
Operator Theory:
Advances and Applications, Vol. 176, 255–294
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Algorithms to Solve
Hierarchically Semi-separable Systems
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Abstract. ‘Hierarchical Semi-separable’ matrices (HSS matrices) form an im-
portant class of structured matrices for which matrix transformation algo-
rithms that are linear in the number of equations (and a function of other
structural parameters) can be given. In particular, a system of linear equa-
tions Ax = b can be solved with linear complexity in the size of the matrix,
the overall complexity being linearly dependent on the defining data. Also,
LU and ULV factorization can be executed ‘efficiently’, meaning with a com-
plexity linear in the size of the matrix. This paper gives a survey of the main
results, including a proof for the formulas for LU-factorization that were orig-
inally given in the thesis of Lyon [1], the derivation of an explicit algorithm for
ULV factorization and related Moore-Penrose inversion, a complexity analysis
and a short account of the connection between the HSS and the SSS (sequen-
tially semi-separable) case. A direct consequence of the computational theory
is that from a mathematical point of view the HSS structure is ‘closed’ for a
number operations. The HSS complexity of a Moore-Penrose inverse equals
the HSS complexity of the original, for a sum and a product of operators the
HSS complexity is no more than the sum of the individual complexities.
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1. Introduction

The term ‘semi-separable systems’ originated in the work of Gohberg, Kailath
and Koltracht [2] where these authors remarked that if an integral kernel is ap-
proximated by an outer sum, then the system could be solved with a number of
operations essentially determined by the order of the approximation rather than
by a power of the number of input and output data. In the same period, Green-
gard and Rokhlin [3, 4] proposed the ‘multipole method’ where an integral kernel
such as a Green’s function is approximated by an outer product resulting in a
matrix in which large sub-matrices have low rank. These two theories evolved in



256 Z. Sheng, P. Dewilde and S. Chandrasekaran

parallel in the system theoretical literature and the numerical literature. In the
system theoretical literature it was realized that an extension of the semi-separable
model (sometimes called ‘quasi-separability’) brings the theory into the realm of
time-varying systems, with its rich theory of state realization, interpolation, model
order reduction, factorization and embedding [5]. In particular, it was shown in [6]
that, based on this theory, a numerically backward stable solver of low complexity
can be derived realizing a URV factorization of an operator T , in which U and V
are low unitary matrices of state dimensions at most as large as those of T and R is
causal, outer and also of state dimensions at most equal those of T . Subsequently,
this approach has been refined by a number of authors, a.o. [7, 8, 9].

Although the SSS theory leads to very satisfactory results when applicable,
it also became apparent in the late nineties that it is insufficient to cover major
physical situations in which it would be very helpful to have system solvers of
low complexity – in wiew of the often very large size of the matrices involved. Is
it possible to extend the framework of SSS systems so that its major properties
remain valid, in particular the fact that the class is closed under system inversion?
The HSS theory, pioneered by Chandrasekaran and Gu [10] provides an answer
to this question. It is based on a different state space model than the SSS theory,
namely a hierarchical rather than a sequential one, but it handles the transition
operators very much in the same taste. Based on this, a theory that parallels the
basic time-varying theory of [5] can be developed, and remarkably, many results
carry over. In the remainder of this paper we recall and derive some major results
concerning system inversion, and discuss some further perspectives. The remainder
sections of this introduction are devoted to a brief summary of the construction
of SSS systems which lay at the basis of the HSS theory. In the numerical liter-
ature, the efforts have been concentrated on ‘smooth’ matrices, i.e., matrices in
which large sub matrices can be approximated by low rank matrices thanks to the
fact that their entries are derived from smooth kernels [11, 12]. Both the SSS and
HSS structures are more constrained than the ‘H-matrices’ considered by Hack-
busch a.o., but they do have the desirable property that they are closed under
inversion and fit naturally in a state space framework. In the sequel we explore in
particular the state space structure of HSS systems, other structures such as hier-
archical multi-band decomposition have also been considered [13] but are beyond
the present scope.

Our basic context is that of block matrices or operators T = [Ti,j ] with rows
of dimensions . . . , m−1 , m0, m1, . . . and column dimensions . . . , n−1, n0, n1, . . . .
Any of these dimensions may be zero, resulting in an empty row or column (matrix
calculus can easily be extended to cover this case, the main rule being that the
product of a matrix of dimensions m×0 with a matrix of dimensions 0×n results in
a zero matrix of dimensions m×n). Concentrating on an upper block matrix (i.e.,
when Ti,j = 0 for i > j), we define the the degree of semi-separability of T as the
sequence of ranks [δi] of the matrices Hi where Hi is the sub-matrix corresponding
to the row indices . . . , ni−2, ni−1 and the column indices mi, mi+1, . . . . Hi is called
the ith Hankel operator of the matrix T . In case of infinite-dimensional operators,



Algorithms to Solve Hierarchically Semi-separable Systems 257

we say that the system is locally finite if all Hi have finite dimensions. Corre-
sponding to the local dimension δi there are minimal factorizations Hi = CiOi

into what are called the ith controllability matrix Ci and observability matrix Oi,
of dimensions (

∑−∞
k=i−1 mk) × δi and δi × (

∑∞
k=i nk). Connected to such a sys-

tem of factorizations there is an indexed realization {Ai, Bi, Ci, Di} of dimensions
{δi×δi+1, mi×δi+1, δi×ni, mi×ni} constituting a local set of ‘small’ matrices with
the characteristic property of semi-separable realizations for which it holds that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ci =

⎡⎢⎣ ...
Bi−2Ai−1

Bi−1

⎤⎥⎦ , Oi =
[

Ci AiCi+1 AiAi+1Ci+2 · · ·
]

Ti,j = Di for i = j
Ti,j = BiAi+1 · · ·Aj−1Cj for i < j.

(1.1)
The vector-matrix multiplication y = uT can be represented by local state space
computations {

xi+1 = xiAi + uiBi

yi = xiCi + uiDi.
(1.2)

The goal of most semi-separable computational theory (as done in [5]) is to perform
computations with a complexity linear in the overall dimensions of the matrix, and
some function of the degree δi, preferably linear, but that is often not achievable
(there is still quite some work to do on this topic even in the SSS theory!). The
above briefly mentioned realization theory leads to nice representations of the orig-
inal operator. To this end we only need to introduce a shift operator Z with the
characteristic property Zi,i+1 = I, zero elsewhere, where the dimension of the unit
matrix is context dependent, and global representations for the realization as block
diagonal operators {A = diag[Ai], B = diag[Bi], C = diag[Ci], D = diag[Di]}. The
lower triangular part can of course be dealt with in the same manner as the up-
per, resulting in the general semi-separable representation of an operator as (the
superscript ‘H’ indicates Hermitian conjugation)

T = B�Z
H(I −A�Z

H)−1C� + D + BuZ(I −AuZ)−1Cu (1.3)

in which the indices refer to the lower, respect. upper semi-separable decompo-
sition. In general we assume that the inverses in this formula do exist and have
reasonable bounds, if that is not the case one has to resort to different techniques
that go beyond the present exposition. In the finite-dimensional case the matrix
(I−AZ) takes the special form when the indexing runs from 0 to n (for orientation
the 0, 0 element is boxed in):

(I −AZ) =

⎡⎢⎢⎢⎢⎢⎣
I A0

I A1

. . . . . .
I An

I

⎤⎥⎥⎥⎥⎥⎦ (1.4)
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one may think that this matrix is always invertible, but that is numerically not
true, how to deal with numerical instability in this context is also still open terri-
tory.

The SSS theory (alias time-varying system theory) has produced many re-
sults paralleling the classical LTI theory and translating these results to a matrix
context, (see [5] for a detailed account):

• System inversion: T = URV in which the unitary matrices U, V and the outer
matrix R (outer means: upper and upper invertible) are all semi-separable of
degree at most the degree of T ;

• System approximation and model reduction: sweeping generalizations of clas-
sical interpolation theory of the types Nevanlinna-Pick, Caratheodory-Fejer
and even Schur-Takagi, resulting in a complete model reduction theory of the
‘AAK-type’ but now for operators and matrices;

• Cholesky and spectral factorization: T = FF ∗ when T is a positive operator,
in which F is semi-separable of the same degree sequence as T – a theory
closely related to Kalman filtering;

• and many more results in embedding theory and minimal algebraic realization
theory.

2. Hierarchical semi-separable systems

The Hierarchical Semi-Separable representation of a matrix (or operator) A is a
layered representation of the multi-resolution type, indexed by the hierarchical
level. At the top level 1, it is a 2 × 2 block matrix representation of the form
(notice the redefinition of the symbol A):

A =
[

A1;1,1 A1;1,2

A1;2,1 A1;2,2

]
(2.1)

in which we implicitely assume that the ranks of the off-diagonal blocks are low
so that they can be represented by an ‘economical’ factorization (’H ’ indicates
Hermitian transposition, for real matrices just transposition), as follows:

A =
[

D1;1 U1;1B1;1,2V
H
1;2

U1;2B1;2,1V
H
1;1 D1;2

]
. (2.2)

The second hierarchical level is based on a further but similar decomposition of
the diagonal blocks, respect. D1;1 and D1;2:

D1;1 =
[

D2:1 U2;1B2;1,2V
H
2;2

U2;2B2;2,1V
H
2;1 D2;2

]
D1;2 =

[
D2;3 U2;3B2;3,4V

H
2;4

U2;4B2;4,3V
H
2;3 D2;4

]
(2.3)
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Figure 1. HSS Data-flow diagram for a two level hierarchy rep-
resenting operator-vector multiplication, arrows indicate matrix-
vector multiplication of sub-data, nodes correspond to states and
are summing incoming data (the top levels f0 and g0 are empty).

for which we have the further level compatibility assumption (the ‘span operator’
refers to the column vectors of the subsequent matrix)

span(U1;1) ⊂ span
([

U2;1

0

])
⊕ span

([
0

U2;2

])
, (2.4)

span(V1;1) ⊂ span
([

V2;1

0

])
⊕ span

([
0

V2;2

])
etc. (2.5)

This spanning property is characteristic for the HSS structure, it allows for a
substantial improvement on the numerical complexity for, e.g., matrix-vector mul-
tiplication as a multiplication with the higher level structures always can be done
using lower level operations, using the translation operators

U1;i =
[

U2;2i−1R2;2i−1

U2;2iR2;2i

]
, i = 1, 2, (2.6)

V1;i =
[

V2;2i−1W2;2i−1

V2;2iW2;2i

]
, i = 1, 2. (2.7)

Notice the use of indices: at a given level i rows respect. columns are subdivided
in blocks indexed by 1, . . . , i. Hence the ordered index (i; k, �) indicates a block at
level i in the position (k, �) in the original matrix. The same kind of subdivision
can be used for column vectors, row vectors and bases thereof (as are generally
represented in the matrices U and V ).

In [14] it is shown how this multilevel structure leads to efficient matrix-vector
multiplication and a set of equations that can be solved efficiently as well. For the



260 Z. Sheng, P. Dewilde and S. Chandrasekaran

sake of completeness we review this result briefly. Let us assume that we want
to solve the system Tx = b and that T has an HSS representation with deepest
hierarchical level K. We begin by accounting for the matrix-vector multiplication
Tx. At the leave node (K; i) we can compute

gK;i = V H
K;ixK;i.

