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Abstract. The main result of the present paper is a method to transform a
matrix or operator which has a hierarchical semi-separable (HSS) represen-
tation into a URV (Moore-Penrose) representation in which the operators U
and V represent collections of efficient orthogonal transformations and the
block upper matrix R still has the HSS form. The paper starts with an in-
troduction to HSS-forms and a survey of a recently derived multi resolution
representation for such systems. It then embarks on the derivation of the main
ingredients needed for a Moore-Penrose reduction of the system while keeping
the HSS structure. The final result is presented as a sequence of efficient algo-
rithmic steps, the efficiency resulting from the HSS structure that is preserved
throughout.
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1. Introduction

Many physical systems are modeled by systems of differential equations, integral
equations or combinations of them. Solving these systems requires discretization
of the equations and leads to large systems of algebraic equations. In the case
of systems governed by linear equations, the resulting system of equations will
be linear as well and can be solved either directly or iteratively, involving a pre-
conditioner and a Lanczos-type recursion. In the case of non-linear systems, the
discretized system will be non-linear as well and an iterative procedure has to be
set up to find the solution. Such a procedure is, e.g., of the ‘Newton-Raphson’
type and would in turn require the solution of a system of linear equations, now
involving a differential such as a Jacobian. In all cases the resulting systems tend to
lead to matrices of very large dimensions, even for fairly small problems, so that
solvers using standard numerical procedures quickly run out of steam. Luckily,
many systems exhibit quite a bit of structure that can be exploited to make the
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solver more efficient. In the case of a discretized system for a differential equation,
the resulting matrix structure will be very sparse, as only entries corresponding
to nearby points will be different from zero. In this case, the matrix-vector multi-
plication can be efficiently executed. Iterative methods are well suited to exploit
this fact, but they are dependent on a low-complexity approximant of the inverse
of the original system, the so-called preconditioner. Approximate solutions of the
system can be iteratively constructed via low-complexity calculations, provided
the pre-conditioner exhibits the necessary structure.

In the case of integral equations, it has been remarked by Gohberg, Kailath
and Koltracht [9] and Rokhlin [12] that low rank approximations of the integral
kernel lead to large submatrices of low rank in the resulting system of equations.
Exploiting this structure which was termed ‘Semi-Separable’ leads to solution pro-
cedures that are linear in the size of the matrix and quadratic in the size of the
approximation. A systematic method to obtain such low rank approximations was
proposed by Greengard and Rokhlin [10] and is known as the Fast Multipole
Method. These original approaches suffered from numerical problems as the use of
backward stable orthogonal transformations in this context was not yet well un-
derstood. The introduction of time-varying system theory to model the system of
equations [13] provided for the necessary structure to allow for more general types
of transformations than those used by the original authors cited. A survey of these
techniques can be found in the book [6]. Based on these ideas, the Semi-Separable
structure was extended to a more generic form called ‘Quasi-Separable’ and nu-
merically stable system solvers were developed for this structure by a number of
authors [8, 3, 7].

Although these developments lead to a satisfactory and useful theory, it was
also evident that they did not exploit the structural properties of most physical
systems sufficiently. Two examples may suffice to illustrate this point. In the case
of a partial differential equation in 3D space, discretization coordinates will have
three indices, say {i, j, k}, and interaction between values in close-by points may
be expected. To construct the interaction matrix, each discretization coordinate
has to be assigned a single index. In case of a regular grid of dimension N3, the
index assignment would run as i + Nj + N2k and the resulting matrix would
have a hierarchical structure consisting of a diagonal bands of blocks of dimension
N2 each consisting of diagonal bands of blocks of dimension N , which in turn
consist of scalar diagonal bands. The Semi-Separable or Quasi-Separable theory
is insufficient to handle such types of matrices, it gets a good grip only on the
top level of the hierarchy, while the structure of the lower hierarchical levels is
greatly disturbed [5]. Also in the case of the multipole method and assuming the
distribution of ‘objects’ handled by the method in 3D space to be fairly general
(assuming of course that the multipole assumption holds as well), a similar problem
will arise: many submatrices will be of low rank, but they will have a ‘hierarchical
ordering’, restricting the applicability of the Semi-Separable method.

In the present paper we deal with an intermediate structure which has a nice
hierarchical (or equivalently multi-resolution) structure and is capable to cope
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with the problem mentioned in the previous paragraph. The structure was first
presented in [4], and a few solvers for it were presented [11]. In particular, [2] shows
how the structure can be reduced to a sparse, directly solvable system, using a state
space model of intermediate variables, much as was done for the Semi- or Quasi-
separable case. In contrast to the latter the state-space model turns out to have a
hierarchical (multi-resolution) structure, which can efficiently be exploited. These
straight solvers assume the original system to be square non-singular, allowing for
partial recursive elimination of unknowns and recursive back-substitutions as the
algorithm proceeds. In the present paper we propose a new, backward stable solver
that finds the Moore-Penrose solution for a general system of equations, namely
a system that is not assumed to be square, non-singular. Our goal is to obtain
the same order of numerical complexity as the straight solvers, but now for the
Moore-Penrose case.

