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matrices grow in size to infinity. Numerical results are presented to

verify the theory.
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1. Introduction

Linear systems of the form Ax = b are ubiquitous in applications. A direct solution to such systems

requires the LU factorization of thematrix A. Performing direct Gaussian eliminationwould require an

O(n3)algorithmfor ann×n system[3], unless somespecial structureof thematrixA couldbeexploited.

Therefore, it is of considerable interest to look for special structures either in A or its LU factors.

The article [2] considered block tridiagonal matrices that come from the discretization of constant

coefficient elliptic PDEson theunit cube. Itwas shownthat thefinal schur complementof suchmatrices

converged to a known fixed point as the grid sizes grew to infinity. The same result for the constant
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scalar case has been known for some time in the dynamical systems literature [6]. In this paperwe shall

look at the LU factorization of diagonally dominant tridiagonal matrices, whose diagonals come from

the samples of smooth functions on a uniform grid. Suchmatrices can arise in many applications such

as the discretization of differential equations [4]. In particular, we prove that the Schur complements

of these matrices have point-wise limits on the grid as the discretization size goes to zero.

This local behavior of the Schur complements raises many interesting questions. For example, one

can consider the possibility of interpolating the LU factors of the operator fromcoarser to finer grids (as

compared tomultigridmethods that interpolate the solution [1]). These ideasmayalso beused for con-

structing approximate inverses. These issues are under investigation and shall be published in a future

paper. The aim of this paper is to lay a theoretical foundation to show that such limits are possible.

The matrices we wish to analyze would look like

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1
c1 a2 b2

c2 a3 b3
. . .

. . .
. . .

cn−2 an−1 bn−1

cn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

One may think of the ak ’s, bk ’s, and ck ’s as coming from the samples of smooth functions on the inter-

val [0, 1]. That is a(k) = a
(

k
n+1

)
for k = 1, .., n, and so too with bk and ck . This would reflect many

naturally occurring systems, for example the discretization of differential equations.

If we were to perform Gaussian elimination on the matrix A, we would first have to zero out c1 in

the (2, 1) position of the matrix. This can be done by adding −c1/a1 times the first row to the second

row. Therefore, our first Schur complement would just be

s1 = a1,

and the second Schur complement in the (2, 2) position would be

s2 = a2 − c1b1

s1
.

Now we have to use the second row to zero out the entry in the (3, 2) position. This would produce

the third Schur complement in the (3, 3) position

s3 = a3 − c2b2

s2
.

Continuing this recursive process, any (k + 1)th Schur complement would be

sk+1 = ak+1 − ckbk

sk
.

The question we wish to answer is as the size of A grows, that is as n tends to infinity, does the above

recursion have a limit. An intuitive argument would be as follows. Assuming ak , bk , and ck are all

constant, the above recursion would be

sk+1 = a − cb

sk
.

Presume that sk is converging to some point s. Then the above recursion becomes a quadratic in the

limit since

sk+1sk = ask − cb,

and with sk ≈ s we get

s2 − as + cb = 0.
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Fig. 1. Point-wise limits of the Schur complements.

The two roots of this equation are then

s = a + √
a2 − 4bc

2
,

and

s = a − √
a2 − 4bc

2
.

Weshall showthat theabove recursiondoes converge to themorepositive rootunder someappropriate

assumptions on the matrix A such that its LU factorization exists.

In particular, we claim that the Schur complements have point-wise limits as the grid becomes

finer and finer. That is, consider Fig. 1 shown below. Then, if you look at a fixed discretization point

x′ on the grid, the Schur complements corresponding to that point have a local limit falling onto a

know curve s(x). We need to make one more relevant point. We claim that the Schur complements

are converging to the positive quadratic root. However, if we look at the matrix A the very first Schur

complement shall always be fixed at a1, where as the positive root is not equal to a1. Therefore,

this introduces a natural discontinuity at the origin. So the convergence we look for will not be uni-

form.