If (k; i) is not a leaf node, we can infer, using the hierarchical relations

gk;i = V H
k;ixk;i = WH

k+1;2i−1gk+1;2i−1 + WH
k+1;2igk+1;2i.

These operations update a ‘hierarchical state’ gk;i upward in the tree. To com-
pute the result of the multiplication, a new collection of state variables {fk;i} is
introduced for which it holds that

bk;i = Tk;i,i + Uk;ifk;i

and which can now be computed recursively downward by the equations[
fk+1;2i−1

fk+1;2i

]
=
[

Bk+1;2i−1,2igk+1;2i + Rk+1;2i−1fk,i

Bk+1;2i,2i−1gk+1;2i−1 + Rk+1;2ifk;i

]
,

the starting point being f0; = [], an empty matrix. At the leaf level we can now
compute (at least in principle – as we do not know x) the outputs from

bK;i = DK;ixK;i + UK;ifK;i.

The next step is to represent the multiplication recursions in a compact form using
matrix notation and without indices. We fix the maximum order K as before. We
define diagonal matrices containing the numerical information, in breadth first
order:

D = diag[DK;i]i=1,...,K , W = diag[(W1;i)i=1,2, (W2;i)i=1···4, . . . ], etc.

Next, we need two shift operators relevant for the present situation, much as the
shift operator Z in time-varying system theory explained above. The first one is
the shift-down operator Z↓ on a tree. It maps a node in the tree on its children
and is a nilpotent operator. The other one is the level exchange operator Z↔. At
each level it is a permutation that exchanges children of the same node. Finally, we
need the leaf projection operator Pleaf which on a state vector which assembles in
breadth first order all the values fk;i produces the values of the leaf nodes (again in
breadth first order). The state equations representing the efficient multiplication
can now be written as{

g = PH
leafV

Hx + ZH
↓ WHg

f = RZ↓f + BZ↔g
(2.8)

while the ‘output’ equation is given by

b = Dx + UPleaff . (2.9)
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This is the resulting HSS state space representation that parallels the classical
SSS state space formulation reviewed above. Written in terms of the hidden state
space quantities we find[

(I − ZH
↓ WH) 0

−BZ↔g (I −RZ↓)

] [
g
f

]
=
[

PH
leafV

H

0

]
x. (2.10)

The state quantities can always be eliminated in the present context as (I−WZ↓)
and (I − RZ↓) are invertible operators due to the fact that Z↓ is nilpotent. We
obtain as a representation for the original operator

Tx = (D + UPleaf(I −RZ↓)−1BZ↔(I − ZH
↓ WH)−1PH

leafV
H)x = b. (2.11)

3. Matrix operations based on HSS representation

In this section we describe a number of basic matrix operations based on the HSS
representation. Matrix operations using the HSS representation are normally much
more efficient than operations with plain matrices. Many matrix operations can
be done with a computational complexity (or sequential order of basic operations)
linear with the dimension of the matrix. These fast algorithms to be described are
either collected from other publications [14, 10, 1, 15] or new. We will handle a
somewhat informal notation to construct new block diagonals. Suppose, e.g., that
RA and RB are conformal block diagonal matrices from the description given in
the preceding section, then the construction operator inter[RA|RB] will represent
a diagonal operator in which the diagonal entries of the two constituents are block-
column-wise intertwined:

inter[RA|RB ] = diag
[[

RA;1;1 RB;1;1

]
,
[

RA;1;2 RB;1;2

]
,
[

RA;2;1 RB;2;1

]
, . . .

]
.

Block-row intertwining

inter[WA|WB] = diag
[[

WA;1;1

WB;1;1

]
,

[
WA;1;2

WB;1;2

]
,

[
WA;2;1

WB;2;1

]
, . . .

]
.

matrix intertwining is defined likewise.

3.1. HSS addition

Matrix addition can be done efficiently with HSS representations. The addition
algorithm for Sequentially semi-separable representation has been presented in
[16]. The addition algorithm for HSS representation which has been studied in [1]
is quite similar.

3.1.1. Addition with two commensurately partitioned HSS matrices.
When adding two HSS commensurately partitioned matrices together, the sum
will be an HSS matrix with the same partitioning. Let C = A + B where A is
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defined by sequences UA, VA, DA, RA, WA and BA ; B is defined by sequences
UB, VB, DB, RB , WB and BB.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RC = inter
[

RA 0
0 RB

]
WC = inter

[
WA 0

0 WB

]
BC = inter

[
BA 0
0 BB

]
UC = inter

[
UA UB

]
VC = inter

[
VA VB

]
DC = DA + DB.

(3.1)

The addition can be done in time proportional to the number of entries in the
representation. Note that the computed representation of the sum may not be
efficient, in the sense that the HSS complexity of the sum increases additively. It
is quite possible that the HSS representation is not minimal as well, as is the case
when A = B. In order to get an efficient HSS representation, we could do fast
model reduction (described in [15]) or compression (to be presented later) on the
resulting HSS representation. However, these operations might be too costly to be
applied frequently, one could do model reduction or compression after a number of
additions.

3.1.2. Adaptive HSS addition. When two HSS matrices of the same dimensions
do not have the same depth, leaf-split or leaf-merge operations described in [15]
are needed to make these two HSS representations compatible. Note that we have
two choices: we can either split the shallower HSS tree to make it compatible with
the deeper one, or we can do leaf-merge on the deeper tree to make it compatible
with shallower one. From the point of view of computation complexity, leaf-merge
is almost always preferred since it amounts to several matrix multiplications with
small matrices (ideally); leaf-split needs several factorization operations which are
more costly than matrix multiplications. However, this does not imply leaf-merge
should always be used if possible. Keeping in mind the fact that the efficiency of
the HSS representation also comes from a deeper HSS tree with smaller translation
matrices, the HSS tree should be kept deep enough to capture the low rank off-
diagonal blocks. On the other hand, it is obviously impossible to always apply
leaf-merge or leaf-split, because one HSS tree may have both a deeper branch and
a shallower one than the other HSS tree does.

3.1.3. HSS addition with rank-m matrices. The sum of a level-n hierarchically
semi-separable matrix A and a rank-m matrix UBV H is another level-n hierar-
chically semi-separable matrix A ′ = A + UBV H . A rank-m matrix has an almost
trivial HSS representation conformal to any hierarchical scheme. With such a rep-
resentation the HSS addition described in Section 3.1.1 is applicable.

In order to add two matrices together, the rank-m matrix should be repre-
sented in a form compatible with the HSS matrix. That is, the rank-m matrix
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will have to be partitioned recursively according to the partitioning of the HSS
matrix A.

Let us first denote U as U0;1, V as V0;1, UBV H as D0;1. We partition U and
V according to the partition of matrix A as follows:
for k = 0, 1, 2, . . . , n and i ∈ 1, 2, . . . , 2k:

Uk;i =
[

Uk+1;2i−1

Uk+1;2i

]
Vk;i =

[
Vk+1;2i−1

Vk+1;2i

]
Then at the first level of the partition:

U0;1BV H
0;1 =

[
U1;1BV H

1;1 U1;1BV H
1;2

U1;2BV H
1;1 U1;2BV H

1;2

]
and following levels are given by:

Theorem 1. The level-n HSS representation of the rank-m matrix UBV H is:
for k = 1, 2, . . . , n; i ∈ 1, 2, . . . , 2k and 〈i〉 = i + 1 for odd i, 〈i〉 = i− 1 for even i:⎧⎪⎨⎪⎩

D̂k;i = Uk;iBV H
k;i R̂k;i = I

Ŵk;i = I B̂k;i,〈i〉 = B

Ûk;i = Uk;i V̂k;i = Vk;i

(3.2)

Dk;i are again rank-m matrices, assuming recursive correctness of this constructive
method, Dk;i can also be partitioned and represented recursively.

Other ways of constructing HSS representations for rank-m matrices are pos-
sible. One is to firstly form a one-level HSS representation for the rank-m matrix
and then use the leaf-split algorithm [15] to compute its HSS representation ac-
cording to certain partitioning. In principle, this method leads to an efficient HSS
tree in the sense that its column bases and row bases are irredundant. However,
this method needs much more computations. If m is reasonably small, the method
described in this section is recommended.

3.1.4. HSS addition with rank-m matrices with hierarchically
semi-separable bases.

In HSS representations, the column bases and row bases of the HSS nodes are not
explicitly stored. This means when we compute Â = A + UBV H , U and V are
probably not explicitly stored, instead, they are implicitly stored with the formulas
(2.6) and (2.7).

We can of course compute these row bases and column bases and then con-
struct an HSS representation for UBV H with the method described in the last
subsection. This is not recommended because computing U and V may be costly
and not memory efficient.

Theorem 2. Suppose U and V are defined in HSS form, the HSS representation
of UBV H is given by the following formulas:
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for k = 2, 3, . . . , n; i ∈ 1, 2, . . . , 2k; and 〈i〉 = i + 1 for odd i, 〈i〉 = i− 1 for even i:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ŵ1;1 = I Ŵ1;2 = I R̂1;1 = I

R̂1;2 = I B̂1;1,2 = B B̂1;2,1 = B

Ŵk;i = Wk−1;� i
2 � R̂k;i = Rk−1;� i

2 � B̂k;i,〈i〉 = Rk−1;� i
2 �B̂k−1;� i

2 �,〈� i
2 �〉W

H
k−1;� i

2 �
Ûn;i = Un;iRn;i V̂n;i = Vn;iWn;i D̂n;i = Un;iB̂n;� i

2 �,〈� i
2 �〉V

H
n;i.

(3.3)

After having the HSS representation of UBV H , the sum can be computed
easily using the HSS addition algorithm described in Section 3.1.1.

3.2. HSS matrix-matrix multiplication

Matrix-matrix multiplication can also be done in time linear with the dimensions
of the matrices. The product C = AB is another hierarchically semi-separable
matrix.

A is a HSS matrix whose HSS representation is defined by sequences UA, VA,
DA, RA, WA, and BA.

B is a HSS matrix whose HSS representation is defined by sequences UB, VB ,
DB, RB, WB, and BB.

3.2.1. Multiplication of two commensurately partitioned HSS matrices. When two
HSS matrices are compatible, that is, they are commensurately partitioned, we
can get the HSS representation of the product with the following algorithm. The
algorithm was originally given with proof in Lyon’s thesis [1].

The notations F and G to be used in following paragraphs represent the
intermediate variables representing intermediate states in computing the HSS rep-
resentation of C. They can be computed using the recursive formulas (3.4) to
(3.7).

Fk;2i−1 represents the F intermediate variable propagated to the left children;
similarly, Fk;2i represents the intermediate F propagated to the right children.
Gk;2i−1 represents the intermediate variable G coming from the left children; while
Gk;2i represents the intermediate variable G coming from the right ones. At last,
Gn;i represents the variable G calculated at leaves.

