar to the one for
the sequentially semiseparable representation [3] and will be presented elsewhere.

In Table 3 we present computed experimental backward errors for the fast solver
on a wide class of problems which lends credence to our claims of stability. These
experiments were carried out in double precision for matrix sizes ranging from 256 to
4096. The ranks of the off-diagonal blocks nk;i and pk;i were chosen to range from 16
to 128. Although the HSS forms were generated randomly, we did not ensure proper
form. We only ensured the milder condition that the entries of Wk;i and Rk;i were
no larger than 1 in magnitude. As can be seen from the backward errors presented in
Table 3 the fast solver was backward stable even in this case.

Table 3

One-norm backward errors ‖Ax − b‖1/(εmach(‖A‖1‖x‖1 + ‖b‖1)) of the fast solver in double
precision with |Wk;i| ≤ 1 and |Rk;i| ≤ 1. Entries much larger than 1 indicate a potential lack of
backward stability.

Size
mi/nk;i/pk;i 256 512 1024 2048 4096

16 0.31 0.27 0.32 0.25 0.16
32 0.34 0.33 0.24 0.22 0.20
64 0.54 0.38 0.33 0.28 0.25
128 0.47 0.43 0.36 0.28 0.28

5. Computing the HSS representation. In this section we describe an O(n2)
algorithm to compute the HSS representation of an arbitrary matrix to a given toler-
ance.

The key idea is to compute the singular value decomposition (SVD) of the matrices

Hk;i = (Ak;i,1 Ak;i,2 · · · Ak;i,i−1 Ak;i,i+1 Ak;i,i+2 · · · Ak;i,2k) .(11)

Notice that Hk;i is essentially block row i of the matrix when partitioned according to
level k of the merge tree, except that the diagonal block corresponding to that level
Ak;i,i is missing.

Similarly we also need to compute the SVD of the matrices

Gk;i =
(
AH

k;1,i AH
k;2,i · · · AH

k;i−1,i AH
k;i+1,i AH

k;i+2,i · · · AH
k;2k;i

)H
.(12)

Suppose we have the SVD of Hk;i and Gk;i for k = 1 to K and for i = 1 to 2k:

Hk;i = Uk;iCk;iJ
H
k;i,

Gk;i = Lk;iMk;iV
H
k;i.

Observe that these equations directly define the auxiliary quantities Uk;i and Vk;i that
appear in (1) and (2). In particular we obtain UK;i and VK;i. Using (1) and (2) we

616 S. CHANDRASEKARAN, M. GU, AND T. PALS

can also compute

Rk+1;2i−1 = UH
k+1;2i−1(Uk;i)1,

Rk+1;2i = UH
k+1;2i(Uk;i)2,

Wk+1;2i−1 = V H
k+1;2i−1(Vk;i)1,

Wk+1;2i = V H
k+1;2i(Vk;i)2,

where we have the conforming partitions

Uk;i =

(
(Uk;i)1
(Uk;i)2

)
=

(
Uk+1;2i−1Rk+1;2i−1

Uk+1;2iRk+1;2i

)
,

Vk;i =

(
(Vk;i)1
(Vk;i)2

)
=

(
Vk+1;2i−1Wk+1;2i−1

Vk+1;2iWk+1;2i

)
.

This leaves us only with determining formulas for Bk;2i−1,2i and Bk;2i,2i−1. Ob-
serve that Ak;2i−1,2i is the 2i − 1 submatrix of Hk;2i−1 and Gk;2i in the partitioning
in (11) and (12). Therefore assuming that (Jk;2i−1)2i−1 and (Lk;2i)2i−1 denote the
appropriate submatrices, we have that

Ak;2i−1,2i = Uk;2i−1Bk;2i−1,2iV
H
k;2i = Uk;2i−1Ck;2i−1(Jk;2i−1)

H
2i−1 = (Lk;2i)2i−1Mk;2iV

H
k;2i.