This paper will follow the theory laid out in [8]. The organization of the rest of this paper is as

follows. We shall start by looking at a simple example in Section 2, the discrete equivalent of the

second derivative operator. This should set the stage for the more general case of tridiagonal matrices

with constant diagonals in Section 3, followed by variable tridiagonal matrices in Section 4. We shall

present various numerical results to support the theory in section 5. Finally, we shall conclude with a

summary and further work in Section 6.

Before proceeding, we need to raise two simple lemmas that are nevertheless useful. We will also

make the following notational simplification through out this paper. Suppose that α1, α2, to αn are an

arbitrary set of n numbers. Then we will denote their product as

n∏
i=1

αi = α1..n.

Lemma 1.1. Let B be a bidiagonal matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1
c1 a2

c2
. . .
. . .

. . .

cn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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then its inverse is given by

(Binv)kj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)|k−j|cj..k−1

aj..k
for k > j,

1
ak

for k = j,

0 else,

for k = 1, .., n.

Proof. Consider the multiplication of any kth row of Binv by a jth column of B, for k > j, then

(Binv)k∗ (B)∗j = (−1)|k−j|cj..k−1

aj..k
aj + (−1)|k−(j+1)|cj+1..k−1

aj+1..k

cj,

= (−1)|k−j|cj..k−1

aj+1..k

− (−1)|k−j|cj..k−1

aj+1..k

,

= 0.

Assume k = j then,

(Binv)j∗ (B)∗j = 1

ak
ak,

= 1.

If k < j then it is obvious that

(Binv)k∗ (B)∗j = 0.

This completes the proof of Lemma 1.1. �

The next Lemma relates the final Schur complement of a matrix A to its inverse.

Lemma 1.2. Suppose that X is the last Schur complement in the LU factorization of a matrix A. Then the

bottom right-most entry of A−1 is equal to X−1.

Proof. Note that since X is the last Schur complement of A, it must be the last diagonal entry of the

upper factor U. Since A−1 = U−1L−1, the last entry of A−1 must be X−1. �

2. A simple example

In this section we analyze the second order operator with Dirichlet boundary conditions,

− d2

dx2
(u) = f ,

with u(0) = u0 and u(1) = u1 on [0, 1].
The discrete equivalent of this operator with a second order finite difference scheme is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1

−1 2 −1
. . .

. . .
. . .

. . .
. . . −1

−1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

n×n

. (1)
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We ignore the scaling factor of 1

h2
, where h is the discretization step size. This matrix is symmetric

positive definite and therefore has a Cholesky factorization (see [7]). We will analyze the Cholesky

factorization of this matrix by first proving the following lemma.

Lemma 2.1. The Schur complement at each discretization point for the matrix in Eq. 1 converges to one.

Proof. Note that

s1 = 2,

s2 = 2 − 1

s1
,

= 1 + 1

2
.

So, if the mth Schur complement is sm = 1 + 1
m
, then

sm+1 = 2 − 1

sm
,

= 2 − m

m + 1
,

= 1 + 1

m + 1
.

Now for any discretization point x ∈ (0, 1], the Schur complement corresponding to that point is

s(x) = s(kh) = 1 + 1
k
, where h is the discretization step size and k is a positive integer such that

x = kh. Since kh is constant as h goes to zero, we see that s(x) converges to 1. This completes the proof

of Lemma 2.1. �

A natural question that arises is to what matrix this limiting Schur complements correspond to?

We will call this Cholesky factor as L∞

L∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

−1 1
. . .

. . .

. . .
. . .

−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Multiplying this matrix out we get

L∞LT∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1

−1 2 −1
. . .

. . .
. . .

. . .
. . . −1

−1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that the resulting matrix is almost similar to A. In fact,

A = L∞LT∞ + uuT ,

= L∞
(
I + L−1∞ uuTL−T∞

)
LT∞,
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where u = (1 0 · · · 0)T . It is easy to verify that the inverse of L∞ is

L−1∞ = tril(11T),

where tril(*) indicates the lower triangular part of *, and 1 is a vector of all ones. Therefore, we can

write the following decomposition of A

A = L∞
(
I + vvT

)
LT∞,

where v = 1. The matrix in the middle is an identity plus rank-one matrix. In the next few sec-

tions we will show that this type of factorization could be extended to more general tridiagonal

matrices.

