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Abstract A new class of objective functions and an associated fast descent algo-
rithm that generalizes the K -means algorithm is presented. The algorithm represents
clusters as unions of Voronoi cells and an explicit, but efficient, combinatorial search
phase enables the algorithm to escape many local minima with guaranteed descent.
The objective function has explicit penalties for gaps between clusters. Numerical
experiments are provided.
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1 Introduction

Let the M columns of the matrix X ∈ RN×M denote points in RN that we would
like to cluster, using the K -means algorithm [4,9] for example. The word cluster
does not seem to have a unique mathematical meaning in the literature, but is used
in a variety of situations for different purposes [5]. Loosely speaking, one would
like to partition the M columns X j of X into mutually exclusive subsets such that
columns in the same subset are close to each other, while columns indifferent subsets
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are far apart from each other. Suppose we divide the columns into K subsets Sk

for 0 � k < K . Then a possible mathematical problem that captures the intent is
to pick subsets Sk such that the sum of the squares of the intra-cluster separations,∑

0�k<K
∑

Xi ,X j∈Sk
‖Xi − X j‖2, is minimized, where ‖ · ‖ denotes the Euclidean

norm.
One reason for squaring the distance is to simplify the optimization algorithmwhen

the Euclidean norm is used. However, for reasons of practicality and efficiency, the
K -means algorithm uses a different formulation, which is equivalent in the case of
squared Euclidean distance with weights. The Sk are restricted to Voronoi cells. To
each Sk there is assigned a column Yk such that x ∈ Sk if k is the smallest integer for
which ‖x − Yk‖ = min0�l<K ‖x − Yl‖. While this can be used with arbitrary norms,
that is of no interest in this paper, and we will continue assuming that the norm is
the standard Euclidean norm. In this formulation it is usually conventional to measure
the goodness of a clustering via the expression,

∑
0�k<K

∑
X j∈Sk

‖X j − Yk‖2. This
considerably decreases the flop count of algorithms that try to minimize the above
expression, as there are many fewer terms involved if K � M . There are many
algorithms that directly or indirectly try to minimize the above expression over the K
columns Y j . However it is difficult to the find the global minimum and the quality of
the local minimum may not be good, though there does not necessarily seem to be
agreement over this in the literature, as the precise local minima at which the algorithm
stops depends on the starting point [13,14,18].

The aim of this paper is to consider a larger class of objective functions for choosing
the partitioning of the columns X j , in order to provide more flexibility in practice,
while at the same time retaining the guaranteed descent feature of the standard K -
means algorithm. In fact, the standard K -means algorithm will be a special case.
However, we do not claim that the clusters our algorithm computes will be better in
practice; this must be determined by the data and intended use of the clusters (we
provide numerical experiments on some synthetic data sets in Sect. 4). Nor do we
provide statistical justifications for our choice of objective functions, even though
these would clearly be of great interest, as this would be non-trivial and would deviate
from the main aim of the paper.

We propose two changes to the standard K -means objective function. The first is
to bring in two levels of hierarchical clustering, and the second is to bring in explicit
penalty terms for inter-cluster distances. To mimic the second level of hierarchical
clustering we represent the subset Sk as a union of Voronoi cells Sk;l ; that is, Sk =
∪lSk;l . To penalize gaps between clusters we bring in terms of the form −‖Yk;l −
Yp;i‖2. Note the negative sign which encourages these distances to become larger
during the optimization process. The rest of the paper works through the details of a
K -means style algorithmwith guaranteed descent. One notable aspect of the algorithm
is the inclusion of a cheap combinatorial search phase that enables the algorithm to
escape local minima with guaranteed descent.
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1.1 Existing work

There exists a vast literature on different approaches to clustering, originating from
seemingly disparate applications in chemistry, physics, biology, and medicine. Since
the invention of the K -means algorithm, significant progress has been made in both
the the analysis and algorithmic approaches to the basic problem. For a comprehensive
summary of early literature see [2,5,20].

Despite its prominent success, the K -means algorithm is not ideal for all clustering
problems. When there truly are K clusters, and enough effort is expended, then, in
some cases, K -means will converge quickly to the right solution [13,19]. On the other
hand, it is known that for ill-fated configurations K -means can take a long time to
converge [18]. As such, K -means must be significantly tailored and tested for use in
practical applications. Several improvements have been made to various aspects of the
original algorithm proposed by Lloyd (1957) and Forgy (1965), including optimality
[21,22], efficiency [23,24], heuristic model-order estimation and seeding [11,25,26],
cluster-separation measures [27], and hierarchical representations [28,29].

The objective of this paper is not to replace K -means with a better algorithm; rather,
it is to present a new class of objective functions that incorporate some improve-
ments with an associated fast algorithm. The work of Lindsten et al. [8,12], for
example, replaces the K -means objective function with a convex objective function
with one continuous regularization parameter that replaces the discrete parameter
K . This objective function bears some resemblance to ours. However, we note that
their objective function has sums of norms, and not their squares, and so is more
expensive to optimize. Furthermore, there are no negative terms in their objective
function and hence no explicit penalty for inter-cluster distances. Finally every cluster
is represented by a single center as in the classical K -means. Another modified K -
means objective function is that of [10]. However, this does not include negative terms
either.