This immediately gives us the formulas

Bk;2i−1,2i = Ck;2i−1(Jk;2i−1)
H
2i−1Vk;2i = UH

k;2i−1(Lk;2i)2i−1Mk;2i.

Similarly Ak;2i,2i−1 is the 2i − 1 submatrix of Hk;2i and Gk;2i−1 in the partitioning
in (11) and (12). Therefore assuming that (Jk;2i)2i−1 and (Lk;2i−1)2i−1 denote the
appropriate submatrices, we have that

Ak;2i,2i−1 = Uk;2iBk;2i,2i−1V
H
k;2i−1 = Uk;2iCk;2i(Jk;2i)

H
2i−1 = (Lk;2i−1)2i−1Mk;2i−1V

H
k;2i−1.

This immediately gives us the formulas

Bk;2i,2i−1 = Ck;2i(Jk;2i)
H
2i−1Vk;2i−1 = UH

k;2i(Lk;2i−1)2i−1Mk;2i−1.

All we need now is an efficient way to compute the needed SVDs. To this end
we observe that Hk;i is closely related to Hk+1;2i−1 and Hk+1;2i. In fact, by dropping
the 2i− 1 block column from (

Hk+i;2i−1

Hk+1;2i

)
,

we obtain Hk;i. Similarly, by dropping the 2i− 1 block row from

(Gk+1;2i−1 Gk+1;2i) ,

we obtain Gk;i. Hence we can obtain the SVD of Hk;i efficiently from the SVDs of
Hk+1;2i−1 and Hk+1;2i. Similarly for Gk;i.

Assuming that Bk;2i−1,2i is an nk;i × nk;i matrix and Bk;2i,2i−1 is a pk;i × pk;i

matrix, the complexity of the above algorithm is O(N(N +
∑

k;i(n
2
k;i + p2

k;i))).
The cost of the algorithm can be reduced by replacing the SVD with a rank-

revealing QR factorization [11, 21] instead.

FAST ULV SOLVERS FOR HSS FORMS 617

5.1. Smooth matrices. When the matrix entry Aij is specified by a function
f(xi, xj) that is smooth away from the diagonal, the HSS representation can be com-
puted more rapidly than in the general case. In this section we consider the special
case when the points xi lie on the real line. The more general case is beyond the scope
of this paper. Important examples of the function f(x, y) include log ‖g(x) − g(y)‖
and ‖g(x) − g(y)‖α, where g : R → Rd represents a simple closed or nonclosed curve
in d-dimensional space. For applications see [30, 31].

Since we are restricting ourselves to uniform HSS representations in this paper,
we will assume that the points xi are distributed uniformly in the interval [0, 1].
Note that this does not mean that the points xi are equispaced. Furthermore, for
simplicity, we will assume the function f has at most singularities at 0 and 1, and
that it is analytic away from these singularities. A good example to keep in mind is
f(x, y) = log |x− y|.

From the basic theory of polynomial approximation of such functions it follows
that if Tk(x) denotes the kth Chebyshev polynomial

Tk(x) = cos(k arccosx), −1 ≤ x ≤ 1,

and if

φa,b : [a, b] → [−1, 1], φa,b(x) = −1 + 2
x− a

b− a

denotes the affine-linear function that maps the interval [a, b] to [−1, 1], then on any
rectangle [a, b] × [c, d] such that a < b < c < d and min(d − c, b− a) > c− b, we can
find a short two-sided Chebyshev expansion of f(x, y) to a given accuracy:

f(x, y) ≈
∑
p,q

βp,qTp(φa,b(x))Tq(φc,d(y)).

More specifically, the (i, j)th entry of the matrix can be represented to a prescribed
accuracy by a short expansion of the form

f(xi, xj) ≈
∑
p,q

βp,qTp(φa,b(xi))Tq(φc,d(yj)).

We shall now show how these expansion coefficients can be used to compute an
HSS representation for the matrix quickly.