We first define the intermediate variables recursively via:

Definition 1. For the multiplication of two level-n HSS matrices the upsweep re-
cursion is defined as:
for i ∈ 1, 2, . . . , 2n:

Gn;i = V H
A;n;iUB;n;i (3.4)

for k = n, . . . , 2, 1 and i ∈ 1, 2, . . . , 2k:

Gk−1;i = WH
A;k;2i−1Gk;2i−1RB;k;2i−1 + WH

A;k;2iGk;2iRB;k;2i. (3.5)
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Definition 2. For the multiplication of two level-n HSS matrices the downsweep
recursion is defined as:
for (i, j) = (1, 2) or (2, 1):

F1;i = BA;1;i,jG1;jBB;j,i (3.6)

for i ∈ 1, 2, . . . , 2k, j = i + 1 for odd i, j = i− 1 for even i and k = 2, . . . , n:

Fk;i = BA;k;i,jGk;jBB;k;j,i + RA;k;iFk−1;� i
2 �W

H
B;k,i. (3.7)

Theorem 3. The HSS representation of the product is:
for i ∈ 1, 2, . . . , 2n ⎧⎪⎨⎪⎩

D̂n;i = DA;n;iDB;n;i + UA;n;iFn;iV
H
B;n;i

Ûn;i =
[

UA;n;i DA;n;iUB;n;i

]
V̂ =

[
DH

B;n;iVA;n;i VB;n;i

] (3.8)

for k = 1, 2, . . . , n; i ∈ 1, 2, . . . , 2k and j = i + 1 for odd i, j = i− 1 for even i:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R̂k;i =
[

RA;k;i BA;k;i,jGk;jRB;k;j

0 RB;k;i

]
Ŵk;i =

[
WA;k;i 0

BH
B;j,iG

H
k;jWA;k;j WB;k;i

]
B̂k;i,j =

[
BA;k;i,j RA;k;iFk−1;� i

2 �W
H
B;k;j

0 BB;k;i,j

]
.

(3.9)

Once again, the complexity of the HSS representation increases additively.
Model reduction or compression may be needed to bring down the complexity.
Note that, the algorithm above is given without proof. For a detailed proof and
analysis, we refer to [1].

3.2.2. Adaptive HSS Matrix-Matrix multiplication. Adaptive multiplication is
needed when two HSS matrices are not completely compatible, then leaf-split and
leaf-merge are needed to make them compatible. The comment given in Section
(3.1.2) for adaptive addition also applies here.

3.2.3. HSS Matrix-Matrix multiplication with rank-m matrices. A is a level-n
HSS matrix whose HSS representation is defined by sequences UA, VA, DA, RA,
WA, and BA. UBV H is a rank-m matrix. The product AUBV H is also a level-n
HSS matrix.

As we mentioned in Section 3.1.3, a rank-m matrix is a hierarchically semi-
separable matrix and can be represented with a HSS representation. Then we can
easily construct the HSS representation for the rank-m matrix and then perform
the HSS Matrix-Matrix multiplication. This is the most straightforward way. How-
ever, making use of the fact that the translation matrices (R, W ) of the rank-m ma-
trix are identity matrices, the Matrix-Matrix multiplication algorithm can be sim-
plified by substituting the RB and WB matrices in Section 3.2.1 with I matrices.

Again, because the complexity has been increased additively, compression or
Model reduction could be helpful.
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3.3. HSS matrix transpose

The transpose of a level-n HSS matrix will again be a level-n HSS matrix. Suppose
the HSS matrix A is given by sequences B, R, W, U, V, D; it is quite easy to verify
that

Theorem 4. the HSS representation of the transpose AH is given by the sequences:
for k = 1, 2, . . . , n; i ∈ 1, 2, . . . , 2k and j = i + 1 for odd i, j = i− 1 for even i:{

D̂k;i = DH
k;i Ûk;i = Vk;i V̂k;i = Uk;i

Ŵk;i = Rk;i R̂k;i = Wk;i B̂k;i,j = BH
k;j,i.

(3.10)

3.4. Generic inversion based on the state space representation

A state space representation for the inverse with the same state complexity can
generically be given. We assume the existence of the inverse, the same hierarchical
partitioning of the input and output vectors x and b, and as generic conditions the
invertibility of the direct operators D and S = (I + BZ↔PH

leafV
HD−1UPleaf),

the latter being a (very) sparse perturbation of the unit operator with a local (that
is leaf based) inversion operator. Let L = PH

leafV
HD−1UPleaf, then we find

Theorem 5. Under generic conditions, the inverse system T−1 has the following
state space representation[

g
f

]
=

{[
I

0

]
−
[

L
−I

]
S−1

[
BZ↔ I

]}
·
{[

ZH
↓ WH

RZ↓

] [
g
f

]
+
[

PH
leafV

HD−1b
0

]}
(3.11)

and the output equation

x = −D−1UPleaf f + D−1b. (3.12)

The proof of the theorem follows from inversion of the output equation which
involves the invertibility of the operator D, and replacing the unknown x in the
state equations, followed by a segregation of the terms that are directly dependent
on the states and those that are dependent on the shifted states leading to the

matrix
[

I L
−BZ↔ I

]
whose inverse is easily computed as the first factor in the

right-hand side of the equation above. It should be remarked that this factor only
involves operations at the leaf level of the hierarchy tree so that the given state
space model can be efficiently executed (actually the inversion can be done using
the original hierarchy tree much as is the case for the inversion of upper SSS
systems).
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Having the theorem, we can derive a closed formula for T−1 assuming the
generic invertiblity conditions.

T−1 = D−1 −D−1UPleaf.

.
[
I −RZ↓ + BZ↔(I − ZH

↓ WH)−1PH
leafD

−1UPleaf
]−1

.

.BZ↔(I − ZH
↓ WH)−1PH

leafV
HD−1. (3.13)

The equation given is a compact diagonal representation of T−1, it also proves
that the inverse of an invertible HSS matrix is again a HSS matrix of comparable
complexity.

3.5. LU decomposition of HSS matrix

The formulas to compute the L and U factors of a square invertible matrix T = LU
in HSS form were originally given without proof in the thesis of Lyon [1] (they
were checked computationally and evaluated in the thesis). Here we reproduce
the formulas and give proof. The assumptions needed for the existence of the
factorization are the same as is in the non-hierarchical case: a hierarchical tree
that is n deep, the 2n (block-) pivots have to be invertible.

The ‘generic’ situation (which occurs at each level in the HSS LU factoriza-
tion) is a specialization of the classical Schur inversion theorem as follows:
we are given a matrix with the following ‘generic’ block decomposition

T =
[

DA U1B12V
H
2

U2B21V
H
1 DB

]
(3.14)

in which DA is a square invertible matrix, DB is square (but not necessarily
invertible), and T is invertible as well. Suppose we dispose of an LU factorization
of the 11-block entry DA = LAUA and let us define two new quantities (which in
the further proceedings will acquire an important meaning)

G1 = V H
1 D−1

A U1, F2 = B21G1B12. (3.15)

Then the first block step in a LU factorizaton of T is given by

T =
[

LA

U2B21V
H
1 U−1

A I

] [
I

DB − U2F2V
H
2

] [
UA L−1

A U1B12V
H
2

I

]
.

(3.16)
The block entry DB − U2F2V

H
2 is the classical ‘Schur-complement’ of DA in the

given matrix and it will be invertible if the matrix T is, as we assumed. At this
point the first block column of the ‘L’ factor and the first block row of the ‘U’
matrix are known (the remainder will follow from an LU-decomposition of the
Schur complement DB − U2F2V

H
2 ). We see that the 21-entry in L and the 12-

entry in U inherit the low rank of the originals with the same U2, respect. V H
2

entry. In fact, more is true, the hierarchical relations in the first block column of L,
respect. block row of U remain valid because LA = DAU−1

A , respect. UA = L−1
A DA,

with modified row basis, respect. column basis. In the actual HSS computation the
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Figure 2. Recursive positioning of the LU first blocks in the HSS
post-ordered LU factorization.

Schur complement will not be computed directly – it is lazily evaluated in what is
called ‘post-order traverse’, meaning that each node (k, i) is evaluated only after
evaluation of nodes (k, �), � < k at the same level and its sub nodes (k + 1, 2i− 1)
and (k + 1, 2i).

This basic step can be interpreted as a specialization of the LU-factorization
algorithm for sequentially separable systems, which reduces here to just two steps.
In the first step the F1 matrix is empty, the LU-factorization of DA = LAUA is
done and the V LH

1 = V H
1 U−1

A , respect. UU
1 = L−1

A U1 are computed. In the second
step (in this case there are only two steps), G1 is computed as G1 = V LH

1 UU
1 , with

F2 = B21G1B12 and finally the Schur complement DB−U2F2V
H
2 is evaluated (the

sequential algorithm would be more complicated if more terms are available).
The HSS LU factorization is executed lazily in post-order traverse (w.r. to

the hierarchical ordering of the blocks in the matrix), whereby previously obtained
results are used as much as possible. For a tree that is 2 levels deep it goes as in
Figure 2.

The collection of information needed to update the Schur complement at each
stage of the algorithm is accomplished by an ‘upward’ movement, represented by
the G matrices. Once a certain node (k, i) is reached, the Gk,i equals the actual
V H

1 D−1
A U1 pertaining to that node and hence subsumes all the data that is needed

from previous steps to update the remaining Schur complement. However, the next
‘lazy’ step in the evaluation does not involve the whole matrix DB, but only the
at that point relevant top left corner matrix, the next candidate for reduction in
the ongoing elimination – and determination of the next pivot. This restriction to
the relevant top entry is accomplished by the matrix F , which takes information
from the G’s that are relevant at that level and specializes them to compute
the contributions to the Schur-complement update of that specific matrix. Before
formulating the algorithm precisely, we make this strategy that leads to efficient
computations more precise.
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Definition 3. G propagates the quantity V H
1 D−1

A U1.

Definition 4. F propagates the quantity B21V
H
1 D−1

A U1B12 in equation (3.16).

Updating G. The update situation involves exclusively the upward collection of
the Gk,i. We assume that at some point in the recursion the matrices Gk,2i−1 and
Gk,2i are known, the objective is to compute Gk−1,i. The relevant observation here
is that only this recursive data and data from the original matrix are needed to
achieve the result. In matrix terms the situation is as follows:⎡⎣ D� U�B̂uV H

r U�R�[· · · ]
UrB̂�V

H
� Dr UrRr[· · · ]

[· · · ]W�V
H
� [· · · ]WH

r V H
r DB

⎤⎦ (3.17)

where B̂u stands for Bk;2i−1,2i, B̂� stands for Bk;2i,2i−1, the subscript ‘�’ stands
for the left branch in the hierarchy for which G� = Gk,2i−1 = V H

� D−1
� U� is

known, while the subscript ‘r’ stands for the right branch, for which Gr = Gk,2i =
V H

r C−1
r Ur is known with Cr = Dr−UrB̂�V

H
� D−1

� U�B̂uV H
r the Schur complement

of the first block in the left top corner submatrix, the objective being to compute
G = Gk−1,i given by

G = V HD−1U =
[

WH
� V H

� WH
r V H

r

] [ D� U�B̂uV H
r

UrB̂�V
H
� Dr

]−1 [
U�R�

UrRr

]
(3.18)

(note that the entries indicated by ‘[· · · ]’ in equation (3.17) are irrelevant for this
computation, they are taken care of in the F -downdate explained further on, while
the B̂u and B̂� subsume the B-data at this level, which are also not relevant at this
point of the computation). Computing the inverse of the new Schur complement
produces:

G=
[
WH

� V H
� WH

r V H
r

]
·

·
[
D−1

� +D−1
� U�B̂uV H

r C−1
r UrB̂�V

H
� D−1

� −D−1
� U�B̂uV H

r C−1
r

−C−1
r UrB̂�V

H
� D−1

� C−1
r

][
U�R�

UrRr

]
G=

[
WH

� WH
r

]
·

·
[
V H

� D−1
� U� +V H

� D−1
� U�B̂uV H

r C−1
r UrB̂�V

H
� D−1

� U� −V H
� D−1

� U�B̂uV H
r C−1

r Ur

−V H
r C−1

r UrB̂�V
H
� D−1

� U� V H
r C−1

r Ur

]
·

·
[
R�

Rr

]
where G� = V H

� D−1
� U� and Gr = V H

r C−1
r Ur have been introduced. Hence

G =
[

WH
� WH

r

] [ G� + G�B̂uGrB̂�G� −G�B̂uGr

−GrB̂�G� Gr

] [
R�

Rr

]
. (3.19)
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Downdating F . The downdate situation can be subsumed as follows. We assume
that we have arrived at a stage where the LU factorization has progressed just
beyond the (hierarchical) diagonal block D� in the original matrix, the last block for
which the Schur complement data G� has been updated. The hierarchical diagonal
block preceding D� is subsumed as DA, covering all the indices preceding those of
D�. For this block, the corresponding GA is also assumed to be known – these are
the recursive assumptions. Let us assume moreover that the next (hierarchical)
block to be processed in the post-order is Dr. The relations in the off diagonal
entries, using higher level indices as needed are given in the matrix
Let us denote:⎡⎢⎢⎢⎣

DA UABuWH
� V H

� UABuWH
r V H

r · · ·
U�R�B�V

H
A D� U�B

′
uV H

r · · ·
UrRrB�V

H
A UrB

′
�V

H
� Dr · · ·

...
...