Current hierarchical clustering algorithms are also asymptotically slower than K -
means, but there has been work on making them faster, for example [1,3]. Our
algorithm leans heavily on the standard Euclidean norm, but other measures of simi-
larity can be important in practice [17]. The multi-point representation of clusters is
implicit in the work of Rose et. al. on deterministic annealing [14], and is also common
in applications of learning vector quantization [6]. Fuzzy clustering is another very
popular technique and a large number of objective functions are known for which effi-
cient local minima can be computed [15]. But none of these encompass the objective
functions we discuss in this paper.

1.2 Notation

Let R denote the set of reals, N the set of non-negative integers, and N+ the set of
positive integers. Let Np = {0, 1, . . . , p − 1}, for p ∈ N, with N0 = {}. Let ‖ · ‖
denote the standard Euclidean 2–norm. Let ‖ · ‖F denote the Frobenius norm. Let e
denote the column vector of all ones; the dimension will be apparent from the context.
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Breaking from custom, we will place row indices on the left. For example, i A j

will denote the (i, j)-th entry of the matrix A. We will also use A j to denote the j-th
column of A, while i A will denote the i-th row of A. We will use a double index
notation for block matrices. So p;Ak; will denote the (p, k)-th block sub-matrix of A,
and p;i Ak; j will denote the (i, j)-th entry of the block p;Ak;. Frequently our row and
column indices will start with 0 rather than 1.

Let N , L , K ∈ N+. Let Y ∈ RN×L . Block partition the columns of Y into K
blocks:

Y = (
Y0; Y1; . . . YK−1;

)
.

Let λ ∈ NK+ for K ∈ N+, and let Yk; ∈ RN×λk for k ∈ NK ; that is, λk denotes the
number of columns in Yk; and

∑
k∈NK

λk = L . Using Y and λ, partition RN into K

mutually disjoint subsets Sk according to the following membership rule: x ∈ RN is
assigned to Sk if k is the smallest integer for which

min
l∈Nλk

‖x − Yk;l‖ = min
p∈NK

min
j∈Nλp

‖x − Yp; j‖.

Let Sk;l , for l ∈ Nλk , denote λk mutually disjoint subsets of Sk . The membership rule
for Sk;l is as follows: x ∈ Sk is assigned to Sk;l if l is the smallest integer for which

‖x − Yk;l‖ = min
n∈Nλk

‖x − Yk;n‖.

We will call Sk;l as a sub-cluster and Sk as a cluster. Let Xk;l denote the sub-matrix
of X that contains all the columns of X that lie in Sk;l .

2 Problem

Let M, N ∈ N+. Let 1 < L1 ∈ N+. Let X ∈ RN×M and � ∈ RN be given. Let
α, β � 0 and ς, γ > 0 be given. Let Y ∈ RN×L for some 0 < L � L1. Let K ∈ N+
and λ ∈ NK+ such that

∑
k∈NK

λk = L . Let

F(Y, λ) =
∑

k∈NK

∑

l∈Nλk

∥
∥
∥Xk;l − Yk;l eT

∥
∥
∥
2

F
+ α

∑

k∈NK

∑

l<n∈Nλk

‖Yk;l − Yk;n‖2

+β

γ

∑

k<p∈NK

∑

l∈Nλk , j∈Nλp

(
1−γ ‖Yk;l − Yp; j‖2

)
+ς‖Y − �eT ‖2F . (1)

Given X ,�,α,β, ς , γ , L1, find L ,Y , K andλ, which solves theminimization problem

min
Y,λ

F(Y, λ), when β <
ς

2(L1 − 1)
.
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Table 1 Inputs
N Dimensionality of vectors to be clustered

M Number of vectors to be clustered

X N × M matrix of vectors to be clustered

L1 Maximum number of sub-clusters allowed

Table 2 Outputs

K Number of clusters found

L Total number of sub-clusters found

Y N × K matrix of sub-cluster centers

λ K dimensional vector of number of sub-clusters in each cluster

Yk; N × λk matrix of sub-cluster centers of cluster k

Yk;l Center of sub-cluster l in cluster k

Table 3 Algorithm parameters

� Best chosen to be the mean of the columns of X

α Larger values forces sub-clusters of a single cluster to lie closer together

β Larger values forces clusters apart

γ Larger values increases minimum gap between clusters

ς Small number that prevents the Y ’s from drifting too far from �

For clarity, we have summarized the notation in Tables 1, 2 and 3. Note that the
term ‖Xk;l − Yk;l eT ‖2F is the usual penalty on the distance of a column of X from
its assigned sub-cluster center. The term ‖Yk;l − Yk;n‖2 is a penalty on the distance
between the centers of two sub-clusters that belong to the same cluster. The term
−‖Yk;l − Yp; j‖2 is a penalty on the distance between sub-cluster centers belonging
to two different clusters. Note the negative sign as we want this term to be large in
absolute value. This is also the term that makes the objective function indefinite. The
term ‖Y − �eT ‖2F is a penalty on the distance of the sub-cluster centers from � and
is there to prevent the objective function from becoming unbounded from below.