2. HSS representations

The Hierarchical Semi-Separable representation of a matrix A is a layered repre-
sentation of the multi-resolution type, indexed by the hierarchical level. At the top
level 1, it is a 2× 2 block matrix representation of the form:

A =
[

A1;1,1 A1;1,2

A2;2,1 A2;2,2

]
(2.1)

in which we implicitly assume that the ranks of the off-diagonal blocks is low
so that they can be represented by an ‘economical’ factorization (‘H ’ indicates
Hermitian transposition, for real matrices just transposition), as follows:

A =
[

D1;1 U1;1B1;1,2V
H
1;2

U1;2B1;2,1V
H
1;1 D1;2

]
. (2.2)

The second hierarchical level is based on a further but similar decomposition of
the diagonal blocks, respect. D1;1 and D1;2:

D1;1 =
[

D2:1 U2;1B2;1,2V
H
2;2

U2;2B2;2,1V
H
2;1 D2;2

]
,

D1;2 =
[

D2;3 U2;3B2;3,4V
H
2;4

U2;4B2;4,3V
H
2;3 D2;4

] (2.3)

for which we have the further level compatibility assumption

span(U1;1) ⊂ span
([

U2;1

0

])
⊕ span

([
0

U2;2

])
, (2.4)

span(V1;1) ⊂ span
([

V2;1

0

])
⊕ span

([
0

V2;2

])
etc . . . (2.5)

This spanning property is characteristic for the HSS structure, it is a kind of
hierarchical ‘Lanczos’ property and allows a substantial improvement on the nu-
merical complexity as a multiplication with higher level structures always can be
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done using lower level multiplications, using so called ‘translation operators’

U1;i =
[

U2;2i−1R2;2i−1

U2;2iR2;2i

]
, i = 1, 2, (2.6)

V1;i =
[

V2;2i−1W2;2i−1

V2;2iW2;2i

]
, i = 1, 2. (2.7)

Notice the use of indices: at a given level i rows respect. columns are subdivided
in blocks indexed by 1, . . . , i. Hence the ordered index (i; k, �) indicates a block at
level i in the position (k, �) in the original matrix. The same kind of subdivision
can be used for column vectors, row vectors and bases thereof (as are generally
represented in the matrices U and V ).

In [2] it is shown how this multilevel structure leads to efficient matrix-vector
multiplication and a set of equations that can be solved efficiently as well. For the
sake of completeness we review this result briefly here. Let us assume that we want
to solve the system Ax = b and that A has an HSS representation with deepest
hierarchical level K. We begin by accounting for the matrix-vector multiplication
Ax. At the leave node (K; i) we can compute

gK;i = V H
K;ixK;i.

If (k; i) is not a leaf node, we can infer, using the hierarchical relations

gk;i = V H
k;ixk;i = WH

k+1;2i−1gk+1;2i−1 + WH
k+1;2igk+1;2i.

These operations update a ‘hierarchical state’ gk;i upwards in the tree. To com-
pute the result of the multiplication, a new collection of state variables {fk;i is
introduced for which it holds that

bk;i = Ak;i,i + Uk;ifk;i

and which can also be computed recursively downwards by the equations[
fk+1;2i−1

fk+1;2i

]
=
[

Bk+1;2i−1,2igk+1;2i + Rk+1;2i−1fk,i

Bk+1;2i,2i−1gk+1;2i−1 + Rk+1;2ifk;i

]
,

the starting point being f0; = [], an empty matrix. At the leaf level we can now
compute (at least in principle - as we do not know x) the outputs from

bK;i = DK;ixK;i + UK;ifK;i.

The next step is to represent the multiplication recursions in a compact form using
matrix notation and without indices. We fix the maximum order K as before. Next
we define diagonal matrices containing the numerical information, in breadth first
order:

D = diag[DK;i]i=1,...,K , W = diag[(W1;i)i=1,2, (W2;i)i=1···4, . . . ], etc . . .

Next, we need two shift operators relevant for the present situation, much as
the shift operator Z in time-varying system theory [6]. The first one is the shift-
down operator Z↓ on a tree. It maps a node in the tree on its children and is a
nilpotent operator. The other one is the level exchange operator Z↔. At each level
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it exchanges children of the same node and is a permutation operator. Finally, we
need the leaf projection operator Pleaf which on a state vector which assembles in
breadth first order all the values fk;i produces the values of the leaf nodes (again in
breadth first order). The state equations representing the efficient multiplication
can now be written as{

g = PH
leafV

Hx + ZH
↓ WHg

f = RZ↓f + BZ↔g
(2.8)

while the ‘output’ equation is given by

b = Dx + UPleaf f . (2.9)

This system of equations is sparse and can always be solved (even efficiently, that
is by visiting the given data once), because (I−WZ↓) and (I−RZ↓) are invertible
operators due to the fact that Z↓ is nilpotent. We obtain

A = D + UPleaf(I −RZ↓)−1B(I − ZH
↓ WH)−1PleafVH)x = b. (2.10)