...
. . .

⎤⎥⎥⎥⎦ =

⎡⎢⎣ A11 A12 · · ·
A21 A22 · · ·
...

...
. . .

⎤⎥⎦ .

The recursive assumptions, expressed in the data of this matrix are the knowledge
of GA = V H

A D−1
A V H

A and G� = V H
� C−1

� U� in which C� is the Schur complement
of DA for the diagonal block D�. then

A21A
−1
11 A12 =

[
UrRrB�V

H
A UrB�V

H
�

]
.

·
[

DA UABuWH
� V H

�

U�R�B�V
H
A D�

]−1 [
UABuWH

r V H
r

U�BuV H
r

]
. (3.20)

With the definition of F and the Schur inverse algorithm, we can rewrite the above
formula as:

A21A
−1
11 A12 = UrFrV

H
r

=
[

UrRrB�V
H
A UrB�V

H
�

]
.

·
[

D−1
A + D−1

A UABuWH
� V H

� C−1
� U�R�B�V

H
A D−1

A −D−1
A UABuWH

� V H
� C−1

�

−C−1
� U�R�B�V

H
A D−1

A C−1
�

]
.

·
[

UABuWH
r V H

r

U�BuV H
r

]
= Ur

[
RrB�V

H
A B�V

H
�

]
.

·
[

D−1
A + D−1

A UABuWH
� V H

� C−1
� U�R�B�V

H
A D−1

A −D−1
A UABuWH

� V H
� C−1

�

−C−1
� U�R�B�V

H
A D−1

A C−1
�

]
.

·
[

UABuWH
r

U�Bu

]
V H

r

= Ur

[
Rr B�

]
.

·
[

B�V
H
A D−1

A UABu + Y −B�V
H
A D−1

A UABuWH
� V H

� C−1
� U�

−V H
� C−1

� U�R�B�V
H
A D−1

A UABu V H
� C−1

� U�

]
.

·
[

WH
r

Bu

]
V H

r
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where
Y = B�V

H
A D−1

A UABuWH
� V H

� C−1
� U�R�B�V

H
A D−1

A UABu.

As defined, Fr should represent the above term (excluding Ur and Vr). Assuming
G� and F = FA given, we find

G� = V H
� C−1

� U�, F = B�V
H
A D−1

A UABu.

Finally the update formula for Fr becomes:

Fr =
[

Rr B�

] [ F + FWH
� G�R�F −FWH

� G�

−G�R�F G�

] [
WH

r

Bu

]
. (3.21)

And Fr again satisfies the definition.
The update formula for F� can be easily derived from the definition of F . To

preserve the definition of F on the left branch, the F from the parent has to be
pre-multiplied with R� and post-multiplied with WH

� . Thus the update formulas
for G and F have been explained and proven.

Modifying B matrices and computing block pivots. To compute the Schur com-
plement Dk;i −Uk;iFk;iV

H
k;i efficiently, we only need to update the B matrices and

modify the block pivots. Here we assume that we are moving one level up in the
recursion and that the levels below have already been computed. Let

Sk−1;i =Dk−1;i−Uk−1;iFk−1;iV
H
k−1;i

Sk−1;i =
[

Dk;2i−1 Uk;2i−1Bk;2i−1,2iV
H
k;2i

Uk;2iBk;2i,2i−1V
H
k;2i−1 Dk;2i

]
−
[

Uk;2i−1Rk;2i−1

Uk;2iRk;2i

]
Fk−1;i

[
WH

k;2i−1V
H
k;2i−1 WH

k;2iV
H
k;2i

]
Sk−1;i =

[
Dk;2i−1 Uk;2i−1Bk;2i−1,2iV

H
k;2i

Uk;2iBk;2i,2i−1V
H
k;2i−1 Dk;2i

]
−
[

Uk;2i−1Rk;2i−1Fk−1;iW
H
k;2i−1V

H
k;2i−1 Uk;2i−1Rk;2i−1Fk−1;iW

H
k;2iV

H
k;2i

Uk;2iRk;2iFk−1;iW
H
k;2i−1V

H
k;2i−1 Uk;2iRk;2iFk−1;iW

H
k;2iV

H
k;2i

]
Sk−1;i =

[
D̄k;2i−1 Yk;2i−1,2i

Yk;2i,2i−1 D̄k;2i

]
where

Yk;2i−1,2i = Uk;2i−1(Bk;2i−1,2i −Rk;2i−1Fk−1;iW
H
k;2i)V

H
k;2i = Uk;2i−1B̂k;2i−1,2iV

H
k;2i

Yk;2i,2i−1 = Uk;2i(Bk;2i,2i−1 −Rk;2iFk−1;iW
H
k;2i−1)V

H
k;2i−1 = Uk;2iB̂k;2i,2i−1V

H
k;2i−1.

Hence
D̄k;i = Dk;i − Uk;iFk;iV

H
k;i (3.22)

B̂k;i,j = Bk;i,j −Rk;iFk−1;� i
2 �W

H
k;j (3.23)

and the F for the left branches:

Fk;2i−1 = Rk;2i−1Fk−1;iW
H
k;2i−1. (3.24)
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Construction formulas for the L and the U matrices. We are now ready to for-
mulate the LU-factorization relations and procedure.

Theorem 6. Let a level-n HSS matrix T be given by the sequences R, W , B, U , V
and D and assume that the pivot condition for existence of the LU-factorization
is satisfied. Then the following relations hold:
for i ∈ 1, 2, . . . , 2n:

Gn;i = V H
n;i(Dn;i − Un;iFn;iV

H
n;i)

−1Un;i (3.25)

for k = 1, 2, . . . , n; i ∈ 1, 2, . . . , 2k and j = i + 1 for odd i, j = i− 1 for even i, let

B̂k;i,j = Bk;i,j −Rk;iFk−1;� i
2 �W

H
k;j (3.26)

for k = 1, 2, . . . , n and i ∈ 1, 2, . . . , 2k−1:

Gk−1;i =[
W H

k;2i−1 W H
k;2i

]
.

.

[
Gk;2i−1 + Gk;2i−1B̂k;2i−1,2iGk;2iB̂k;2i,2i−1Gk;2i−1 −Gk;2i−1B̂k;2i−1,2iGk;2i

−Gk;2iB̂k;2i,2i−1Gk;2i−1 Gk;2i

]
.

.

[
Rk;2i−1

R2i

]
. (3.27)

Initial value for F is:
F0;1 = φ (3.28)

left branches F� are given as:
for k = 1, 2, . . . , n and i ∈ 1, 2, . . . , 2k−1:

Fk;2i−1 = Rk;2i−1Fk−1;iW
H
k;2i−1 (3.29)

right branches Fr are given as:
for k = 1, 2, . . . , n and i ∈ 1, 2, . . . , 2k−1:

Fk;2i =
[

Rk;2i Bk;2i,2i−1

]
.

.

[
Fk−1;i + Fk−1;iW

H
k;2i−1Gk;2i−1Rk;2i−1Fk−1;i −Fk−1;iW

H
k;2i−1Gk;2i−1

−Gk;2i−1Rk;2i−1Fk;i Gk;2i−1

]
.

.

[
W H

k;2i

Bk;2i−1,2i

]
. (3.30)

The (block) pivots are given by

D̄n;i = Dn;i − Un;iFn;iV
H
n;i. (3.31)

Let now the pivots be LU-factored (these are elementary blocks that are not
further decomposed): for i ∈ 1, 2, . . . , 2n:

L̄n;iŪn;i = D̄n;i = Dn;i − Un;iFn;iV
H
n;i (3.32)

be a LU decomposition at each leaf. Then based on the information generated,
the L and U factors are defined as follows:
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Theorem 7. The level-n HSS representation of the L factor will be given as:
at a non-leaf node:

for k = 1, 2, . . . , n; i ∈ 1, 2, . . . , 2k−1 and j = 1, 2, . . . , 2k:⎧⎪⎨⎪⎩
R̂k;j = Rk;j Ŵk;2i−1 = Wk;2i−1

ŴH
k;2i = WH

k;2i −WH
k;2i−1Gk;2i−1Bk;2i−1,2i

B̂k;2i,2i−1 = B̂k;2i,2i−1 B̂k;2i−1,2i = 0
(3.33)

at a leaf:
for i ∈ 1, 2, . . . , 2n:

Ûn;i = Un;i V̂n;i = Ū−H
n;i Vn;i D̂ = L̄n;i. (3.34)

Theorem 8. The level-n HSS representation of the U factor will be given as:
at a non-leaf node:

for k = 1, 2, . . . , n; i ∈ 1, 2, . . . , 2k−1 and j = 1, 2, . . . , 2k:{
R̂k;2i−1 = Rk;2i−1 R̂k;2i = Rk;2i − B̂k;2i,2i−1Gk;2i−1Rk;2i−1 Ŵk;j = Wk;j

B̂k;2i,2i−1 = 0 B̂k;2i−1,2i = B̂k;2i−1,2i

(3.35)
at a leaf:

for i ∈ 1, 2, . . . , 2n:

Ûn;i = L̄−1
n;iUn;i V̂n;i = Vn;i D̂n;i = Ūn;i. (3.36)

Proof for the traverse. We start with the proof of theorem 6. Given the updating
operations on G and downdating operations on F accounted for in the introductory
part of this section, it remains to verify that there exists a recursive order to
compute all the quantities indicated. Initialization results in the Fk,1 = φ for all
k = 1 · · ·n. In particular, Fn,1 is now known, and Gn,1 can be computed. This
in turn allows for the computation of Fn,2 thanks to the Fr downdate formula at
level (k−1, 1). Now Gn,2 can be computed, and next Gn−1,1 – the first left bottom
node is dealt with. We now dispose of enough information to compute Fn−1,2, since
Gn−1,1 and Fn−2,1 = φ are known (this being the beginning of the next step).