The global optimum is hard to find, so we settle for a “local” minima, though the
word “local” is dubious in a discrete setting. The bound on β is needed to ensure that
F is bounded from below. We recommend choosing γ to be reasonably small so as
to discourage the formation of empty sub-clusters (see Proposition 5). A good default
choice for � is the global mean � = Xe

M . The role of α is to encourage sub-clusters
belonging to a single cluster to be close together, while the role of β and γ is to
encourage clusters to be well-separated. The role of ς is purely technical at this point;
it keeps F bounded from below when some sub-clusters become empty.

There are several components to this problem and it is difficult to find a linear
presentation. Assuming that the reader is familiar with the K -means algorithm, we
begin with a rough outline of the algorithm and then present the details. Our goal is a
guaranteed descent algorithm to a local minimum.
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3 The Algorithm

The algorithm is a form of block coordinate descent, complicated by the presence
of a combinatorial part. The algorithm proceeds in multiple stages. In each stage we
guarantee that F is non-increasing.

1. Initialize Y (essentially randomly from columns of X ) with K = L1 (Sect. 3.1).
2. Assign columns of X by the nearest center rule (Sect. 3.2).
3. Repeat:

A. Compute C , T and R (Sect. 3.3).
B. For each column Yk;l :

(a) If sub-cluster Sk;l is empty delete if descent is possible (Sect. 3.3.2).
(b) Else among the following choices, pick the one with maximum descent:

(i) Split off sub-cluster into its own cluster if descent is possible
(Sect. 3.3.3).

(ii) Transfer sub-cluster to another cluster if descent is possible.
(Sect. 3.3.4.)

(iii) Swap with another sub-cluster if descent is possible (Sect. 3.3.5).
(c) Update λ, T , R and other variables as needed.

C. Freeze all partitions Sk;l and move Y to the nearest critical point (Sect. 3.4).
D. For each column X j :

(a) If L < L1 and if X j = YK ;0 would lead to descent take this path
(Sect. 3.3.1).

(b) Else assign to nearest Yk;l (guarantee descent) (Sect. 3.2).
(c) If X j changed membership, freeze all the partitions Sk;l and modify Y to

reach nearest local minimum (guarantee descent) (Sect. 3.4).
4. Until no (significant) descent

As mentioned earlier, the K-means objective can be attained by forcing all clusters to
have only one sub-cluster, thereby skipping step 3B and effectively eliminating the
first penalty term in the objective function F . We point out a key difference with what
most people call Lloyd’s [9] or Forgy’s [4] version of the K -means algorithm: we
update the centers every time X j is re-assigned. This second version of K -means is
known to be more efficient in the Euclidean case [7,16]. Furthermore, it guarantees
(modulo floating-point errors) that no empty clusters will be produced by K -means,
which is a frequent problem in Forgy’s version.

Proposition 1 The cost of one loop, steps 3B, 3C and 3D, is O(NML + L2) flops.
Each step of the loop is guaranteed not to increase the objective function.

Proof Established in the propositions below. ��

3.1 Initializing Y

We choose the initial cluster centers Y by common randomization techniques. Let
Q ∈ N be a positive integer.
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1. Choose Q columns of X randomly. Find one with the largest separation and keep
as the first column of Y . That is,

Y1 = argmax
Xi

||Xi − X j || ∀ i, j ∈ NM

2. L1 − 1 times do the following:
(a) Choose Q columns randomly from X . Keep the one furthest from the current

set of Y columns as the next column of Y . If the largest distance is zero, this
step must be repeated until the largest distance becomes non-zero.

Choose K = L1, so every column of Y corresponds to a cluster, and there are L1 initial
clusters. As long as there are enough distinct columns in X this process will terminate
in a finite number of iterations and cost O(Q2N + QNL2

1) flops. This is the costliest
stage and to balance the cost we must pick Q such that Q � min

(√
MI L1, MI/L1

)

where I is the number of iterations that the algorithm will run, which is of course not
available a priori.

3.2 Assigning X j

Column X j is assigned to Sk;l following the standard membership rule described
in Sect. 1.2. The cost of assigning one X j is O(NL) flops. The objective function is
guaranteed not to increase, and strict decrease is assured if X j changes itsmembership.
The first timewe are guaranteed that eachSk;l = Sk will be non-empty. The remaining
times this guarantee is not available. The total cost of assigning all columns of X is
O(NML) flops.

3.3 Re-arranging sub-clusters

The goal here is to figure out to quickly “re-arrange” the sub-clusters such that F
decreases. A symmetric two-dimensional array C ∈ RL×L will be used to hold the
distances between the columns of Y . Let

k;lCk;l = ‖Yk;l − �‖2, k ∈ NK , l ∈ Nλk ,

k;lCk;n = ‖Yk;l − Yk;n‖2, l 
= n ∈ Nλk ,

k;lCp;i = ‖Yk;l − Yp;i‖2, k 
= p ∈ NK , l ∈ Nλk , i ∈ Nλp .