Various strategies can be used to solve this sparse system of equations, we refer
to the paper mentioned for more information. One elimination procedure that is
aesthetically attractive follows the hierarchical ordering of the data bottom up. In
a tree that is two levels down the elimination order would be:

(f2;1, g2;1, x2;1), (f2;2, g2;2, x2;2), (f2;3, g2;3, x2;3), (f2;4, g2;4, x2;4),

(f1;1, g1;1), (f1;2, g1;2), (f0;1, g0;1).
(2.11)

The computation must start at the leaf nodes, where multiplication with the base
vectors takes place, in higher up locations there is only multiplication with transfer
operators which relate the higher up bases to the bases at the leaf level. In the
paper cited it is shown that this procedure hierarchically eliminates unknowns
without producing any fill ins in the original sparse matrix describing the system.

The present paper aims at presenting a QR-type elimination procedure ca-
pable of deriving the Moore-Penrose inverse of a (presumably singular or ill condi-
tioned) problem. The additional difficulty here is that elimination of variables can-
not be done on the fly, because the Moore-Penrose solution can only be determined
after the whole structure has been visited. Therefore we will aim at constructing
the Moore-Penrose inverse rather than at solving the equations recursively as they
appear.

3. Preliminaries

We shall use a number of reduction theorems (in a well-specified order).

Proposition 1. Let V =
[

V1

V2

]
be a (tall ) full rank matrix of size (k + m) × k

with m ≥ k, then an orthogonal transformation Q that reduces V to the form

QV =
[

0
R

]
(3.12)
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with R square non-singular exists and can be chosen of the form

Q =
[

w1 −LHwH
2

w2 I − w2KwH
2

]
(3.13)

in which w1 = V1R
−1, w2 = V2R

−1, K is a hermitian matrix that satisfies

I − w2KwH
2 = (I − w2w

H
2 )1/2 (3.14)

and L a unitary matrix that satisfies

(I −KwH
2 w2) = w1L. (3.15)

Proof. The theorem claims the existence of K and L implicitly. If V1 happens to be
invertible, then this is straightforward, the difficulty is when V1 is not invertible,
we use an implicit proof to cover the general case. R is defined as a square matrix
that satisfies

V H
1 V1 + V H

2 V2 = RHR (3.16)

and its non-singularity follows from the non-singularity assumption on V . Next let

w1 = V1R
−1 and w2 = V2R

−1, then w =
[

w1

w2

]
is isometric, wH

1 w1 is contractive

and an eigenvalue decomposition

wH
1 w1 = v1σ

2vH
1 (3.17)

can be chosen such that the positive diagonal matrix σ satisfies 0 ≤ σ ≤ I. Since
w1 is square, a unitary u1 will exist such that w1 = u1σvH

1 (the proof goes as in
the proof of the SVD). Next, wH

2 w2 = I−wH
1 w1 and an eigenvalue decomposition

for it is
v1(I − σ2)vH

1 . (3.18)

Since w2 is tall by assumption, there will exist u2 isometric such that

w2 = u2(I − σ2)1/2vH
1 . (3.19)

It is now easy to verify directly that

Q =
[

u1σvH
1 −u1(I − σ2)1/2uH

2

u2(I − σ2)1/2vH
1 I − u2(I − σ)uH

2

]
(3.20)

is a unitary matrix. Putting K = v(I +σ)−1vH and L = vuH
1 produces the desired

form of Q. The converse check that any Q with the given form is unitary is also
immediate by direct verification. �

The theorem shows that a unitary matrix close to identity (where ‘close’
means ‘the difference is a low rank matrix’) can be constructed that reduces a tall
matrix to a small triangular matrix. In Numerical Analysis one traditionally uses
‘Householder transformations’ for this purpose, the transformation presented here
has the advantage that its determinant can be controlled more easily.
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Proposition 2. Let T =
[

UV H

D

]
in which U is a tall, isometric matrix of rank

δ, T is of dimension (k +m)×m, accordingly partitioned and of full column rank,
and k ≤ m. Let NHN = V V H + DHD, in which N is a square matrix. Then N
is non-singular, and there exists a unitary matrix Q such that

T = Q

[
0
N

]
. (3.21)

Moreover, Q can be chosen of the form

Q =
[

d1 UvH
r

u�v
H
� d2

]
(3.22)

in which u� has at most the same rank as U and d1 is a rank δ perturbation of the
unit matrix.