The general dependencies in the formulas are as follows. At a leaf: Gn;i de-
pends on Fn;i; at a non-leaf node: Gk−1,i is dependent on Gk,2i−1 and Gk,2i;
Fk;2i−1 is dependent on Fk−1,i and Fk,2i is dependent on both Fk−1,i and Gk,2i−1.
Considering the closure of data dependencies, the full dependencies at a node are
given in Figure 3. With the F matrices on the root initialized, the order in which
all the F and G quantities can be computed on a node is Fk−1;i → Fk;2i−1 →
Gk;2i−1 → Fk;2i → Gk;2i → Gk−1;i, or equivalently parent→left children→right
children→parent. That is: with a post-order traverse on the binary tree (note that:
the F on the root is initialized), all unknown F s and Gs can be filled in.
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Figure 3. The dependencies of the intermediate variables on one
no-leaf node.

Figure 4. The computation of Fk;2i with the help of Fk−1;i and Gk;2i−1.

Proof of the formulas for L and U factors. Let now the pivots be LU-factored
(these are elementary blocks that are not further decomposed). We may assume
that at each step the Schur complements have been computed and updated. To
get the L and U factors recursively as in formula (3.16), it is obvious that for each
leaf of the L factor, D̄ = L̂, Ū = U , V̄ H = V H

l Û−1; for each leaf of the U factor,
D̄ = Û, Ū = L̂−1U , V̄ = V .

For all left branches, the blocks are updated by modifying B matrices with
formula (3.26) to compute the Schur complement D̄k;i = Dk;i − Un;iFn;iV

H
n;i. But

for the right branches, updating B matrices with formula (3.26) is not enough
because Fk−1;i only subsumes the information from its parent. Its left sibling has
to be taken into consideration for the update of the Schur complement.

Assuming the correct update has been done for the DA block and D� block
(see Figure 4), we may also assume that the Schur complement of D� has been
computed. Hence, we only need to update Dr and the blocks indicated by grids in



Algorithms to Solve Hierarchically Semi-separable Systems 275

Figure 4. That is for the block⎡⎢⎢⎢⎣
D̂� U�B̂uV H

r U�R�BuVH
B · · ·

UrB̂�V
H
� Dr UrRrBuVH

B · · ·
UBB�W

H
� V H

� UBB�W
H
r V H

r DB · · ·
...

...
...

. . .

⎤⎥⎥⎥⎦ .

Hence, only the blocks
[

UrRrBuVH
B · · ·

]
and

[
UBB�W

H
r V H

r
...

]
have to be

updated, other parts of the computation are taken care of by the recursive algo-
rithm. Now, the Schur complement of D̂� has to be determined. That is:

S =

⎡⎢⎣ Dr UrRrBuVH
B ···

UBB�W
H
r V H

r DB ···
...

...
. . .

⎤⎥⎦

−

⎡⎢⎣ UrB̂�V
H
�

UBB�W
H
� V H

�

...

⎤⎥⎦D̂−1
�

[
U�B̂uV H

r U�R�BuVH
B ···

]

S =

⎡⎢⎢⎣
Dr −UrB̂�V

H
� D̂−1

� U�B̂uV H
r Ur(Rr − B̂�V

H
� D−1

� U�R�)BuVH
B ···

UBB�(W
H
r −W H

� V H
� D−1

� U�B̂u)V H
r DB −UBB�W

H
� V H

� D−1
� U�R�BuVH

B ···
...

...
. . .

⎤⎥⎥⎦
Since G� = V H

� D−1
� U�,

S =

⎡⎢⎢⎣
Dr − UrB̂lV

H
� D̂−1

� U�B̂uV H
r Ur(Rr − B̂�G�R�)BuVH

B · · ·
UBB�(W

H
r − W H

� G�B̂u)V H
r DB − UBB�W

H
� V H

� D−1
� U�R�BuVH

B · · ·
...

...
. . .

⎤⎥⎥⎦ .

Hence the update of the blocks

[
UrRrBuVH

B
...

]
and

[
UH

B B�W
H
r V H

r · · ·
]

is

given by R̂r = Rr− B̂�G�R� and ŴH
r = WH

r −WH
� G�B̂u. These prove the update

formulas for R̂r and Ŵr .
Finally, all the update formulas have been explained, and the whole algorithm

consists in recursively applying these formulas which actually compute and update
the Schur complement recursively. This will be possible iff the pivot condition is
satisfied.

4. Explicit ULV factorization

The LU factorization, however important, has only limited applicability. A back-
ward stable algorithm that can always be applied is ‘ULV-factorization’. It factors
an arbitrary matrix in three factors, a unitary matrix U , a (generalized) lower
triangular L (a non-singular triangular matrix embedded in a possibly larger zero
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matrix) and another unitary matrix V . In the present section we show that the
ULV-factorization for an HSS matrix of order n can be obtained in a special form.
Both U and V are again HSS, and the lower triangular factor L has a special
HSS form that is extremely sparse (many transfer matrices are zero). The ULV-
factorization of A leads directly to the Moore-Penrose inverse for A. One trims the
L factor to its purely triangular part, and the U and V factors to the corresponding
relevant columns and rows to obtain the so called ‘economic ULV factorization’
A = UeLeVe, the Moore-Penrose inverse then being given as A† = V H

e L−1
e UH

e .
The determination of the inverse of a lower triangular HSS factor is treated in the
following section and gives rise to an HSS matrix of the same order and complexity.
In this paper we follow the implicit ULV factorization method presented in [17],
and show that the implicit method can be made explicit with some non-trivial
modifications. The Moore-Penrose system can be then be solved with the explicit
L factor. Alternatively one could follow the method presented in [18] which has
similar flavors, but uses a slightly different approach.

For the sake of definiteness and without impairing generality, we assume here
that the HSS matrix A has full row rank, and its n-level HSS representation is
defined by the sequences U, V, D, B, R, W . Similar to the implicit ULV factoriza-
tion method, the explicit method involves an upsweep recursion (or equivalently
a post-order traverse). We start with the left-most leaf. First, we treat the case
in which the HSS representation, which will be recursively reduced, has reached
the situation given in equation (4.1). The second block row in that equation has
a central purely triangular block Ak;i of dimension δk;i, the goal will be to reduce
the matrix further by treating the next block row. Through the steps described
in the following treatment this situation will be reached recursively by converting
subtrees to leaves, so that the central compression step always happens at the level
of a leaf.

4.1. Treatment of a leaf

The situation to be treated in this part of the recursion has the form

A =

⎡⎢⎢⎢⎢⎢⎣
. . . [

...]V (1)H
k;i [

...]V (2)H
k;i . .

.

0 Ak;i 0 0
Uk;i[· · · ] D

(1)
k;i D

(2)
k;i Uk;i[· · · ]

. .
.

[
...]V (1)H

k;i [
...]V (2)H

k;i

. . .

⎤⎥⎥⎥⎥⎥⎦ . (4.1)

It is assumed at this point that Ak;i is already lower triangular and invertible with
dimension δk;i. The next block row stands in line for treatment. The compression
step attacks Uk;i. If Uk;i has more rows than columns, it can be compressed by
applying QL factorization on it:

Uk;i = Qk;i

[
0

Ûk;i

]
(4.2)
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where Ûk;i is square and has l rows. To keep consistence in the rows, we must
apply QH

k;i to Dk;i:

D̂k;i = QH
k;iDk;i. (4.3)

Assume that Dk;i has m columns. We can partition Dk;i as:

δk;i m− δk;i[
D̂

(1)
k;i D̂

(2)
k;i

] = D̂k;i (4.4)

Since Ak;i is already lower-triangular matrix, to proceed we only have to process
the block D̂

(2)
k;i so as to obtain a larger upper-triangular reduced block. Hence we

LQ factorize D̂
(2)
k;i as:

D̂
(2)
k;i =

[
D̂

(2)
k;i;0,0 0

D̂
(2)
k;i;1,0 D̂

(2)
k;i;1,1

]
wk;i, (4.5)

where D̂
(2)
k;i;0,0 is lower triangular and has n columns;D̂(2)

k;i;1,0 and D̂
(2)
k;i;1,1 have l

rows. Now to adjust the columns, we must apply wk;i on Vk;i. Let

δk;i

m− δk;i

[
V

(1)
k;i

V
(2)
k;i

]
= Vk;i. (4.6)

Apply wk;i on V
(2)
k;i as

V̂
(2)
k;i = wk;iV

(2)
k;i (4.7)

let: [
D̂

(1,1)
k;i

D̂
(1,2)
k;i

]
= D̂

(1)
k;i , (4.8)

where D
(1,2)
k;i has l rows. After these operations, the HSS representation has become

Ā =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

. . . [
...]V (1)H

k;i [
...]V̂ (21)H

k;i [
...]V̂ (22)H

k;i . .
.

0 Ak;i 0 0 0
0 D̂

(11)
k;i D̂

(2)
k;i;0,0 0 0

Ûk;i[· · · ] D̂
(1,2)
k;i D̂

(2)
k;i;1,0 D̂

(2)
k;i;1,1 Ûk;i[· · · ]

. .
.

[
...]V (1)H

k;i [
...]V̂ (21)H

k;i [
...]V̂ (22)H

k;i

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.9)

The compressed leaf will be returned as:

D̄k;i =
[

D̂
(1,2)
k;i D̂

(2)
k;i;1,0 D̂

(2)
k;i;1,1

]
(4.10)

Ūk;i = Ûk;i (4.11)

V̄k;i =

[
V

(1)
k;i

V̂
(2)
k;i

]
. (4.12)
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With

Âk;i =

[
Ak;i 0

D̂
(1,1)
k;i D̂

(2)
k;i;0,0

]
(4.13)

representing the reduced row slices, and

δ̂k;i = δk;i + n. (4.14)

Now, the commented HSS representation is exactly the same as the original, except
the leaf has become smaller. When Uk;i has more columns than rows, nothing can
be done to compress in this way. Then a new arrangement has to be created by
merging two leaves into a new, integrated leave. This process is treated in the next
paragraph.

4.2. Merge

The behavior of this part of the algorithm on a leaf has been specified. If no leaf
is available for processing, one can be created by merging. Assume that we are
at the node k; i, the algorithm works in a post-order traverse way, it proceeds by
first calling itself on the left children and then on the right children. When the
algorithm comes to the present stage, both the left and the right child are already
compressed leaves. They can then be merged by the following explicit procedure.