3. Constant coefficient case

We start off our analysis of the general case by considering the constant coefficient tridiagonal

matrix, where we assume the diagonal is a and the sub and super-diagonals are b. We assumewithout

loss of generality that a is positive. The matrix looks like

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b

b a b

b a b
. . .

. . .
. . .

b a b

b a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

. (2)

First we make the following assumption on A.

Assumption 3.1. Let a and b be such that a � 2|b|.
It follows from Assumption 3.1 that the term a2 − 4b2 is non-negative. The Schur complements of

A are given by

s1 = a,

and

sk+1 = a − b2

sk
.

The above non-linear recursion has two fixed points

Xp = a + √
a2 − 4b2

2
,

Xn = a − √
a2 − 4b2

2
.

Wemake the following claim.

Theorem 3.1. The Schur complements of the matrix A in Eq. 2 converge point-wise to Xp, in the limit as

the matrix size n tends to infinity.
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The rest of this section shall be devoted to the Proof of Theorem 3.1. Consider the matrix

L∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X
1/2
p

bX
−1/2
p X

1/2
p

bX
−1/2
p

. . .

. . .
. . .

bX
−1/2
p X

1/2
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Looking at the product L∞LT∞ we see that

L∞LT∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Xp b

b Xp + b2X−1
p b

. . .
. . .

. . .
. . . Xp + b2X−1

p b

b Xp + b2X−1
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Xp b

b Xp + Xn b
. . .

. . .
. . .

. . . Xp + Xn b

b Xp + Xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Xp b

b a b
. . .

. . .
. . .

. . . a b

b a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix A can now be written as

A = L∞SLT∞,

where

S = I + vvT ,

v = L−1∞ u,

u =
(
X
1/2
n 0 · · · 0

)T
.

Now L∞ is a bidiagonal matrix whose inverse is given by Lemma 1.1. So, we can write out L−1∞ as

L−1∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X
−1/2
p

X
−1/2
p

. . .
. . .

X
−1/2
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

bX−1
p 1

bX−1
p

. . .

. . .
. . .

bX−1
p 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

−1

,
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X
−1/2
p

X
−1/2
p

. . .
. . .

X
−1/2
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

−bX−1
p 1

b2X−2
p −bX−1

p

. . .

−b3X−3
p b2X−2

p

. . .
. . .

. . .
. . .

. . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

From this we get the expression for v to be

v = L−1∞ u

=
(
1 −bX−1

p b2X−2
p −b3X−3

p · · ·
)T

. (3)

We now take a look at the Schur complements of S = I + vvT . First we note that the inverse of S is

given by the Sherman–Morrison formula (see [7]),

S−1 =
(
I + vvT

)−1
,

= I − vvT

1 + vTv
.

Let us denote the components of v as

v =
(
v1 v2 · · · vn

)T
.

We can nowmake use of Lemma 1.2, and see that the inverse of the last Schur complement of S is the

last entry in the inverse of S. Therefore, we have the following expression for the inverse of the last

Schur complement s̃n of S

s̃−1
n = 1 − v2n

1 + ∑n
m=1 v

2
m

,

= 1 + ∑n−1
m=1 v

2
m

1 + ∑n
m=1 v

2
m

.

We can now write the last Schur complement of S as

s̃n = 1 + ∑n
m=1 v

2
m

1 + ∑n−1
m=1 v

2
m

,

= 1 + v2n

1 + ∑n−1
m=1 v

2
m

.

Note that by using a similar argument and considering the k × k principal block of S, we can write

any kth Schur complement of S to be

s̃k = 1 + v2k

1 + ∑k−1
m=1 v

2
m

.

By taking a look at Eq. 3, we can write down v2k+1 to be

v2k+1 = b2kX−2k
p ,

=
(
b2kX−k

p

)
X−k
p ,

= γ k,
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where we define γ as

γ = Xn

Xp

.