Proof. The non-singularity of N follows directly from the full column rank as-
sumption. The proof is then based on ‘joint’ SVD’s of UV HN−1 and DN−1 and
then completing the form. More precisely, let N−T V UUHV HN−1 = vσ2vH be
an eigenvalue decomposition with unitary v and a positive diagonal matrix σ of
dimension m×m. Let πk =

[
Ik 0m−k

]
. Then there will exist unitary matrices

u1 and u2 so that [
UV HN−1

DN−1

]
=
[

u1πkσvH

u2(I − σ2)1/2vH

]
. (3.23)

(It is not hard to check that the right-hand side form is indeed isometric!) Let
moreover σk = πkσπH

k . A Q that satisfies the requirements of the theorem is now
easily constructed as

Q =
[

u1(I − σ2
k)1/2uH

1 u1πkσvH

−u2σπH
k uH

1 u2(I − σ2)1/2vH

]
. (3.24)

As the rank of σ is at most equal to the rank of U and UV HN−1 = u1πkσvH there
exist vr such that u1πkσvH = UvH

r . Finally, (I−σ2
k)1/2 = I−σδ for some positive

diagonal matrix σδ of rank at most δ – as σk itself has rank at most δ. Hence d1

is at most a matrix of rank δ different from the unit matrix of dimension k. �

The exact form of the reduction matrices (the ‘Q’-matrices in the procedure)
is of importance for the complexity of the algorithms that will be derived next,
because they have to be propagated to other submatrices than the one they are
originally derived from. We shall measure computation complexity by tallying
how many times data items are visited. If an m × n matrix multiplies a vector
of dimension n with a direct algorithm, then the complexity by this measure is
exactly m ∗ n, all data items in the matrix are visited once (the operation tally
is higher because each multiplication is followed by an addition except the last).
The complexity of the row absorption procedure of the previous theorem is δm2
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where δ is the number of columns in the U or V matrix, because the result can be

obtained through a QR factorization on the matrix
[

V H

D

]
.

4. HSS row absorption procedure

Our next goal is to derive a so-called ‘HSS row absorption’ matrix – one of the
main ingredients in the HSS Moore-Penrose reduction process. Starting point is
the form ⎡⎣ w1v

H
� w2v

H
r

d1 urv
H
r

u�v
H
� d2

⎤⎦ (4.25)

in which we assume the top entries to be ‘skinny’, i.e., of low rank compared to
the dimensions of the matrix (this assumption is not used explicitly but underlies
the usefulness of the procedure – as discussed above, the HSS compatibility has to
be preserved!). We introduce a somewhat simplified notation, whenever clear from
the context we drop the level indication. E.g., in the above matrix, the notation
Ur and U1;r or U1;1 would be equivalent. The goal of the procedure is to reduce
the matrix to a row independent HSS form using orthogonal transformations.
Important in the reduction procedure are the properties of the overall orthogonal
reducing matrix, namely which block entries in it have an HSS form and which
are ‘skinny’ – i.e., have low rank of the same order as the rank of the top entries
to be absorbed. The procedure uses the properties derived in the first section.

Step 1. Find orthogonal q so that[
q11 q12

q21 q22

] [
w2

ur

]
=
[

r
0

]
(4.26)

with r square non-singular and q22 close to a unit matrix, and apply the transfor-
mation to the original after embedding:[

q
I

]⎡⎣ w1v
H
� w2v

H
r

d1 urv
H
r

u�v
H
� d2

⎤⎦ =

⎡⎣ q11w1v
H
� + q12d1 rvH

r

q21w1v
H
� + q22d1 0

u�v
H
� d2

⎤⎦ . (4.27)

Let
d′1 = q21w1v

H
� + q22d1 (4.28)

the product of a lower level form (d1) with a ‘skinny’ perturbation of the unit
matrix (q22) followed by a ‘skinny’ additive perturbation (q21w1v

H
� ). The new

look of the matrix is, after an exchange of block-rows⎡⎣ d′1 0
q11w1v

H
� + q12d1 rvH

r

u�v
H
� d2

⎤⎦ (4.29)
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in which the product q12d1 is ‘skinny’, but increases the rank of that term beyond
the rank of v� – as can be expected.

Step 2. We now work on the right part of the matrix. Let p be an orthogonal
matrix that reduces [

rvH
r

d2

]
. (4.30)

Since d2 is square (this assumption is not really necessary!) the result will have
the form [

0
d′2

]
. (4.31)

This procedure amounts to a lower level HSS row absorption problem (p cannot
be claimed to be ‘skinnily’ away from a unit, it will have whatever structure it
inherits from the lower level operation, which is isomorphic to what is happening
at this level). Applying p to the left column will produce

p

[
q11w1v

H
� + q12d1

u�v
H
�

]
=
[

v′T

u′
�v

′T
�

]
. (4.32)

The matrix has now been brought to the form⎡⎣ d′1 0
v′T 0

u′
�v

′T
� d′2

⎤⎦ . (4.33)

Now, if the original matrix is non-singular (has full column rank), then d′2 will
have full row rank (also by construction) and a further, lower level absorption is
needed (using a new transformation matrix s) on[

d′1
v′T

]
(4.34)

to yield the end result in the form⎡⎣ d′′1 0
0 0

u′
�v

′T
� d′2

⎤⎦ , (4.35)

in which both d′′1 and d′2 have full row rank (and in case the original matrix was
non-singular, also full column rank and hence will be square). It can be remarked
that however one looks at it, the full matrix has to be involved in the procedure,
but all operations are either elementary or absorptions at a lower level or involve
a very skinny transformation at the higher level (the q matrix).