The two-dimensional array T ∈ RL×K will be used to hold the distances between
columns of Y and sub-clusters, while the one-dimensional array R ∈ RL will hold
the distances from columns of Y to all sub-clusters that it is not a member of. Let

k;l Tk =
∑

l 
=n∈Nλk

k;lCk;n, k ∈ NK , l ∈ Nλk ,

k;l Tp =
∑

i∈Nλp

k;lCp;i , k 
= p ∈ NK , l ∈ Nλk ,

Rk;l =
∑

k 
=p∈NK

k;l Tp, k ∈ NK , l ∈ Nλk .
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Proposition 2 C, T and R can be computed in O(NL2) flops.

Proof It is easy to see that C can be computed in O(NL2) flops.
k;l Tk can be computed in O(λk) flops. With some care k;Tk can be computed in

O(λk) flops too. k;l Tp can be computed in O(λp) flops, and k;Tp can be computed in
O(λpλk) flops. Hence T can be computed in O(L2) flops.

Rk;l can be computed in O(K ) flops, and Rk; can be computed in O(λk K ) flops.
Therefore R can be computed in O(K L) flops, or, more generously, in O(L2) flops.

��
Based on C , T and R, we re-arrange the sub-clusters, changing the membership of

at most two columns of Y at a time, while still ensuring descent of F . If the sub-clusters
are re-arranged then C , T and R must be updated efficiently by only re-computing
numbers that have changed. The details are an on obvious calculation and are not
presented in this paper.

In this section alone we will let F1 denote the value of F before the intended
operation, and let F2 denote the value of F after the intended operation. The operation
will cause a strict decrease in the value of F , if F1 − F2 > 0. There are four possible
operations we consider for each column Yk;l , and there is a fifth one for introducing a
new Yk;l .

Note that we do not entertain operations that look at three columns of Y at the same
time, since the step will become L times slower. However, in some situations it might
be worthwhile to do so, especially if L ∼ N .

3.3.1 Assigning X j its own cluster

If L < L1 there is room to create new clusters.

Proposition 3 If L < L1 and X j ∈ Sk;l , then introducing YK ;0 = X j will result in

F1 − F2 = ‖X j − Yk;l‖2 + β

(

‖X je
T − Y‖2F − L

γ

)

− ς‖X j − �‖2.

Proof From Eq. (1) we can compute

F1 − F2 = ‖X j − Yk;l‖2 − ς‖X j − �‖2 − β

γ

(
L − γ ‖X je

T − Y‖2F
)

.

��
This also gives oneway to interpretγ , and one of the effects ofς—it discourages the

creation of clusters away from �. It also shows one of the significant differences with
K -means,where newclusters can be easily introduced, and the number of clustersmust
be controlled explicitly. In our algorithm the constants indirectly influence the number
of clusters and should produce a smoother way to tune the algorithm in practice. Note
that Yk;l occurs twice in the above expression.
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3.3.2 Deleting an empty sub-cluster

It possible that after the columns of X have been re-assigned to the columns of Y ,
some subset Sk;l associated with Yk;l might be empty. In this case we give priority to
deleting this sub-cluster if possible and decrement L by 1 if we succeed.

Proposition 4 If Sk;l = {} then deleting Yk;l will result in

F1 − F2 = αk;l Tk + ςk;lCk;l + β

γ
(L − λk) − βRk;l . (2)

Once C, T and R, are available, this can be computed in O(1) flops.

Proof From Eq. (6) we can compute

F1 − F2 = αk;l Tk + β

γ
(L − λk − γ Rk;l) + ς ≤ k; lCk; l.

��

Proposition 5 If

γ � ς − 2β(L1 − 1)

2
(
‖X‖2

√
M + ς‖�‖2√L1

) , (3)

then expression (2) is always non-negative.

Proof Follows from Proposition 14. ��

Thuswith sufficiently small choice of γ the algorithmwill always delete empty sub-
clusters. We do not recommend setting γ this small as the upper bound is extremely
loose and would not enforce large gaps between clusters. If Yk;l is deleted then we
need to update C , T and R efficiently the details of which are skipped in this paper.

3.3.3 Splitting off a sub-cluster

We now develop a criteria to check if Yk;l should be split off into its own cluster in
case λk > 1, and if K should be increased by one.

Proposition 6 If Yk;l is split off into its own cluster

F1 − F2 = (α + β)k;l Tk − β

γ
(λk − 1).

This can be computed in O(1) flops once T and λ are available.
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Proof We can compute from Eq. (6)

F1 − F2 = αk;l Tk + β

γ
(L − λk − γ Rk;l) + ςk;lCk;l

−β

γ
(L − λk − γ Rk;l) − ςk;lCk;l − β

γ
(λk − 1 − γ k;l Tk)

= (α + β)k;l Tk − β

γ
(λk − 1).

��
We note that large values for γ will encourage sub-clusters to split off. This is

another reason to keep γ reasonably small. This also gives a good thumb rule for
tuning γ on synthetic data sets. If Yk;l is split off into its own cluster then C , T and R
have to be updated efficiently.