We first need to specify the merge tree we are going to use. We do so as follows.
We will assume that all the points xi lie in the interval [0, 1]. Hence we will associate
the interval [0, 1] (and hence all the points xi, and hence all indices) with the root
node. With the left child of the root we associate the interval [0, 0.5) and with the
right child the interval [0.5, 1]. This means that we associate all points xi in the
interval [0, 0.5) with the left child and hence all the corresponding indices with the
left child. Similarly for the right child. To the left child of the left child of the root
node, namely, Node(2, 1), we associate the interval [0, 0.25), to Node(2, 2) we associate
the interval [0.25, 0.5), and so on. In this way we assign the indices to the merge tree.

Note that the number of indices in two different nodes at the same level can be
different. Also note that we do not assume that the points xi are equispaced.

Let us denote the set of points xi that belong to Node(k, i) by xk;i. Let us denote
by Γk;i the Chebyshev–Vandermonde matrix evaluated at the points xk;i. We will
assume that the number of columns in Γk;i is fixed at p to ease the exposition.

618 S. CHANDRASEKARAN, M. GU, AND T. PALS

7
8

13
4

9
16

5
8

1
2

17
32

3
8

15
32
1
2

7
16

1
4

0

1
4

3
8

7
16

15
32

1
2

3
4

17
32

1
2

9
16

5
8

A1;2,1A1;1,2

1
8

1
16

1
32

0

31
32

7
8

15
16

1

1
8

1
32
1
16

31
32

15
16

Fig. 5. Block partitioning of A1;1,2 and A1;2,1 suitable for Chebyshev expansions. The vertical
and horizontal lines are labeled according to the interval boundaries.

Each node of the merge tree is associated with a particular interval of the real
line. In particular Node(k, i) is associated with the interval 2−k[i− 1, i]. Therefore it
follows that Ak;i,j is associated with the rectangle 2−k[i− 1, i] × 2−k[j − 1, j].

Figure 5 displays a partitioning of A1;1,2 and A1;2,1 that will prove useful. We
observe that each off-diagonal block, except possibly the bottom-left and upper-right
blocks, in the displayed partition is associated with a rectangle on which the function
f has a short two-sided Chebyshev expansion. However, note that the blocks are
sometimes specified by intervals on two different levels of the merge tree. Hence we
will use the notation A(k;i),(r;j) to denote the submatrix whose row indices come from
Node(k, i) and column indices come from Node(r, j). We shall also use the notation

A(k;i),(r;j) = Γk;iC(k;i),(r;j)Γ
H
r;j(13)

for the corresponding two-sided Chebyshev expansion. Observe that C(k;i),(r;j) can be
computed in time independent of the size of A(k;i),(r;j). Since the block AK;i,i+1 does
not necessarily have a short two-sided Chebyshev expansion, we will assume instead
that it has fewer than p rows and columns, in which case it trivially has an expansion
of the form (13).

To construct the HSS representation we remind the reader that it is the low-
rank expansions of Hk;i and Gk;i that are crucial. Hence in Figure 6 we show the
partitioning of H2;3 that we will use. Now observe that we can construct a low-rank
expansion for Ak;i,i+1 and Ak;i+1,i for odd i, as follows. Let

Δk;i = diag

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ΓK;2K−k(i−1)+1

ΓK;2K−k(i−1)+2

...
Γk+2;2(2i−1)

Γk+2;2(2i)−1

...
ΓK;2K−ki−1

ΓK;2K−ki

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)

FAST ULV SOLVERS FOR HSS FORMS 619

17
32

0 11
2

1
4

15
32

7
16

3
8

3
4

7
8

13
16

25
32

3
4

5
8

11
16

23
32

9
16

1
2

Fig. 6. Block partitioning of H2;3 suitable for Chebyshev expansions. The vertical and horizon-
tal lines are labeled according to the associated interval boundaries. The missing block in the middle
is the diagonal block. The dotted diagonal line shows the position of the diagonal.

be a block-diagonal matrix. In the above notation we assume that ΔK;i = ΓK;i and

ΔK−1;i =

(
ΓK;2i−1

ΓK;2i

)
.