Collecting the transformations we find for the overall Q (the fat entries are
full, lower level matrices, q22 is skinnily away from unitary and the non-fat entries
are skinny):

Q =

⎡⎣ s11 s12

s21 s22

I

⎤⎦⎡⎣ I
p11 p12

p21 p22

⎤⎦⎡⎣ q21 q22

q11 q12

I

⎤⎦ . (4.36)
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Working out (should not be done in practice) produces:

Q =

⎡⎣ s11q21 + s12p11q11 s11q22 + s12p11q12 s12p12

s21q21 + s22p11q12 s21q22 + s22p11q22 s22p12

p21q11 p21q12 p22

⎤⎦ . (4.37)

The most critical term is the 1,2 where the product of two full matrices occurs:
s11q22. But q22 is only ‘skinnily’ away from a unit matrix, hence this product also
has a ‘skinny’ algorithm. The final form for the matrix Q produces:⎡⎣ Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎤⎦⎡⎣ w1v
H
� w2v

H
r

d1 urv
H
r

u�v
H
� d2

⎤⎦ =

⎡⎣ d′′1 0
0 0

u′
�v

′T
� d′2

⎤⎦ (4.38)

in which the not-boldface entries of Q have low rank (skinny products), the bold-
face ones are of HSS form, and both d′′1 and d′2 have full column rank, and d′′1 , d′2
have full row rank.

Complexity calculation

As the absorption procedure turns out to be the main workhorse in the reduction
procedure, we proceed to its complexity tally. Let us assume that the vectors to be
absorbed are of dimension δ1, while the off-blocks in the lower HSS representation
are of (effective) rank δ2 ≥ δ1. Let M(n, δ) indicate the computational complexity
of multiplying an HSS matrix of dimension n with a block of δ vectors, and C(n, δ)
the complexity of the absorption procedure of a vector block of dimension δ by
a dimension n HSS matrix. The complexity of the HSS absorption procedure can
now be tallied. An important observation is that the computation of q11w1v

H
� in

this step can be postponed until the bottom level of the procedure is obtained.
Let us assume that this bottom level is characterized by matrices of dimensions
Nbot ×Nbot, then the complexity count would be as follows:

Step 1: δ1Nbot + 2M(n
2 , δ1);

Step 2: C(n
2 , δ1) + M(n

2 , 2δ1) = C(n
2 , δ1) + 2M(n

2 , δ1);
Step 3: C(n

2 , 2δ1) = 2C(n
2 , δ1).

Hence the total tally is

δ1Nbot + 4M(
n

2
, δ1) + 3C(

n

2
, δ1). (4.39)

We see that the complexity is not directly dependent on the top level dimension n,
and just linearly on the lower level dimensions, where presumably similar compu-
tations will take place, to be shown in the next section. It is of course dependent
on the local rank (δ1) but also in a linear fashion. Another important point is
in what state the matrix is left behind after the reduction procedure, more pre-
cisely whether the HSS relations with the other submatrices in the original are
still valid. This point will be taken up in the next section where we consider the
overall procedure.

The dual of the absorption will be needed as well in the sequel. At this point
there is no substantial difference between the two procedures, one works on the
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rows, the other on the columns of the HSS matrix, producing a low complexity
calculation that preserves the HSS structure.

5. An HSS Moore-Penrose reduction method

For ease of discussion, we assume that the system is a ‘flat’ system of full row
rank, and furthermore given in the traditional HSS form. In case the assumption
does not hold then the later steps in the algorithm will have to be modified, but
this would not entail major difficulties. We start out with a matrix in HSS form,
i.e., it is of the form [

D1 UuV H
u

U�V
H
� D2

]
(5.40)

in which the low rank matrices Uu, Vu, U�, V� are HSS compatible, i.e., can be
generated from the lower HSS levels, as explained in the introduction. To keep low
complexity calculations it will be imperative to preserve the HSS compatibility
structure whenever appropriate. The first step is the replacement of the original
HSS problem (MPHSS) by an equivalent modified set of equations as follows:[

D1 UuV H
u

U�V
H
� D2

]
⇒

[
D1 −D1V�V

H
� D1V� UuV H

u

0 U� D2

]
. (5.41)

Here we assume that V� is a ‘skinny’ orthonormal set of columns and that D1 and
D2 possibly again have HSS forms of lower hierarchical level. Before discussing
the merits of this step, and then the further steps to be executed, we verify the
algebraic correctness of this first step. Let V ′

� be an orthogonal complementary set
of columns of V�, then postmultiplying the original system with an appropriately
dimensioned orthogonal matrix embedding [V ′

� V�] produces the equivalent system
(the second member has to be adapted in an obvious way, we skip this step):[

D1 UuV H
u

U�V
H
� D2

] [
V ′

� V�

I

]
=
[

D1V
′
� D1V� UuV H

u

0 U� D2

]
(5.42)

(D1 −D1V�V
H
� )V ′

� = D1V
′
� . (5.43)

The 1,1 block entry D1V
′
� may now be replaced by D1(I − V�V

H
� ) (increasing the

size of the matrix) because the MP solutions of the two systems are closely related:

if
[

y1

y2

]
solves the latter, then

[
V ′

� y1

y2

]
will solve the former, due to the fact

that V ′T
� V ′

� = I. The increase in size will be removed in later ‘absorption’ steps.
In this step, D1 gets modified by a matrix that is only ‘skinnily’ away from the
unit matrix.