3.3.4 Transferring a sub-cluster to another cluster

Proposition 7 If Yk;l is transferred from cluster k to cluster p then

F1 − F2 = (α + β)(k;l Tk − k;l Tp) − β

γ
(λk − λp − 1),

and this can be computed in O(1) flops once T and λ are available.

Proof We compute from Eq. (6)

F1 − F2 =αk;l Tk+ςk;lCk;l+ β

γ
(λp − γ k;l Tp)+ β

γ

(
L − λp−λk − γ (Rk;l − k;l Tp)

)

−αk;l Tp − ςk;lCk;l − β

γ
(λk − 1 − γ k;l Tk)

−β

γ
(L − λp − λk − γ (Rk;l − k;l Tp))

= (α + β)k;l Tk − (α + β)k;l Tp + β

γ
(λp − λk + 1).

��
If Yk;l is transferred to cluster p, then T and R have to be updated efficiently. Note

that if γ is not sufficiently large, huge clusters will gobble up small clusters.

3.3.5 Swapping two sub-clusters

Proposition 8 If Yk;l is swapped with Yp;i then

F1 − F2 = (α + β)
(
k;l Tk + p;i Tp − k;l Tp − p;i Tk + 2k;lCp;i

)
.
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Proof From Eq. (6) we can compute

F1 − F2 = αk;l Tk + β

γ
(λp − γ k;l Tp) + α p;i Tp + β

γ
(λk − γ p;i Tk)

−α(p;i Tk − p;iCk;l) − α(k;l Tp − k;lCp;i ) − β

γ
(λp − γ p;i Tp

− γ p;iCk;l) − β

γ
(λk − γ k;l Tk − γ k;lCp;i )

= (α + β)k;l Tk + (α + β)p;i Tp − (α + β)k;l Tp − (α + β)p;i Tk
+ p;iCk;l(α + β) + k;lCp;i (α + β).

��
If the swap is carried out T and R must be updated.

3.4 Descending Y

Suppose we freeze the membership of the columns of X in the subsets Sk;l . What is
the optimal choice for Y ? In the K -means case the optimal choice is clearly the mean
of each cluster. In our case the answer is only a little more complicated. Define the
matrix A ∈ RL×L as follows:

k;l Ak;l = |Sk;l | + α(λk − 1) + ς − β(L − λk),

k;l Ak;n = −α, l 
= n ∈ Nλk ,

k;l Ap;i = +β, k 
= p ∈ NK , i ∈ Nλp , (4)

where |S| denotes the cardinality of the set S. Define the matrix W ∈ RN×L as
follows: Wk;l = Xk;l e. We assume that Wk;l = 0 if Sk;l = {}.
Proposition 9 For a fixed set of Sk;l and a fixed λ, there is exactly one minimum
point:

Y =
(
W + ς � eT

)
A−1.

Proof See proof of Proposition 15 and the discussion leading up to it. ��
Proposition 10 For a fixed set of Sk;l and a fixed λ, the unique critical point Y can
be computed in O(NL) flops.

Proof See Proposition 21 and the argument leading to it. ��
Note that this cost is comparable to the cost of assigning one column X j to its

optimal sub-cluster. So re-computing Y for every such assignment only affects the
constant in the flop count. However, the reason for doing so, is similar to that of
the non-standard K -means algorithm: it reduces the chance of producing empty sub-
clusters.
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4 Numerical experiments

Tests were carried out on a set of random synthetic data consisting of square clusters
(with no intentional sub-clusters). The data was generated in this manner to ensure
that neither K-means nor our method would have an unfair advantage.

LetM1 ∈ N+. Let Pk; ∈ RN×M1 be a randommatrixwith entries chosen uniformly
from [−1, 1]. Let S ∈ RN×K be a random matrix with entries chosen uniformly from
[−1, 1]. Let D ∈ RK×K be a diagonal matrix with entries chosen uniformly from
[−ν, ν] for ν ∈ R and fixed. Let Xk; = Pk; + k Dk Sk eT . The assumption is that the
columns of Xk; belong to a single cluster.

Let Uk; represent any other clustering of the columns of X into K1 clusters. Let
kCl denote the number of columns of Xl; that are in Uk;. Let

K(l) = argmaxk∈NK1
kCl ,

and

L(k) = argmaxl∈NK kCl .

The true cluster Xl; is largely in cluster UK(l);, and cluster Ul; largely consists of
elements of true cluster XL(k);. Let

S(U ) =
∑

l∈NK

∑

k∈NK1 ,k 
=K(l)

kCl +
∑

k∈NK1

∑

l∈NK ,l 
=L(k)

kCl .

(S(U ) is the sum of false positives and negatives when those concepts make sense.)
We can simplify this

S(U ) =
∑

l∈NK

(M1 − K(l)Cl) +
∑

k∈NK1

(|Uk;| − kCL(k))

= 2M −
∑

l∈NK

K(l)Cl −
∑

k∈NK1

kCL(k).

Using the nearest center rule we can partition the columns of X into K clusters 	k;
using the K columns of SD. Note that these may not be the same as Xk;. Let Y and 


be computed by the new method IMP, and let the resulting clustering of the columns
of X into K1 clusters be denoted by Zk;. We will measure the goodness of Y and 


by the number

Score IMP = S(	) − S(Z).