Note that these formulas are consistent with (14). Then let

Uk;i = Δk;i,

Vk;i = Δk;i,

and let Bk;i,i+1 be the block matrix with block entries

(Bk;i,i+1)r,s = C(kr;ir),(ks;(i+1)s),

where Node(kr, ir) is the node corresponding to the rth diagonal block of Δk;i. Sim-
ilarly we define

(Bk;i+1,i)r,s = C(kr;(i+1)r),(ks;is).

All we have to specify now is Rk;i and Wk;i. First observe that Rk;i = Wk;i since
Uk;i = Vk;i. From the definition of Δk;i observe that

Δk;i =

(
Δk+1;2i−1Ωk+1;2i−1 0

0 Δk+1;2iΩk+1;2i

)
,

where

Rk;2i−1 = (Ωk;2i−1 0) ,

Rk;2i = (0 Ωk;2i) .

Hence it is sufficient to specify the Ωk;i’s. To do that we first specify the two sets of
auxiliary matrix-valued functions

σu(0) = I,

σu(i + 1) =

(
σu(i)CL

CR

)
,

620 S. CHANDRASEKARAN, M. GU, AND T. PALS

and

σl(0) = I,

σl(i + 1) =

(
CL

σl(i)CR

)
.

Then

Ωk;2i =

(
σu(K − k − 1) 0

0 I

)
,

Ωk;2i−1 =

(
I 0
0 σl(K − k − 1)

)
,

with the understanding that σu(−1) and σl(−1) denote the empty matrices.

With this we have given a complete specification for computing the HSS represen-
tation (assuming a uniform tree) of a smooth matrix with a one-dimensional kernel
function.

However, given the sparse structure of Uk;i and Rk;i, the fast solvers and multipli-
ers presented in this paper can, and should, be modified to exploit the extra structure.
This is important, as the Chebyshev expansions are not optimal low-rank expansions.

5.2. Sparse matrices. In the previous subsection we showed how to construct
rapidly the HSS representation of matrices whose entries are given by kernel functions
that are smooth away from the diagonal. Such matrices are intimately associated
with the fast multipole method and integral equations. In this subsection we consider
sparse matrices. For sparse matrices we can quickly construct a possibly suboptimal
HSS representation. For many sparse matrices this construction will actually lead to
the optimal HSS representation.

We proceed as follows. First we must determine the row and column partition
sizes. In this paper we will assume that these two partitions are identical. Suppose mi

denotes the size of the ith partition. We will again assume that the HSS tree is going
to be uniform and that the number of partitions is 2K for some K. The matrices Di

are straightforward to compute.

We form Ui as follows. Suppose the jith row in the ith partition is the first row
in that partition to have a nonzero entry that is not in Di; then the first column of
Ui will be the zero column with a one in the jith position. Suppose gi is the next
row after the jith one in the ith partition that has a nonzero entry outside Di; then
the second column of Ui will be a zero column with a one in the gith position. We
proceed until we have exhausted all the rows in the ith partition. Notice that we have
constructed Ui such that it is guaranteed to be the column basis for HK;i, as it must.

Next we form Vi. The construction is similar to that for Ui, except that we must
deal with the columns of the ith partition, and in particular the nonzero entries in
that partition that do not lie in Di. Suppose the jith column in the ith partition is
the first column in that partition to have a nonzero entry that is not in Di; then the
first column of Vi will be the zero column with a one in the jith position. Suppose
gi is the next column after the jith one in the ith partition that has a nonzero entry
outside Di; then the second column of Vi will be a zero column with a one in the gith
position. We proceed until we have exhausted all the columns in the ith partition.
Notice that we have constructed Vi such that it is guaranteed to be column basis for
GK;i, as it must.