Before proceeding, we study the effects (I − V�V
H
� ) has on D1 and whether

HSS compatibility is preserved in this step. Hence, we assume that D1 has in turn
a lower level HSS form. To avoid a surfeit of indices, we replace V� by V and



80 P. Dewilde and Sh. Chandrasekaran

express the lower level HSS form again with the same notation as before:

D1 ←
[

D1 UrV
H
r

U�V
H
� D2

]
. (5.44)

Furthermore, because of the HSS relations, we have

V =
[

V1

V2

]
=
[

V�W�

VrWr

]
(5.45)

(which could also be expressed as

V =
[

V�

Vr

]
�
[

W�

Wr

]
(5.46)

in which the W ’s are assumed tall matrices, and the � indicates pointwise multi-
plication of block entries – assuming matching dimensions of course). We find as
result for this operation[

D1 − (D1V1 + UrV
H
r V2)V H

1 UrV
H
r − (D1V1 + UrV

H
r V2)V H

2

U�V
H
� − (U�V

H
� V1 + D2V2)V H

1 D2 − (U�V
H
� V1 + D2V2)V H

2

]
. (5.47)

We see that the ranks of the off-diagonal terms have not increased, but the col-
umn basis has changed, and it may be useful to keep the original column vectors
although they may not amount to a basis (they are able to generate the column
vectors though). Taking this conservative approach we may write the result so far
as [

D′
1 [Urn Ur]WH

rnV H
r

[U�n U�]WH
�nV H

� D′
2

]
(5.48)

in which ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Urn = D1V1

D′
1 = D1 − (Urn + UrV

H
r V2)V H

1

WH
rn =

[
−WH

r

I − V H
r V2W

H
r

]
D′

2 = D2 − (U�n + U�V
H
� V1)V H

2

U�n = D2V2

WH
�n =

[
−WH

�

I − V H
� V1W

H
�

]
(5.49)

all quantities that can now be computed at the lowest level, and are either ‘skinny’
or ‘skinny’ updates.

Going back to the original procedure, the same strategy can now be applied
to the rightmost block in eq. 5.42, this produces:⎡⎣ U1;rV

H
1;r,3 U1,rV

H
1;r,4

D2;3 U2;rV
H
2;r

U2;�V
H
2;� D2;4

⎤⎦[ V ′
2;� V2;� 0
0 0 I

]

=

⎡⎢⎣ U1;rV
H
1;r,3V

′
2;� U1;rV

H
1;r,3V2;� U1;rV

H
1;r,4

D2;3(I − V2;�V
H
2;�)V

′
2;� D2;3V2;� U2;rV

H
2;r

0 U2;� D2;4

⎤⎥⎦ .

(5.50)
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Again, V ′
2,� can be taken out to the second member. Notice also that the size of

the system has increased slightly – this is a convenience which keeps the entries in
the main block diagonal square, an alternative strategy will be briefly discussed
later. We have now reached the ‘bottom’ as far as this latter part of the matrix is
concerned. We can now start eliminating the newly created spurious entries which
are all ‘skinny’ and share column bases. At the bottom we find[

U�,4 U2;� D2;4

]
. (5.51)

This can now be reduced by a direct column absorption procedure, dual of the
procedure presented in theorem 2. Since we have assumed row-independence, the
theorem is directly applicable. This step will reduce the matrix to the form[

0 D′
2;4

]
(5.52)

in which D′
2;4 has become square non-singular, and the row basis of the submatrix

on top have been modified (without modification of the column basis), and this
by ‘skinny’ calculations. Notice that only submatrices belonging to low-rank off-
diagonal blocks are affected by this step, in hierarchical order, as no central matrix
resides on top. The adjustment computation can also be restricted to the lowest
level in the hierarchy as all the higher levels will follow suit. Since this is an
important ingredient in preserving low computational complexity, we make this
step more explicit. The full submatrix to be reduced has the following form:⎡⎣ D1V� U1;rV

H
1;r,3 U1;rV

H
1;r,3V2;� U1;rV

H
1;r,4

U�,3 D2;3(I − V2;�V
H
2;�) D2;3V2;� U2;rV

H
2;r

U�,4 0 U2;� D2;4

⎤⎦ . (5.53)

The bottom block rows in this expression have the necessary HSS compatibility
relationship to allow for HSS column absorption. D1V� involves new data resulting
from eliminating the bottom block. The computation of this term is unavoidable
as this is the only place in the matrix where the data survives, but it has already
been executed as part of the procedure to computer D1−D1V�V