This number lies in the range [−2M, 2M] and bigger numbers are taken to indicate
that the clustering Z was good in some sense. Note that one advantage of this measure
is that it does not benefit lumping all of X into a single cluster, or, breaking it all up
into M clusters, since every clustering is compared to the putative right clustering Xk;.
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One disadvantage is that sometimes Xk; is not the right clustering and our method can
be penalized for finding it. Note that a score of 0 should be considered as excellent for
this data set.

We will also compare against a K -means algorithm. Our implementation uses the
same initialization routine asIMP except with amuch larger value of Q. It also updates
the cluster centers every time a column of X is re-assigned. We did this so as to avoid
empty clusters. The K -means algorithm was provided with the correct value of K and
ran it until it reached a local minimum. In fact we did this for both algorithms. IMP
was provided with a starting value of L1 = 2K and left to work out the true number
of clusters. Both algorithms were run until they reached their local minimum and no
attempt was made at early termination.

We chose some of the parameters as follows:

L1 = 2K ,

M =
{
KM1, no outliers,
(K + 1)M1, with M1 outliers,

ς = M1

2000
,

β = ς

2.00001(L1 − 1)
,

α = 2(L1 − 1)β,

Q (for K -means) = K ,

Q(for fIMP) =
{
30, if K = 100,
40, if K = 200,

ν = 10K 1/N log2(K ),

Number of trials =
{
100, if K = 100,
50, if K = 200.

The experimental results for K = 100 are summarized in Table 4 and for K = 200 in
Table 5. In these and subsequent tables we use the following notation for the column
labels. The column Losses1 reports the number of times the IMP score was strictly
negative out of 100 trials. The column “IMP score” reports the average score for IMP
across 100 trials. The columns Losses2 reports the number of times the score for IMP
was strictly worse than the score for K -means out of all trials. The column “K -means
score” reports the average score for K -means. The column “Time IMP” reports the
average running time for IMP in seconds. The column “Time K -means” reports the
average running time for K -means in seconds.

For this specific synthetic data set and initialization strategy we conjecture that IMP
takes O(NMK 2) flops to find a local minima while K -means takes O(NMK ) flops.
We conjecture that on average IMP comes close to the global minimum while K -
means is off by about one cluster. It is crucial to note that this synthetic data set has no
outliers, the clusters tend to collide more frequently near the origin, and the clusters
are convex (cubical) in shape. So these conjectures are only in this very restrictive
setting.
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Table 4 Experimental results for K = 100 over 100 trials

N M1 γ × 104 Losses1 IMP score Losses2 K-means score Time IMP Time K-means

7 30 4 42 −6 8 −31 0.60 0.04

14 30 4 53 −6 14 −28 1.08 0.07

28 60 4 47 −8 11 −58 4.03 0.26

56 120 3 26 −15 1 −129 17.32 1.16

112 240 3 23 −14 6 −237 80.81 5.35

Table 5 Experimental results for K = 200 over 50 trials

N M1 γ × 104 Losses1 IMP score Losses2 K-means score Time IMP Time K-means

7 30 2.5 36 −8 9 −39 4.60 0.23

14 30 2 40 −14 9 −48 8.12 0.39

28 60 2 33 −16 4 −83 29.60 1.23

56 120 2 33 −37 8 −158 138.91 5.60

112 240 0.8 16 −73 3 −296 665.94 23.98

Note that compared to Table 4 both M and K are doubled in corresponding rows

Table 6 Experimental results for K = 100 with M1 outliers over 100 trials

N M1 γ × 104 Losses1 IMP score Losses2 K-means score Time IMP Time K-means

7 30 4 33 −6 12 −24 0.45 0.06

14 30 4 54 −9 12 −27 0.80 0.10

28 60 4 32 −8 0 −86 2.33 0.57

56 120 3 21 −15 0 −400 9.71 4.00

112 240 3 14 −26 0 −1428 46.36 32.22

Table 7 Experimental results for K = 200 with M1 outliers over 50 trials

N M1 γ × 104 Losses1 IMP score Losses2 K-means score Time IMP Time K-means

7 30 2 31 −14 4 −44 3.98 0.29

14 30 2 39 −10 11 −33 6.99 0.45

28 60 2 34 −21 2 −90 22.13 2.00

56 120 2 25 −27 0 −337 96.93 11.89

112 240 1 19 −71 0 −1602 500.21 84.31

Table 4 both M and K are doubled in corresponding rows

The next set of experiments was essentially a repeat of the previous set with outliers
thrown in. In particular for every run we added M1 points distributed randomly in
[−ν, ν]N . The scoring however was restricted to the non-outliers and there was no
penalty for empty clusters. To enable K -means to do well in this situation we seeded it
with K + M1 centers. For IMP we chose L1 = 2K as usual. The results for K = 100
are shown in Table 6 and for K = 200 shown in Table 7.
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5 Conclusion

We have presented a single family of new objective functions for clustering. The
advantage of this family is that it retains the efficient time complexity of K -means
while allowing a different set of local minima that can be tuned via a few parameters.
However, there is a much larger family of objective functions that can be explored. For
example, we could consider other power laws on the distance, and we can allow many
more constants. Our objective function can be viewed as an average linkage 2-level
hierarchical clusteringwith gap penalties scheme. The linkage can be viewed as a com-
plete graph with cluster centers as vertices. A very useful model would be to replace
this graph with a spanning tree that is chosen dynamically to allow non-spherical clus-
ters and decrease the objective function (single linkage with gap penalties). However
the details for the corresponding fast solver becomes more complicated, so this will
be addressed in a separate paper.