FAST ULV SOLVERS FOR HSS FORMS 621

Now we specify how to form Rk;i. First we observe that we could compute Uk;i

using the same ideas we used to compute Ui = UK;i. From that we could then recover
Rk;i. However, we can also do this in a direct fashion. As usual, let

Uk;i =

(
(Uk;i)1
(Uk;i)2

)
=

(
Uk+1;2i−1Rk+1;2i−1

Uk+1;2iRk+1;2i

)
.

Then we observe that Rk+1;2i, for example, must drop the right columns in Uk+1;2i

so as to produce (Uk;i)2. Hence by looking at the nonzero entries of Ak+1;2i,2i−1 and
Ak+1;2i;2i+1, we can determine potential columns of Uk+1;2i that must be dropped.
We pick Rk+1;2i so that it drops just those columns. Note that not every nonzero row
in Ak+1;2i,2i−1 and Ak+1;2i;2i+1 induces a drop in Uk+1;2i, since some other column in
the same row might still have a nonzero entry.

We compute Wk;i in a fashion similar to that for Rk;i but with respect to Vk;i

rather than Uk;i.

All that is left to be specified is Bk;i,j . But this is easy now. Bk;i,j is just the
matrix obtained by dropping all zero rows and columns of Ak;i,j .

As can be seen, the HSS representation of a sparse matrix can be computed in
time proportional to the number of nonzeros in the matrix, provided, of course, that
the sparse matrix data structure supports efficient access for sequential reads of the
nonzeros entries of any row or column. Many common sparse matrix data structures
do exactly this, so we do not comment on it any further.

REFERENCES

[1] F. X. Canning and K. Rogovin, Fast direct solution of moment-method matrices, IEEE
Antennas and Propagation Magazine, 40 (1998), pp. 15–26.

[2] J. Carrier, L. Greengard, and V. Rokhlin, A fast adaptive multipole algorithm for particle
simulations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 669–686.

[3] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, and A. van der Veen, Fast sta-
ble solver for sequentially semi-separable linear systems of equations, in High Perfor-
mance Computing—HiPC 2002: 9th International Conference, Lecture Notes in Comput.
Sci. 2552, S. Sahni et al., eds., Springer-Verlag, Heidelberg, 2002, pp. 545–554.

[4] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, and A. van der Veen, Fast Stable
Solvers for Sequentially Semi-separable Linear Systems of Equations, Technical report,
Mathematic Department, University of California, Berkeley, 2003.

[5] S. Chandrasekaran and M. Gu, Fast and stable algorithms for banded plus semiseparable
systems of linear equations, SIAM J. Matrix Anal. Appl., 25 (2003), pp. 373–384.

[6] S. Chandrasekaran and M. Gu, A fast and stable solver for recursively semi-separable sys-
tems of linear equations, in Structured Matrices in Mathematics, Computer Science, and
Engineering, II, Contemp. Math. 281, V. Olshevsky, ed., AMS, Providence, RI, 2001, pp.
39–53.

[7] S. Chandrasekaran and M. Gu, Fast and stable eigendecomposition of symmetric banded
plus semi-separable matrices, Linear Algebra Appl., 313 (2000), pp. 107–114.

[8] S. Chandrasekaran and M. Gu, A divide-and-conquer algorithm for the eigendecomposition
of symmetric block-diagonal plus semiseparable matrices, Numer. Math., 96 (2004), pp.
723–731.

[9] S. Chandrasekaran, M. Gu, and T. Pals, A Fast and Stable Solver for Smooth Recursively
Semi-separable Systems, Paper presented at the SIAM Annual Conference, San Diego, CA,
2001, and SIAM Conference of Linear Algebra in Controls, Signals and Systems, Boston,
MA, 2001.

[10] S. Chandrasekaran, M. Gu, and T. Pals, Fast and Stable Algorithms for Hierarchically
Semi-separable Representations, Technical report, Department of Mathematics, University
of California, Berkeley, 2004.

[11] S. Chandrasekaran and I. C. F. Ipsen, On rank-revealing factorisations, SIAM J. Matrix
Anal. Appl., 15 (1994), pp. 592–622.