Wemake onemore point. It is easily verifiable that S is a symmetric positive definite matrix whose

eigenvalues are just 1 and 1 + vTv. Therefore, S has a Cholesky factorization which we denote by L̂L̂T .

We can now give a proof of Theorem 3.1.

Proof of Theorem 3.1. We can write down the Cholesky factorization of the matrix A as

A = L∞L̂L̂T LT∞,

where L̂ is the Cholesky factor of S. Since the kth diagonal entry of the product of two upper triangular

matrices is just the product of the kth diagonal entries of the two matrices, we can nowwrite the (k+ 1)th
Schur complement of A as

sk+1 = s̃k+1Xp,

=
(
1 + v2k+1

1 + ∑k
m=1 v

2
m

)
Xp,

=
(
1 + γ k

1 + ∑k−1
m=1 γm

)
Xp.

Now notice that with Assumption 3.1, we have γ � 1. Therefore, as k → ∞, the first expression on the

right approaches 1. So, sk+1 approaches Xp. This completes the proof. �

We can now extend Theorem 3.1 to non-symmetric tridiagonal matrices of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b

c a b

c a b
. . .

. . .
. . .

c a b

c a

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where we assume that A is sign-symmetric.

Assumption 3.2. Let b and c have the same sign.

Assumption 3.3. Let a, b and c be such that a � 2
√

bc.

Corollary 3.1. Consider the matrix A as given by Eq. 4. Then the Schur complements of A converge point-

wise to

Xp = a + √
a2 − 4bc

2
.

Proof. First we claim that for every sign symmetric matrix as A, there exists a diagonal matrix D such

that DAD−1 is symmetric. For consider the diagonal matrix
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D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 (
b
c

) 1
2 (

b
c

) 3
2

. . . (
b
c

) n−1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now it is easy to verify that DAD−1 is a symmetric matrix of the form

Asym = DAD−1,

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a
√

bc√
bc a

√
bc

. . .
. . .

. . .√
bc a

√
bc√

bc a

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

For if we consider any 2 × 2 block interaction of the above multiplication at any given kth level, we

find that ⎛
⎜⎝

(
b
c

)(k−1)/2

(
b
c

)k/2
⎞
⎟⎠

⎛
⎝a b

c a

⎞
⎠

⎛
⎜⎝

(
c
b

)(k−1)/2

(
c
b

)k/2
⎞
⎟⎠

=
⎛
⎜⎝a

(
b
c

)(k−1)1/2
b

(
b
c

)(k−1)/2

c
(
b
c

)k/2
a

(
b
c

)k/2
⎞
⎟⎠

⎛
⎜⎝

(
c
b

)(k−1)/2

(
c
b

)k/2
⎞
⎟⎠ ,

=
⎛
⎝ a

√
bc√

bc a

⎞
⎠ .

Now by applying Theorem 3.1 to the matrix Asym, we find that its Schur complements converge to

Xp = a + √
a2 − 4bc

2
.

Suppose now that Asym = LU is an LU factorization of Asym. Then we can write

A = D−1LUD.

It is apparent that the above diagonal transformation does not affect the Schur complements of A since

we can write A as

A = D−1LUD,

=
(
D−1LD

) (
D−1UD

)
.

Now notice that D−1LD is a lower triangular matrix with a unit diagonal since L has a unit diagonal.

ThenD−1UD is theuniqueupper triangular factor in the LU factorizationofA.Wepoint outhere that the

LU factorization of a matrix is only uniquely determined up to the diagonal entries of the factors. And

here we are concerned with the factorization such that the lower triangular part has a unit diagonal.

Moreover, it has the same diagonal as U. Therefore, the Schur complements of A converge to Xp. This

finishes the proof of Corollary 3.1. �



N. Somasunderam, S. Chandrasekaran / Linear Algebra and its Applications 436 (2012) 659–681 669

Wenowmoveontothenextsection,whereweshowthatforavariabletridiagonalmatrix,undersome

suitableassumptionsonthediagonals,wecanstillestablishpoint-wiselimitsontheSchurcomplements.