Before the merge, the HSS representation is, in an obvious notation: Let

Y
(1)
k+1;2i−1;2i = Uk+1;2i−1Bk+1;2i−1;2iV

(1)H
k+1;2i

Y
(2)
k+1;2i−1;2i = Uk+1;2i−1Bk+1;2i−1;2iV

(2)H
k+1;2i

Y
(1)
k+1;2i;2i−1 = Uk+1;2iBk+1;2i;2i−1V

(1)H
k+1;2i−1

Y
(2)
k+1;2i;2i−1 = Uk+1;2iBk+1;2i;2i−1V

(2)H
k+1;2i−1

thus Dk;i can be represented as:

Dk;i =

⎡⎢⎢⎢⎣
Ak+1;2i−1 0 0 0
D

(1)
k+1;2i−1 D

(2)
k+1;2i−1 Y

(1)
k+1;2i−1;2i Y

(2)
k+1;2i−1;2i

0 0 Ak+1;2i 0
Y

(1)
k+1;2i;2i−1 Y

(2)
k+1;2i;2i−1 D

(1)
k+1;2i D

(2)
k+1;2i

⎤⎥⎥⎥⎦ . (4.15)

Next, the rows and columns are moved to put all reduced rows on the top-left.
After the reordering, the HSS representation becomes:

D̂k;i =

⎡⎢⎢⎢⎣
Ak+1;2i−1 0 0 0

0 Ak+1;2i 0 0
D

(1)
k+1;2i−1 Y

(1)
k+1;2i−1;2i D

(2)
k+1;2i−1 Y

(2)
k+1;2i−1;2i

Y
(1)
k+1;2i;2i−1 D

(1)
k+1;2i Y

(2)
k+1;2i;2i−1 D

(2)
k+1;2i

⎤⎥⎥⎥⎦ (4.16)

and the merged leaf now has:

D̄k;i =

[
D

(1)
k+1;2i−1 Y

(1)
k+1;2i−1;2i D

(2)
k+1;2i−1 Y

(2)
k+1;2i−1;2i

Y
(1)
k+1;2i;2i−1 D

(1)
k+1;2i Y

(2)
k+1;2i;2i−1 D

(2)
k+1;2i

]
(4.17)
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Ūk;i =
[

Uk+1;2i−1Rk+1;2i−1

Uk+1;2iRk+1;2i

]
, V̄k;i =

⎡⎢⎢⎢⎢⎣
V

(1)
k+1;2i−1Wk+1;2i−1

V
(1)
k+1;2iWk+1;2i

V
(2)
k+1;2i−1Wk+1;2i−1

V
(2)
k+1;2iWk+1;2i−1

⎤⎥⎥⎥⎥⎦ . (4.18)

With the intermediate block

Ak;i =
[

Ak+1;2i−1 0
0 Ak+1;2i

]
(4.19)

and
δk;i = δk+1;2i−1 + δk+1;2i. (4.20)

Note that now the node has been reduced to a leaf, and the actual HSS system
has two fewer leaves. The compression algorithm can then be called on this leaf
with Ak;i and δk;i.

4.3. Formal algorithm

Having the above three procedures, we now describe the algorithm formally. Sim-
ilar to the implicit ULV factorization method, this algorithm is a tree-based re-
cursive algorithm. It involves a post-order traverse of the binary tree of the HSS
representation. Let T be the root of the HSS representation.

Function: post-order-traverse
Input: an actual HSS node or leaf T;
Output: a compressed HSS leaf)

1. (node, left-children, right-children) = T;
2. left-leaf = post-order-traverse left-child;
3. right-leaf = post-order-traverse right-child;
4. if left-child is compressible then

left-leaf = compress left-leaf;
else
do nothing;

5. if right-child is compressible then
right-leaf = compress right-leaf;
else
do nothing;

6. return compress (Merge(node,left-leaf,right-leaf));

Function : Explicit-ULV-Factorization
Input: a HSS representation T; Output: the factor L in
sparse matrix format

1. actual-T = T;
2. Leaf = post-order-traverse actual-T;
3. return Leaf.A0;1

Once the whole HSS tree is compressed as a leaf and the leaf is further com-
pressed, the L factor has been computed as L = A0;1.
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Figure 5. The sparsity pattern of L factor of the explicit ULV factorization.

4.4. Results

We show the result of the procedure applied to an HSS matrix A of dimensions
500×700 with full row rank. Its HSS representation is 5 levels deep and balanced.
We apply the explicit ULV factorization algorithm on it. Then the sparsity pattern
of the L factor will be as in Figure 5. L has 500 rows and 700 columns. Its sparsity
is 3.08% (The sparsity depends on the HSS complexity, the lower the complexity
is, the sparser the L factor is.). With the assumption that A has full row rank,
The non-zero block of L is square and invertible.

4.5. Remarks

• Assume A has full column rank, the algorithm above can be modified to
produce the URV factorization (by compressing Vk;i instead of Uk;i).

• The explicit factor shall be kept in sparse matrix form.
• the U and V factors are kept in an implicit form. This is convenient because

they can be easily applied to b and x when solve the system Ax = b.
• The complexity is higher than the implicit ULV factorization method, but it

shall still be linear. It can also be easily be seen that the HSS complexity of
the result is the same as of the original (with many transfer matrices reduced
to zero).

5. Inverse of triangular HSS matrix

In this section, we will show how a triangular HSS matrix can be inverted effi-
ciently. We shall only present our fast inverse algorithm on upper triangular HSS
matrices, since the algorithm for lower triangular matrices is dual and similar.
With the combination of the LU factorization algorithm, the inverse algorithm
for triangular systems and the matrix-matrix multiplication algorithm, the HSS
inverse of a square invertible HSS matrix, of which all block pivots are invertible,
can be computed.
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Let the level-n HSS representation of the upper triangular matrix A be given
by the sequence of R, W , B, U , V and D (where the D’s are upper triangular).
Assuming all D matrices invertible, the level-n HSS representation of the inverse
of A is given by R̂, Ŵ , B̂, Û , V̂ and D̂ (where D̂s are again upper triangular) with
the formulas given below. We use the following (trivial) fact recursively.

Lemma 1. The inverse of Dk−1;� i
2 � (i is an odd number) is given by

D−1
k−1;� i

2 �
=

[
Dk;i Uk;iBk;i,i+1V

H
k;i+1

0 Dk;i+1

]−1

=
[

D−1
k;i −D−1

k;i Uk;iBk;i,i+1V
H
k;i+1D

−1
k;i+1

0 D−1
k;i+1

]
. (5.1)

We have

Ûk;i =

[
Dk+1;2i−1 Uk+1;2i−1Bk+1;2i−1,2iV

H
k+1;2i

0 Dk+1;2i

]−1

Uk;i

Ûk;i =

[
Dk+1;2i−1 Uk+1;2i−1Bk+1;2i−1,2iV

H
k+1;2i

0 Dk+1;2i

]−1

.

·
[

Uk+1;2i−1Rk+1;2i−1

Uk+1;2iRk+1;2i

]
Ûk;i =

[
D−1

k+1;2i−1 −D−1
k+1;2i−1Uk+1;2i−1Bk+1;2i−1,2iV

H
k+1;2iD

−1
k+1;2i

0 D−1
k+1;2i

]
.

·
[

Uk+1;2i−1Rk+1;2i−1

Uk+1;2iRk+1;2i

]
Ûk;i =

[
D−1

k+1;2i−1Uk+1;2i−1(Rk+1;2i−1 − Bk+1;2i−1,2iV
H

k+1;2iD
−1
k+1;2iUk+1;2iRk+1;2i)

D−1
k+1;2iUk+1;2iRk+1;2i

]
.

Assuming that Ûk+1;2i−1 and Ûk+1;2i have been updated as D−1
k+1;2i−1 Uk+1;2i−1

and D−1
k+1;2iUk+1;2i the update for Ûk;i follows from the update Rk+1;2i−1 as

R̂k+1;2i−1 = Rk+1;2i−1 −Bk+1;2i−1,2iV
H
k+1;2iŪ

−1
k+1;2iUk+1;2iRk+1;2i. (5.2)

The formulas for V̂k;i+1 become

V̂ H
k;i+1 = V H

k;i+1

[
Dk+1;2i+1 Uk+1;2i+1Bk+1;2i+1,2i+2V

H
k+1;2i+2

0 Dk+1;2i+2

]−1

V̂ H
k;i+1 =

[
W H

k+1;2i+1V
H

k+1;2i+1 W H
k+1;2i+2V

H
k+1;2i+2

]
.

.

[
Dk+1;2i+1 Uk+1;2i+1Bk+1;2i+1,2i+2V

H
k+1;2i+2

0 Dk+1;2i+2

]−1

V̂ H
k;i+1 =

[
W H

k+1;2i+1V
H

k+1;2i+1 W H
k+1;2i+2V

H
k+1;2i+2

]
.

.

[
D−1

k+1;2i+1 −D−1
k+1;2i+1Uk+1;2i+1Bk+1;2i+1,2i+2V

H
k+1;2i+2D

−1
k+1;2i+2

0 D−1
k+1;2i+2

]
.
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Let

ŴH
k+1;2i+2 = WH

k+1;2i+2 −WH
k+1;2i+1V

H
k+1;2i+1D

−1
k+1;2i+1Uk+1;2i+1Bk+1;2i+1,2i+2

then

V̂ H
k;i+1 =

[
WH

k+1;2i+1V
H
k+1;2i+1D

−1
k+1;2i+1 ŴH

k+1;2i+2V
H
k+1;2i+2D

−1
k+1;2i+2

]
.

Assuming now that V̂ H
k+1;2i+1 and V̂ H

k+1;2i+2 have been updated as

V H
k+1;2i+1D

−1
k+1;2i+1 and V H

k+1;2i+2D
−1
k+1;2i+2,

the update for V̂k;i+1 follows from

ŴH
k+1;2i+2 = WH

k+1;2i+2 −WH
k+1;2i+1V

H
k+1;2i+1D

−1
k+1;2i+1Uk+1;2i+1Bk+1;2i+1,2i+2

(5.3)
next the update for −Ûk;iBk;i,j V̂

H
k;j follows from

B̂k;i,j = −Bk;i,j . (5.4)

Let the intermediate G be defined as Gk;i = V H
k;iD

−1
k;i Uk;i, then the above update

formulas can be written as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ŴH
k;2i = WH

k;2i −WH
k;2i−1Gk;2i−1Bk;2i−1,2i

Ŵk;2i−1 = Wk;2i−1

R̂k;2i−1 = Rk;2i−1 −Bk;2i−1,2iGk;2iRk;2i

R̂k;2i = Rk;2i

B̂k;i,j = −Bk;i,j .

(5.5)

The recursive formula for the intermediate variable G are as follows. According to
the definition of Gk−1;i:

Gk−1;i =
[

W H
k;2i−1V

H
k;2i−1 W H

k;2i−1V
H
k;2i

]
.

·
[

Dk;2i−1 Uk;2i−1Bk;2i−1,2iV
H

k;2i

0 Dk;2i

]−1 [
Uk;2i−1Rk;2i−1

Uk;2iRk;2i

]
Gk−1;i =

[
W H

k;2i−1V
H

k;2i−1 W H
k;2i−1V

H
k;2i

]
.

·
[

D−1
k;2i−1 −D−1

k;2i−1Uk;2i−1Bk;2i−1,2iV
H

k;2iD
−1
k;2i

0 D−1
k;2i

] [
Uk;2i−1Rk;2i−1

Uk;2iRk;2i

]
Gk−1;i =

[
W H

k;2i−1 W H
k;2i−1

]
.

·
[

V H
k;2i−1D

−1
k;2i−1Uk;2i−1 −V H

k;2i−1D
−1
k;2i−1Uk;2i−1Bk;2i−1,2iV

H
k;2iD

−1
k;2iUk;2i

0 V H
k;2iD

−1
k;2iUk;2i

]
.