622 S. CHANDRASEKARAN, M. GU, AND T. PALS

[12] Y. Chen, Fast direct solver for the Lippmann–Schwinger equation, Adv. Comput. Math., 16
(2002), pp. 175–190; also available online at http://www.math.nyu.edu/faculty/yuchen/
onr/intro.htm.

[13] P. Dewilde and A. van der Veen, Time-Varying Systems and Computations, Kluwer Aca-
demic, Boston, MA, 1998.

[14] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff, Algorithm 679: A set of level 3
basic linear algebra subprograms: Model implementation and test programs, ACM Trans.
Math. Softw., 16 (1990), pp. 18–28.

[15] Y. Eidelman and I. Gohberg, On a new class of structured matrices, Integral Equations
Operator Theory, 34 (1999), pp. 293–324.

[16] Y. Eidelman and I. Gohberg, A modification of the Dewilde van der Veen method for inver-
sion of finite structured matrices, Linear Algebra Appl., 343/344 (2001), pp. 419–450.

[17] I. Gohberg, T. Kailath, and I. Koltracht, Linear complexity algorithms for semiseparable
matrices, Integral Equations Operator Theory, 8 (1985), pp. 780–804.

[18] G. Golub and C. van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press,
Baltimore, MD, 1996.

[19] D. Gope and V. Jandhyala, An iteration-free fast multilevel solver for dense method of mo-
ment systems, in Proceedings of the IEEE 10th Topical Meeting on Electrical Performance
of Electronic Packaging, IEEE Press, Piscataway, NJ, 2001, pp. 177–180.

[20] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, J. Comput. Phys.,
73 (1987), pp. 325–348.

[21] M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR
factorization, SIAM J. Sci. Comput., 17 (1996), pp. 848–869.

[22] L. Gurel and W. C. Chew, Fast direct (noniterative) solvers for integral-equation formula-
tions of scattering problems, in Antennas: Gateways to the Global Network, Vol. 1, IEEE
Antennas and Propagation Society International Symposium, Vol. 1, IEEE Press, New
York, 1998, pp. 298–301.

[23] W. Hackbusch, A sparse arithmetic based on H-matrices. Part I: Introduction to H-matrices,
Computing, 62 (1999), pp. 89–108.

[24] W. Hackbusch, B. N. Khoromskij, and S. Sauter, On H2-Matrices, preprint 50, MPI,
Leipzig, 1999.

[25] W. Hackbusch and S. Borm, Data-sparse approximation by adaptive H2-matrices, Comput-
ing, 69 (2002), pp. 1–35.

[26] P. Jones, J. Ma, and V. Rokhlin, A fast direct algorithm for the solution of the Laplace
equation on regions with fractal boundaries, J. Comput. Phys., 113 (1994), pp. 35–51.

[27] N. Mastronardi, S. Chandrasekaran, and S. van Huffel, Fast and stable two-way chasing
algorithm for diagonal plus semi-separable systems of linear equations, Numer. Linear
Algebra Appl., 38 (2000), pp. 7–12.

[28] N. Mastronardi, S. Chandrasekaran, and S. van Huffel, Fast and stable algorithms for
reducing diagonal plus semi-separable matrices to tridiagonal and bidiagonal form, BIT,
41 (2001), pp. 149–157.

[29] V. Rokhlin, Applications of volume integrals to the solution of PDEs, J. Comput. Phys., 86
(1990), pp. 414–439.

[30] P. Starr, On the Numerical Solution of One-Dimensional Integral and Differential Equa-
tions, Thesis advisor: V. Rokhlin, Research Report YALEU/DCS/RR-888, Department of
Computer Science, Yale University, New Haven, CT, 1991.

[31] P. Starr and V. Rokhlin, On the numerical solution of 2-point boundary value problem. 2,
Comm. Pure Appl. Math., 47 (1994), pp. 1117–1159.