Our objective function corresponds to a spring–mass model, where some of the
springs can be viewed either as having a negative spring constant, or, as being wrapped
around through the point at ∞. Based on this physical model, one can see that we can
consistently develop other objective functions, for example using spring–mass–charge
models (the exponents will no longer just be +2). What these models will loose is
the unique local minima for a fixed partition, but fast gradient descent will still be
possible. The details will be presented elsewhere.

It also would be nice to develop simple statistical models that can guide the user in
the choice of the objective functions.

Our algorithm requires O(L2) working space memory. One can implement an
algorithm that requires less working space memory but more flops. Our algorithm
has an O(L2) combinatorial part in each iteration. This makes it non-scalable with
respect to the number of clusters. We can make it O(L) by only considering O(1)
random cluster centers during the combinatorial phase. The details will be presented
elsewhere.

Last, but not least, a C implementation of the algorithm is available from our web-
site http://scg.ece.ucsb.edu.

Acknowledgements Wewould like to thank JiyunByun,KenRose andKenSullivan for useful discussions.

Appendix

Hessian of F

We begin with the calculation and simplification of the Hessian of F . For arbitrary
matrices B and C

B ⊗ C =
⎛

⎜
⎝

1B1 C 1B2 C · · ·
2B1 C 2B2 C · · ·

...
...

. . .

⎞

⎟
⎠ and vec(B) =

⎛

⎜
⎝

B1
B2
...

⎞

⎟
⎠ .
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For square matrices B we define tr(B) = ∑n
i=1 i Bi . Note that for a matrix B with n

columns ∥
∥
∥B − yeT

∥
∥
∥
2

F
= ‖B‖2F − 2yT Be + ‖y‖2n. (5)

Let Y−k;l denote the sub-matrix of Yk; obtained by dropping Yk;l from Yk;. Let Y−k;
denote the sub-matrix of Y obtained by dropping the sub-matrix Yk; from Y . All the
terms in F that depend on the single column Yk;l are

F(Y, λ) =
∥
∥
∥Yk;l eT − Xk;l

∥
∥
∥
2

F
+ α

∥
∥
∥Yk;l eT − Y−k;l

∥
∥
∥
2

F

+β

γ

(

L − λk − γ

∥
∥
∥Yk;l eT − Y−k

∥
∥
∥
2

F

)

+ς‖Yk;l − �‖2 + terms independent of Yk;l . (6)

We can use identity (5), expand and gather terms to obtain

F(Y, λ) = ‖Xk;l‖2F + α‖Y−k;l‖2F + β

γ

(
L − λk − γ ‖Y−k‖2F

)
+ ς‖�‖2

−2Y T
k;l(Xk;l e + αY−k;l e + ς� − βY−ke) + ‖Yk;l‖2(|Sk;l |

+α(λk − 1) + ς − β(L − λk)) + terms independent of Yk;l . (7)

From Eq. (7) we can compute the gradient:

1

2

∂F(Y, λ)

∂Yk;l
=Yk;l(|Sk;l |+α(λk−1)+ς−β(L−λk))−(Xk;l e+αY−k;l e+ς�−βY−ke).

(8)
Note that this is the (k; l)-th block component of the gradient viewed as a column
vector. It is useful to re-write this in a simpler form. First we observe that the matrix
A defined in Eq. (4) is symmetric; A = AT . Now we can write the gradient of F as

1

2

∂F(Y, λ)

∂Y
= Y A − (W + ς�eT ), (9)

where the gradient is now written as a matrix for convenience. In standard column
form we can write

1

2

∂F(Y, λ)

∂Y
= (A ⊗ I ) vec(Y ) − vec(W ) − ςe ⊗ �, (10)

where we used the fact that A is symmetric.

Proposition 11 A is strictly diagonally dominant and positive definite and

‖A−1‖2 <
1

ς − 2β(L − 1)
,

when L > 1.
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Proof We claim the diagonal entries are positive since

|Sk;l | + α(λk − 1) + ς − β(L − λk) ≥ ς − (L − 1)β > 0,

where we used the assumptions that λk � 1, and

β <
ς

2(L1 − 1)
≤ ς

2(L − 1)
.

The sum of the absolute values of the entries in row (k; l) is given by α(λk − 1) +
β(L − λk). We claim that this sum is strictly smaller than the corresponding diagonal
term since

|Sk;l |+α(λk − 1)+ς − β(L − λk) − α(λk − 1)−β(L − λk)≥ς − 2β(L − 1)>0.

Applying Gerschgorin’s theorem we get λmin(A) � ς − 2β(L − 1) > 0, from which
we obtain the desired upper bound on the 2-norm of A−1. ��
Proposition 12

‖W‖2 � ‖X‖2
√
M .