·
[

Rk;2i−1

Rk;2i

]
Gk−1;i =

[
W H

k;2i−1 W H
k;2i−1

] [ Gk;2i−1 −Gk;2i−1Bk;2i−1,2iGk;2i

0 Gk;2i

] [
Rk;2i−1

Rk;2i

]
.
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Summarizing

Definition 5. Let the intermediate variable G be defined as
for k = 1, 2, . . . , n and i ∈ 1, 2, . . . , 2k−1:

Gk;i = V H
k;iD

−1
k;i Uk;i. (5.6)

The upsweep recursion for G is:

Gk−1;i =
[

WH
k;2i−1 WH

k;2i

] [ Gk;2i−1 −Gk;2i−1Bk;2i−1,2iGk;2i

0 Gk;2i

] [
Rk;2i−1

Rk;2i

]
(5.7)

and hence

Theorem 9. The level-n HSS representation of the inverse of the upper triangular
HSS matrix is given by the following sequence of operations

for k = 1, 2, . . . , n; j ∈ 1, 2, . . . , 2k and i ∈ 1, 2, . . . , 2k−1:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ŴH
k;2i = WH

k;2i −WH
k;2i−1Gk;2i−1Bk;2i−1,2i Ŵk;2i−1 = Wk;2i−1

R̂k;2i−1 = Rk;2i−1 −Bk;2i−1,2iGk;2iRk;2i R̂k;2i = Rk;2i

B̂k;2i−1,2i = −Bk;2i−1,2i B̂k;2i,2i−1 = 0
Ûk;j = D−1

k;jUk;j V̂ H
k;j = V H

k;jD
−1
k;j

D̂H
k;j = D−1

k;j .

(5.8)

6. Ancillary operations

In this section, we will discuss various ancillary operations that help to (re-) con-
struct an HSS representation in various circumstances. These operations will help
to reduce the HSS complexity or to keep the column base and row base dependen-
cies of the HSS representation.

6.1. Column (row) base insertion

When the off-diagonal blocks have to be changed at the nodes at a higher level,
column bases and row bases may have to be changed. To keep the column and row
base dependencies, new column (row) bases may have to be added to the lower
levels. We might be able to generate these bases from the column (row) bases of the
lower level nodes, but this is not guaranteed. Taking a conservative approach we
insert column (row) bases into the lower level and then do compression to reduce
the complexity of HSS representation.

The algorithm combines two sub-algorithms (downsweep base insertion and
then a compression). The compression procedure is used to eliminate redundant
bases and reduce the HSS complexity. Compression does not have to be done after
every downsweep column (row) base insertion. To save the computation cost, we
may do one step of compression after a number of steps of bases insertion.

We will present row base insertion in details, while column base insertion is
dual and hence similar.
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6.1.1. Downsweep row base insertion. Suppose that we need to add a row base
represented by a conformal matrix v to an HSS node A without changing the
matrix it represents (the column dimension of v should of course be conformal to
the row dimension of A.) Let the original HSS node be represented as[

D1;1 U1;1B1;1,2V
H
1;2

U1;2B1;2,1V
H
1;1 D1;2

.

]
The algorithm works in a downsweep fashion modifying the nodes and leaves in
the HSS tree.

• Row base insertion at a non-leaf node
vk;i is split according to the column partition of A at this node:
for k = 1, 2, . . . , n and i ∈ 1, 2, . . . , 2k:

vk;i =
[

vk+1;2i−1

vk+1;2i

]
vk+1;2i−1 is inserted to the left child, vk+1;2i to the right child recursively.
vk+1;2i−1 can be generated from Dk+1;2i−1, and vk+1;2i from Dk+1;2i. The
translation matrices of this node must be modified to make sure that the
base insertion does not change the matrix it represents as follows

for k = 1, 2, . . . , n; i ∈ 1, 2, . . . , 2k, and j = i + 1 for odd i, j = i− 1 for
even i: ⎧⎨⎩ Ŵk;i =

[
Wk;i 0

0 I

]
B̂k;i,j =

[
Bk;i,j 0

] . (6.1)

• Row base insertion at a leaf
a leaf is reached by recursion, vn;i has to be inserted to the leaf, hence
for k = 1, 2, . . . , n and i ∈ 1, 2, . . . , 2k:

V̂n;i =
[

Vn;i vn;i

]
. (6.2)

6.1.2. Compression. After applying downsweep base insertion to A, the row bases
v required by the upper level can be generated from A. But the HSS representation
we get may have become redundant.

Since only the row base has been modified, we only have to factor Vn;i ma-
trices as

for k = 1, 2, . . . , n and i ∈ 1, 2, . . . , 2k:

Vn;i = V̂n;iwn;i. (6.3)

This should be done by a rank revealing QR or QL factorization, then V̂n;i will be
column orthonormal (and it will surely be column independent). The factor wn;i

will then be propagated to the upper level, where the translation matrices Bn;i,j

and Wn;i will be modified by the factor w as follows
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for k = 1, 2, . . . , n; i ∈ 1, 2, . . . , 2k, and j = i+1 for odd i, j = i−1 for even i:⎧⎨⎩
B̂k;i,j = Bk;i,jw

H
k;j

W̄k;i = wk;iWk;i

R̂k;i = Rk;i.

(6.4)

Then we do compression on the higher level. Since only row bases have been
modified, we only have to factor[

W̄k;2i−1

W̄k;2i

]
=

[
Ŵk;2i−1

Ŵk;2i

]
wk−1;i. (6.5)

Note that W̄k;2i−1 and W̄k;2i have been modified by the wk;2i−1 and wk;2i factors
coming from its children with the formulas (6.4), the factorization should again
be rank-revealing. The wk−1;i factor will then be propagated further to the upper
level, and the algorithm proceeds recursively.

After applying the whole algorithm to the a HSS node, the new row base
vH will be inserted by appending it to the original row base. Suppose the row
base of the original node is given by V H , the modified node becomes

[
V v

]H .
Note that base insertion does not change the HSS matrix, it only modifies its HSS
representation.

6.1.3. Column base insertion. The algorithm for column base insertion is similar
and dual to the one for row base insertion. Modifications will now be done on U , R

instead of V , W . And the B matrices will be modified as B̂k;i,j =
[

Bk;i,j

0

]
instead

of
[

Bk;i,j 0
]
. After applying the row bases insertion to a HSS node, the new

column bases will be appended after its original column bases. The compression
algorithm for column base insertion should also be modified accordingly.

6.2. Append a matrix to a HSS matrix

This algorithm appends a thin slice C to a HSS matrix A. This operation is central
in the Moore-Penrose HSS inversion treated in [18]. We establish that the result of
this operation will still be HSS matrix whose HSS representation can be computed
easily. Obviously, we may append the matrix to the top of the HSS matrix, to the
left of the HSS matrix, to the right of the HSS matrix or to the bottom of the HSS
matrix. Here we just present the method to append matrix to the left of the HSS
matrix. Others can be easily derived mutatis mutandis.

6.2.1. Append a rank-k matrix to a HSS matrix. Suppose

Â =
[

C A
]
. (6.6)

Matrix B should have the same number of rows as A does, A is HSS matrix whose
HSS representation is defined by sequences UA, VA, DA, RA, WA and BA.
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Instead of trying to absorb the C matrix into the HSS representation of A
matrix, we rewrite the formula (6.6) as:

Â =
[
− −
C A

]
(6.7)

where − is a dummy matrix which has no rows. Â is an HSS matrix which has
one more level than A does.

We then assume that C = UBV H . That is: C is a rank-k matrix. The de-
composition of C can be computed by a URV factorization or SV D factorization
(in practice, we normally have its decomposition already available).

Then the column base U of C shall be inserted to the HSS representation of
A so that U can be generated from the HSS representation of A. This can be done
in many different ways. The most straightforward is to insert the column base
using the algorithm described in Section 6.1 and followed by a step of compression
depending on how many columns U has. Suppose that after column bases insertion,
the HSS representation of A becomes Ā. (Note that: column bases insertion does
not change the HSS matrix, it only changes the HSS representation.)

Then Â will be represented as

Â =
[

− −
UBV H Ā

]
. (6.8)

It is easy to check that the HSS representation of Â will be given as
at the top node {

B1;1,2 = ∅ B1;2,1 = B W1;1 = |
W1;2 = ∅ R1;1 = ∅ R1;2 = | (6.9)

at the left branch:
D1;1 = − U1;1 = ∅ V1;1 = V (6.10)

at the right branch:
D1;2 = Ā (6.11)

where | and − represent dummy matrices with no columns respect. no rows. ∅
represents the dummy matrix without column or or row. The other dimensions of
all these should be correct such that the HSS representation is still valid.

6.2.2. Matrix-append when bases are semi-separable. In practice, we almost never
compute U and V , since these computations are costly and break the idea of HSS
representation. For instance, when a matrix UBV H needs to be appended to a
HSS matrix A, U and V are not explicit stored. They are defined by the formulas
(2.6) and (2.7).

In this case, the formulas in the last subsection will have to be modified
accordingly, The left branch of Â will not be of just one level. Instead, the left
child will be a sub-HSS tree defined by the following sequences:
at the root: {

B1;1,2 = ∅ B1;2,1 = B W1;1 = |
W1;2 = ∅ R1;1 = ∅ R1;2 = | (6.12)
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at non-leaf nodes: for k = 2, 3, . . . , n and i ∈ 1, 2, . . . , 2k−1:{
R̂k;2i−1 = | R̂k;2i = | B̂k;2i−1,2i = −
B̂k;2i,2i−1 = − Ŵk;2i−1 = Wk;2i−1 Ŵk;2i = Wk;2i

(6.13)

at the leaves:
Ûn;i = ∅ V̂n;i = Vn;i D̂n;i = − (6.14)

note that since the column base U is also in a hierarchically semi-separable form,
inserting it into A will be somewhat different than that in Section (6.1). The
modified formulas for inserting a column base U to A are given by

for k = 1, 2, . . . , n; i ∈ 1, 2, . . . , 2k−1; j = i + 1 for odd i and j = i − 1 for
even i: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

B̂k;i,j =
[

BA;k;i,j

0

]
R̂k;i =

[
RA;k;i 0

0 Rk;i

]
Ûk;i =

[
UA;k;i Uk;i

]
.

(6.15)

7. Complexity analysis

From the algorithms given, the time complexity of the elementary operations can
easily be evaluated together with their effect on the representation complexity
of the resulting HSS structure. The same matrix can be represented by many
different HSS representations, in which some are better than others in terms of
computation complexity and space complexity. The HSS representation complexity
should be defined in such a way that operations on the HSS representation with
higher HSS representation complexity cost more time and memory than those on
HSS representations with lower HSS representation complexity. Many indicators
can be used. Here, we use a rough measure for the HSS representation complexity
as follows

Definition 6. HSS complexity: the total number of free entries in the HSS repre-
sentation.

Definition 7. Free entries: free entries are the entries which can be changed without
restriction (For instance, the number of free entries in n× n diagonal matrix will
be n, that in n× n triangular matrix will be n(n− 1)/2. . . etc.).

The HSS complexity actually indicates the least possible memory needed to
store the HSS representation. It also implies the computation complexity, assuming
each free entry is accessed once or a small number of times during operations (we
may have to account for intermediary representations as well).