H
� described earlier

in this section. The entries in the first block-column all have the same reduced row
vector [Iδ1 ]. The same is true one level down (where a similar procedure has been
performed), D2;3V2;� is what remains from that elimination procedure. The overall
row basis matrix that will be affected by the present HSS column absorption
procedure has now the form ⎡⎣ Iδ1

Iδ2

V H
2;r

⎤⎦ (5.54)

where it may be remarked that the columns on top of the zero entries will be
unaffected by the absorption procedure. The procedure scrambles this vector to
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produce a new row basis, and after reordering of columns produces the right sub-
matrix⎡⎢⎣ U1;rV

H
1;r,3 [D1V� U1;rV

H
1;r,3V2;�]V

′,H
2;r.4 U1;rV

′H
1;r,5

D2;3(I − V2;�V
H
2;�) [U�.3 D2;3V2;�]V ′H

2;r,4 U2;rV
′H
2;r,5

0 0 D′
2;4

⎤⎥⎦ . (5.55)

It should be clear that the HSS relations still hold (although the rank has neces-
sarily doubled) both for the row bases and for the column bases. This procedure
can now be repeated one step further (concerning the rows of hierarchical index
2;3), involving an absorption of [U�3 D2;3V2;�]V ′H

2;r,4 into D2;3(I − V2;�V
H
2;�), a pro-

cedure that is again of the HSS absorption type and can be executed at an even
lower level (level 3). The result so far yields the following general form (redefining
entries and dropping primes for better visualization)⎡⎢⎢⎣

D2;1 U2;r,1V
H
2;r,2 U1;r,1V

H
2;r,3 U1;r,1V

H
1;r,4 U1;r,1V

H
1;r,5

U2;�,2V
H
2;�,1 D2;2 U1;r,2V

H
2;r,3 U1;r,2V

H
1;r,4 U1;r,2V

H
1;r,5

0 0 0 D2;4 U2;r,3V
H
2;r,5

0 0 0 0 D2;5

⎤⎥⎥⎦ (5.56)

in which all HSS relations hold for as far as applicable. To proceed to the levels
with indices 2;1 and 2;2, we must revert to the 1;1 matrix computed earlier (which
was the original D1(I − V�V

H
� ), and which, as we have shown, still has the HSS

form, as shown schematically in the previous equation). This matrix must now
undergo the same second level treatment as was done on the original D2 block,
with similar result. The procedure entails the HSS absorption of the third block
column in the previous equation into the first two blocks, As this procedure does
not affect the fourth and fifth block column, the end result will have the form
(again dropping primes)⎡⎢⎢⎣

D2;1 U2;r,1V
H
2;r,2 0 U1;r,1V

H
1;r,4 U1;r,1V

H
1;r,5

0 D2;2 0 U1;r,2V
H
1;r,4 U1;r,2V

H
1;r,5

0 0 0 D2;4 U2;r,3V
H
2;r,5

0 0 0 0 D2;5

⎤⎥⎥⎦ (5.57)

where, again, HSS relations have been preserved wherever applicable. If the original
system was indeed row independent, then the diagonals blocks in this expression
will be square invertible, and a QR factorization of the original system of equations
has been achieved, which can simply be solved by an HSS-type back substitution
that can be efficiently executed (i.e., by visiting all algebraically relevant data
only once, using the HSS relationships). In case the original matrix is not row
independent, then a further row reduction can be done on the matrix obtained so
far, using a simplified form of the algorithm derived so far.

The dual form of the method presented so far merits some attention. Suppose
that our original system is not row- but column independent (i.e., it is a tall
system). Is a reduction procedure as used in the previous algorithm that preserves
the Moore-Penrose property possible? We show that this is indeed the case.
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Proposition 3. Let [
D1 UuV H

u

U�V
H
� D2

]
(5.58)

be given as the top-level of a column independent HSS representation in which the
matrices Di, i = 1, 2 are HSS compatible, and in which Uu is isometric. Then an
equivalent Moore-Penrose system is given by⎡⎣ (I − UuUH

u )D1 0
UH

u D1 V H
u

U�V
H
� D2

⎤⎦ . (5.59)

Proof. The proof follows from the following two observations:
1. Let U ′

u be an isometric matrix whose columns span the orthogonal comple-
ment of the (column) range of Uu. Then

U ′H
u D1 = U ′H

u (I − UuUH
u )D1; (5.60)

2. if V H is an isometric matrix then the system V HAx = b is equivalent to the
system Ay = V b in the sense that if y solves the Moore-Penrose problem of
the latter, then x=y is the Moore-Penrose solution of the former.

The required transformation now follows from the identity⎡⎣ U ′H
u

UH
u

I

⎤⎦[ D1 UuV H
u

U�V
H
� D2

]
=

⎡⎣ U ′H
u D1 0

UH
u D1 V H

u

U�V
H
� D2

⎤⎦ . (5.61)

An application of the properties mentioned above allows one to eliminate U ′H
u so

that the modification of the entries only involves the product UH
u D1, which can

efficiently be relegated to the lower hierarchical level. �

Notice that just as before the HSS relations remain in place. We can summa-
rize the procedures in the following conceptual theorem. In the formulation ‘URV-
type’ means: using orthogonal transformation on the rows (for the U -factor) and
the columns (for the V factor).