Proof From Wk;l = Xk;l e we obtain ‖Wk;l‖2 � ‖X‖2
√|Sk;l |. Therefore ‖W‖2 �

‖W‖F � ‖X‖2
√
M . ��

Proposition 13 All critical points of F are uniformly bounded.

Proof L > 1 is the non-trivial case. From Proposition 11, it follows that the critical
points that are solutions of the equation

∂F(Y, λ)

∂Y
= Y A − (W + ς�eT ) = 0,

satisfy the bound

‖Y‖ =
∥
∥
∥
(
W + ς�eT

)
A−1

∥
∥
∥ �

∥
∥
∥W + ς�eT

∥
∥
∥

∥
∥
∥A−1

∥
∥
∥ � ‖W‖ + ς‖�‖‖e‖

ς − 2β(L − 1)
< ∞,

for any sub-multiplicative norm. Since F is differentiable and bounded from below,
there are no other critical points to consider. Using Proposition 12 we also have the
explicit uniform upper bound

‖Y‖2 � ‖X‖2
√
M + ς‖�‖2

√
L

ς − 2β(L − 1)
� ‖X‖2

√
M + ς‖�‖2√L1

ς − 2β(L1 − 1)
.

��

123



418 S. Chandrasekaran, A. Rajagopal

Proposition 14

Rk;l �
2L1

(
‖X‖2

√
M + ς‖�‖2√L1

)

ς − 2β(L1 − 1)
.

Proof Follows from the previous proposition and the easily established upper bound
Rk;l � 2L1‖Y‖2. ��

From Eq. (8) we can compute the Hessian of F , denoted as 2H :

k;l Hk;l = 1

2

∂2F(Y, λ)

∂2Yk;l
= (|Sk;l | + α(λk − 1) + ς − β(L − λk))I,

k;l Hk;n = 1

2

∂2F(Y, λ)

∂Yk;l∂Yk;n
= −α I,

k;l Hp;i = 1

2

∂2F(Y, λ)

∂Yk;l∂Yp;i
= β I.

We can represent the Hessian in matrix form as H = A ⊗ I , which also follows from
Eq. (10).

Proposition 15 All critical points of F are of the form Y = (W + ς�eT )A−1 and
correspond to local minima of F.

Proof Follows from the positive-definiteness of the Hessian H . ��
Note that the formula for the critical point is a bit deceptive in appearance. For

example, there is more than one critical point, since the choice of λ and Sk;l determine
W and A.

Rapid application of A−1

We will depend on the Sherman–Morrison–Woodbury (SMW) formula

(I +UV T )−1 =
(
I −U (I + V TU )−1V T

)
. (11)

In this section let D denote the diagonal matrix k;l Dk;l = |Sk;l |+αλk+ς −β(L−λk).
All k;l Dk;l can be computed in O(L) flops once |Sk;l | is known. Note that k;l Dk;l =
k;l Ak;l + α � 0, since we have assumed that α � 0. Let B denote the block-diagonal
matrix k;Bk; = (α + β)eeT , for k ∈ NK , where the size of each block is chosen such
that A = D − B + βeeT . Taking the cue from SMW, we first compute (D − B)−1

noting that we just have to invert the K diagonal blocks

k;Dk; − k;Bk; = k;Dk; − (α + β)eeT

= k;D1/2
k;

(
I − (α + β) k;D−1/2

k; eeT k;D−1/2
k;

)

k;D1/2
k; .
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Let τk = eT k;D−1
k; e = ∑

l∈Nλk
k;l D−1

k;l , where τ ∈ RK can be computed in O(L)

flops if k;l Dk;l is available.

Proposition 16

(k;Dk; − k;Bk;)−1 = k;D−1
k; + α + β

1 − (α + β)τk
k;D−1

k; ee
T
k;D−1

k; .

Proof By Eq. (11). ��
Proposition 17

σ = eT (D − B)−1e =
∑

k∈NK

τk

1 − (α + β)τk
.

Proof By direct calulcation. ��
Proposition 18

A−1 = (D − B)−1 − β

1 + βσ
(D − B)−1eeT (D − B)−1.

Proof By Eq. (11). ��
Proposition 19

εk;l =
(
(D − B)−1e

)

k;l = 1

(1 − (α + β)τk) k;l Dk;l
.

The computation of ε costs O(L) flops once k;l Dk;l and τk have been computed.

Proof By direct computation with formulas we have already found. ��
Proposition 20 Let

ψk;l = zk;l
k;l Dk;l

, and μk =
∑

l∈Nλk

ψk;l .

Then

wk;l =
(
(D − B)−1z

)

k;l = ψk;l + (α + β)μk

(1 − (α + β)τk)k;l Dk;l
.

The cost of computing w = (D − B)−1z is O(L) flops once k;l Dk;l is available.

Proof By direct computation with formulas we have already found. ��
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Proposition 21

A−1z = w − β(εT z)

1 + βσ
ε.

The cost is O(L) flops once σ , w and ε have been computed.

Proof By direct computation with formulas we have already found. ��
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