Since most of the algorithms given are not so complicated and some have
been studied in the literature, we shall limit ourselves to listing a summarizing
table for the existing HSS algorithms (including some from the literature). We
assume that n is the dimension of the HSS matrix and k is the maximum rank
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Table 1. Computation complexity analysis table

Operation Numerical Complexity Resulting represen-
tation complexity

Matrix-Vector
Multiplication [10]

CMatrix×Vector(n) = O(nk2) A vector of dim. n

Matrix-Matrix
Multiplication [10]

CMatrix×Matrix(n) = O(nk3) Addition

Construct HSS for
rank-k matrix

Ck-construction(n) = O(nk) proportional to k

Bases insertion CBases-insert(n) = O(n) Increase by the
size of V

Matrix-Append CMatrix-append(n) = O(n) Increase by one level

Matrix addition [14] CAddition(n) = O(nk2) Increase additively

Compression CCompression(n) = O(nk3) Does not increase

Model reduction [15] CModel-reduction(n) = O(nk3) Decreases

LU Decom-
position [1]

CLU(n) = O(nk3) Does not change

Fast solve [10] [14] CSolve(n) = O(nk3) A vector of dim. n

Inverse CInverse(n) = Onk3 Does not change

Transpose CTranspose(n) = O(nk) Does not change

of the translation matrices (more accurate formulas can be derived when more
detailed information on local rank is available). Table 1 gives a measure of the
numerical complexity in terms of n and k, as well as an indication of the HSS
complexity of the resulting structure.
We see that in all cases the complexity is linear in the original size of the matrix,
and a to be expected power of the size of the translation matrices. Of course, a
much more detailed analysis is possible but falls beyond the scope of this paper.

8. Connection between SSS, HSS and the time varying notation

In the earlier papers on SSS [19, 16], efficient algorithms have been developed. Al-
though different algorithms have to be used corresponding to these two seemingly
different representations, we would like to show that they are not so different, and
we will show how they can be converted to each other. By converting between
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these two representations, we can take advantages of the fast algorithms for these
two different representations.

8.1. From SSS to HSS

In [16], the SSS representation for A is defined as follows: let A be an N × N
matrix satisfying the SSS matrix structure. Then there exist n positive integers
m1, . . . , mn with N = m1 + · · · + mn to block-partition A as A = Ai,j , where
Aij ∈ Cmi×mj satisfies

Aij =

⎧⎨⎩
Di if i = j

UiWi+1 . . .Wj−1V
H
j if j > i

PiRi−1 . . . Rj+1Q
H
j if j < i.

(8.1)

For simplicity, we consider casual operators. For n = 4, the matrix A has the form

A =

⎡⎢⎢⎣
D1 U1V

H
2 U1W2V

H
3 U1W2W3V

H
4

0 D2 U2V
H
3 U2W3V

H
4

0 0 D3 U3V
H
4

0 0 0 D4

⎤⎥⎥⎦ . (8.2)

Let us first split the SSS matrix as following

A =

⎡⎢⎢⎣
D1 U1V

H
2 U1W2V

H
3 U1W2W3V

H
4

0 D2 U2V
H
3 U2W3V

H
4

0 0 D3 U3V
H
4

0 0 0 D4

⎤⎥⎥⎦ . (8.3)

The top-left block goes to the left branch of the HSS representation, while the
right-bottom block goes to the right branch. The root is defined by setting:{

B̂1;1,2 = I B̂1;2,1 = 0 Ŵ1;1 = I

Ŵ1;2 = WH
2 R̂1;1 = W3 R̂1;2 = I.

(8.4)

Then we construct the left branch with a similar partitioning.[
D1 U1V

H
2

0 D2

]
(8.5)

hence
D̂2;1 = D1 Û2;1 = U1 V̂2;1 = V1 (8.6)

while for the right child

D̂2;2 = D2 Û2;2 = U2 V̂2;2 = V2. (8.7)

In order to keep the HSS representation valid, R and W matrices on the left node
should be set properly. That is{

R̂2;1 = W2 R̂2;2 = I Ŵ2;1 = I

Ŵ2;2 = WH
1 B̂2;2,1 = 0 B2;1,2 = I

(8.8)
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and similarly for the right branch with partitioning as in (8.5)

D̂2;3 = D3 Û2;3 = U3 V̂2;3 = V3, (8.9)

D̂2;4 = D4 Û2;3 = U4 V̂2;4 = V4. (8.10)

In order to keep the HSS representation valid, R and W matrices on the right
node should be set properly. That is{

R̂2;3 = W4 R̂2;4 = I Ŵ2;3 = I

Ŵ2;4 = WH
3 B̂2;4,3 = 0 B̂2;3,4 = I.

(8.11)

Finally the HSS representation can be written as:

A =

⎡⎢⎢⎢⎣
D̂2;1 Û2;1B̂2;1,2V̂

H
2;2 Û2;1R2;1B̂1;1,2Ŵ

H
2;3V̂

H
2;3 Û2;1R̂2;1B̂1;1,2Ŵ

H
2;4V̂

H
2;4

0 D̂2;2 Û2;2R̂2;2B̂1;1,2Ŵ
H
2;3V̂

H
2;3 Û2;2R̂2;2B̂1;1,2Ŵ

H
2;4V̂

H
2;4

0 0 D̂2;3 Û2;3B̂2;3,4V̂
H
2;4

0 0 0 D̂2;4

⎤⎥⎥⎥⎦
(8.12)

with all the translation matrices set in equation (8.4) to (8.11).
The general transformation is then as follows. First we must partition the

SSS matrix according to a certain hierarchical partitioning. Then for a current
HSS node at k level which should contain the SSS blocks Axy where i ≤ x, y ≤ j
(1 ≤ i < j ≤ n) and assuming the HSS block is further partitioned at block h
(i < h < j) the translation matrices of the current node can be chosen as{

B̂k;2i−1,2i = I B̂k;2i,2i−1 = 0 Ŵk;2i−1 = I

Ŵk;2i =
∏i

x=h WH
x R̂k;2i−1 =

∏j
x=h+1 Wx R̂k;2i = I

(8.13)

note that undefined Wx matrices are set equal I (the dimension of I is defined
according to context). If i = h or h + 1 = j, then one (or two) HSS leaf (leaves)
have to be constructed by letting

D̂k;i = Dh Ûk;i = Uh V̂k;i = Vh. (8.14)

After the HSS node of the current level has been constructed, the same algorithm is
applied recursively to construct the HSS node for SSS blocks Axy, i ≤ x, y ≤ h and
for SSS block Axy, h+1 ≤ x, y ≤ j (the recursion stops when a leaf is constructed.).

Observing the fact that all B̂k;2i,2i−1 matrices are zeros matrices and Wk;2i−1,
Rk;2i−1 are identity matrices, modifications can be done to get a more efficient
HSS representation.

8.2. From HSS to SSS

In this section, we shall consider HSS as recursive SSS using the concise time-
varying notation of [5]. We shall first illustrate the algorithm by an example on
8×8 HSS representation. Different partitioning are possible, e.g., those illustrated
in Figure 6.
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Figure 6. HSS partitioning (on the left), SSS partitioning (on
the right).

We shall only consider the upper triangular case, as that is the standard case
in time-varying system theory. The 4-level balanced HSS representation can be
expanded as:

A =

⎡⎢⎢⎣
D1;1 U1;1B1;1,2W

H
2;3V

H
2;3 U1;1B1;1,2W

H
2;4W

H
3;7V

H
3;7 U1;1B1;1,2W

H
2;4W

H
3;8V

H
3;8

0 D2,3 U2;3B2;3,4W
H
3;7V

H
3;7 U2;3B2;3,4W

H
3;8V

H
3;8

0 0 D3;7 U3;7B3;7,8V
H
3;8

0 0 0 D3;8.

⎤⎥⎥⎦
(8.15)

This has to be converted to the time-varying representation for k = 4:

A =

⎡⎢⎢⎣
D1 B1C2 B1A2C3 B1A2A3C4

0 D2 B2C3 B2A3C4

0 0 D3 B3C4

0 0 0 D4.

⎤⎥⎥⎦ (8.16)

Representing the time-varying realization matrices as Tk =
[

Ak Ck

Bk Dk

]
) we

obtain

T1 =
[

. .
U1;1B1;1,2 D1;1

]
, T2 =

[
WH

2;4 WH
2;3V

H
2;3

U2;3B2;3,4 D2;3

]
(8.17)

T3 =
[

WH
3;8 WH

3;7V
H
3;7

U3;7B3;7,8 D3;7

]
, T4 =

[
. V H

3;8

. D3;8.

]
. (8.18)

More generally, it is easy to see that the realization at k step is given by

Tk =
[

Ak Ck

Bk Dk

]
=
[

WH
k;2k WH

k;2k−1V
H
k;2k−1

Uk;2k−1Bk;2k−1,2k Dk;2k−1.

]
. (8.19)

According to the reconfigured partitioning, we see that for step k (indexing the
current node) all right children belong to the further steps, while all left children
go to Dk;2k−1 in the realization of the current step. Wk;2k−1, Wk;2k and Bk;2k−1,2k

are the translation matrices of the current node. Uk;2k−1 and Vk;2k−1 form the
column base and row base of the current node, yet they are not explicitly stored.
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Note that, according to the HSS definition, they should be generated(recursively)
from the left children.

The conversion algorithm should start from the root node and proceed re-
cursively. After constructing the realization on the current step, the algorithm
proceeds by setting the right child as the current node and the algorithm goes
recursively until it reaches the right bottom where no more right child exist. Then
the realization of the last step will be given as:[

. V H
k−1;2k−1

. Dk−1;2k−1

]
(8.20)

since a leaf does not have a right child.
To show how a HSS tree can be split as time-varying steps, we shall show the

partition on an HSS binary tree shown in Figure 7.

Figure 7. Binary tree partitioning.

Dk;2k−1 is a potentially large HSS block. Another level of time-varying no-
tation can be used to represent this Dk;2k−1 whose realization may again contain
sub-blocks represented by the time-varying notation. Since Uk;2k−1, Vk;2k−1 are
not explicitly stored and can be derived locally from the current step, no efficiency
is lost by applying recursive time-varying notation.
Here are a number of remarks on the recursive time-varying notation for HSS:

1. Dk;2k−1 in the realization is an HSS block which can either be represented in
HSS form or by time-varying notation. This suggests a possibly hybrid nota-
tion consisting of HSS representations and recursive time-varying notations.

2. Uk;2k−1 and Vk;2k−1 form HSS bases generated from Dk;2k−1. For this recur-
sive time-varying notation, they should not be explicitly stored and can be
derived locally in the current step.

3. It is possible to represent general HSS matrices (not just block upper-triangu-
lar matrices) with the recursive time-varying notation.

4. All fast HSS algorithms can be interpreted in a recursive time-varying fashion.
5. Some algorithms applied on time-varying notation described in [5] can be

extended to the recursive time-varying notation (HSS representation).
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9. Final remarks

Although the HSS theory is not yet developed to the same full extent as the se-
quentially semi-separable theory, the results obtained so far show that the HSS
structure has indeed a number of very attractive properties that make it a wel-
come addition to the theory of structured matrices. Fundamental operations such
as matrix-vector multiplication, matrix-matrix multiplication and matrix inver-
sion (including the Moore-Penrose case accounted for in [18]) can all be excuted
with a computational complexity linear in the size of the matrix, and additional
efficiency induced by the translation operators. A representation in terms of global
diagonal and shift operators is also available, very much in the taste of the more
restrictive multi-scale theory. These formulas have not yet been exploited fully.
The connection with time-varying system theory is also very strong, and it should
be possible in the future to transfer a number of its results to the HSS representa-
tion, in particular model reduction, interpolation and Hankel norm approximation
(i.e., model reduction).
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