Theorem 1. A matrix represented in HSS form can be constructively reduced to
a non-singular block upper matrix in HSS form using efficient, HSS compatible
transformations of the URV type.

6. Discussion and conclusions

A number of observations seem relevant:
1. the HSS form of an invertible matrix is stable under inversion, it is not too

hard to prove that the inverse of such a matrix has an HSS representation
of the same complexity as the original. However, an efficient algorithm to
compute it has not been presented yet to our knowledge. The present paper
goes some way towards this end, it shows at least that the URV form can be
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computed efficiently. The result even extends to non-invertible matrices and
their Moore-Penrose inverse;

2. the theoretical results presented in this paper have not been tested numeri-
cally. This will be done in the near future;

3. as mentioned in the introduction, the HSS form is not as generally available
as one would wish. 1D and 2D scattering problems can be brought into the
form through the use of multipole theory. For 3D problems, the reduction is
far from evident. Here also we are still lacking a good reduction theory. The
same can be said about finite element systems: for 1D and 2D cases there is
a forthcoming reduction possible as is indicated in the thesis of T. Pals [11];

4. another interesting but as yet unsolved problem is the determination of (close
to optimal) preconditioners in HSS form; rank reductions in the HSS form
would amount to multi-resolution approximations;

5. the representation for HSS forms discussed in the introduction amounts to
a ‘system theory on a tree’ much as is the case for the multi-resolution the-
ory of Alpay and Volok [1]. However, the representations are fundamentally
different: in our case the system theory represents computational states, i.e.,
intermediate data as they are stored in a hierarchical computation, while in
the Alpay-Volok case, the states parallel the multi-resolution, a higher up
state consists of a summary or average of lower lying states. Although the
states have therefore very different semantics, from a system theoretical point
of view they are states indexed by a tree and hence operators acting on these
states will have similar effects. In particular, the shift operator and its adjoint
as well as the level exchange operator presented in the introductory section
have the same meaning in both theories (the definition of these operators
differ somewhat due to different normalizations). A major difference, how-
ever, is that in our case the state space structure is not uniform, while in
the Alpay-Volok it is, so that the system in their case can be advantageously
reduced to a sequentially semi-separable form.

Acknowledgements

The authors wish to thank a number of colleagues for discussions and interactions
with them on the general theme of HSS systems, to wit Alle-Jan van der Veen,
Ming Gu, Timoghy Pals, W. Lyons and Zhifeng Sheng.

References

[1] D. Alpay and D. Volok. Point evaluation and hardy space on a homogeneous tree.
Integral Equations and Operator Theory, vol 53 (2005), pp. 1–22.

[2] S. Chandrasekaran, P. Dewilde, M. Gu, W. Lyons, and T. Pals. A fast solver for hss
representations via sparse matrices. In Technical Report. Delft University of Tech-
nology, August 2005.



Hierarchical Semi-separable Equation Solver 85

[3] S. Chandrasekaran, M. Gu, and T. Pals. A fast and stable solver for smooth recur-
sively semi-separable systems. In SIAM Annual Conference, San Diego and SIAM
Conference of Linear Algebra in Controls, Signals and Systems, Boston, 2001.

[4] S. Chandrasekaran, M. Gu, and T. Pals. Fast and stable algorithms for hierarchically
semi-separable representations. In Technical Report. University of California at Santa
Barbara, April 2004.

[5] P. Dewilde, K. Diepold, and W. Bamberger. A semi-separable approach to a tridi-
agonal hierarchy of matrices with application to image flow analysis. In Proceedings
MTNS, 2004.

[6] P. Dewilde and A.-J. van der Veen. Time-varying Systems and Computations.
Kluwer, 1998.

[7] P. Dewilde and A.-J. van der Veen. Inner-outer factorization and the inversion of lo-
cally finite systems of equations. Linear Algebra and its Applications, page to appear,
2000.

[8] Y. Eidelman and I. Gohberg. On a new class of structured matrices. Notes distributed
at the 1999 AMS-IMS-SIAM Summer Research Conference, Structured Matrices in
Operator Theory, Numerical Analysis, Control, Signal and Image Processing, 1999.

[9] I. Gohberg, T. Kailath, and I. Koltracht. Linear complexity algorithms for semisep-
arable matrices. Integral Equations and Operator Theory, 8:780–804, 1985.

[10] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comp.
Phys., 73:325–348, 1987.

[11] T. Pals. Multipole for Scattering Computations: Spectral Discretization, Stabiliza-
tion, Fast Solvers. PhD thesis, Department of Electrical and Computer Engineering,
University of California, Santa Barbara, 2004.

[12] V. Rokhlin. Applications of volume integrals to the solution of pde’s. J. Comp. Phys.,
86:414–439, 1990.

[13] A.J. van der Veen. Time-varying lossless systems and the inversion of large structured
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