4. Variable tridiagonal matrix

We consider first the Cholesky factorization of symmetric positive definite tridiagonal matrices. It

is assumed that the diagonal entries of thematrix are generated by someunderlying smooth functions.

For example, let a(x), b(x) be smooth functions on [0, 1], and we assume without loss of generality

that a is a positive function. Then consider the matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1
b1 a2 b2

b2 a3 b3
. . .

. . .
. . .

bn−2 an−1 bn−1

bn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

where ak = a
(

k
n+1

)
and bk = b

(
k

n+1

)
. The Schur complements of this matrix are given by the

recursion

s0 = a1

sk+1 = ak+1 − bk

sk
.

Let us first make our assumptions on A explicit.

Assumption 4.1. a and b are continuous functions with bounded derivatives on [0, 1].
Assumption 4.2. There exists a constant δ such that

a − 2|b| � δ > 0.

With these assumptions, we make the following claim.

Theorem 4.1. The Schur complement at a point converges in the limit to

s(x) = a(x) +
√
a2(x) − 4b2(x)

2
.

The rest of this section shall be devoted to the Proof of Theorem 4.1 and its extension to the non-

symmetric case. Suppose that A is an n × n matrix. Then we define

Xpk
=

a
(

k
n+1

)
+

√
a2

(
k

n+1

)
− 4b2

(
k

n+1

)
2

,

Xnk =
a

(
k

n+1

)
−

√
a2

(
k

n+1

)
− 4b2

(
k

n+1

)
2

,

and

γk = Xnk

Xpk

,
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for k = 1, .., n. Now consider the matrix

L∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X
1/2
p1

b1

X
1/2
p1

X
1/2
p2

b2

X
1/2
p2

X
1/2
p3

b3

X
1/2
p3

X
1/2
p4

. . .
. . .
bn−1

X
1/2
pn−1

X
1/2
pn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

then the product L∞LT∞ looks like

L∞LT∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Xp1 b1

b1 Xp2 + b21
Xp1

b2

b2 Xp3 + b22
Xp2

b3

. . .
. . .

. . .

. . .
. . . bn−1

bn−1 Xpn + b2n−1

Xpn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

We can write the diagonal terms as

Xpk + b2k−1

Xpk−1

= Xpk + Xnk−1
,

= ak +
√
a2k − 4b2k

2
+ ak−1 −

√
a2k−1 − 4b2k−1

2
,

= ak + εk,

where εk depends on the local continuity of a. In fact,

εk = Xpk
+ Xnk−1 − ak

= − (
Xnk − Xnk−1

)
= −�Xnk.

By Assumptions 4.1 and 4.2, the derivative of Xn is well defined since

X′
n =

(
a − √

a2 − 4b2

2

)′
,

= 2a′ (
a2 − 4b2

)1/2 − (
2aa′ − 8bb′)

4
(
a2 − 4b2

)1/2 .

Therefore, we have the estimate

|εk| = |�Xnk|,
� ‖X′

n‖∞h,

where h is the discretization step size. So εk is of the order of O(h) for all k. Let us define Dε to be a

diagonal matrix of εk ’s. We can now proceed to write A in terms of the factorization
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A = L∞LT∞ + uuT + Dε,

= L∞
(
I + vvT + L−1∞ DεL

−T∞
)
LT∞,

= L∞
(
S̃ + �S̃

)
LT∞,

where

u =
(
Xn

1/2
1 0 · · · 0

)T

,

v = L−1∞ u,

S̃ = I + vvT ,

�S̃ = L−1∞ DεL
−T∞ .

The proof of Theorem 4.1 is similar to that of Theorem 3.1 in Section 3, but we now have to analyze

the effect of the �S̃ perturbation to S̃. Let us look at the expression for L−1∞ .

L∞ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
b1
Xp1

1
b2
Xp2

1
. . .

. . .
bn−1

Xpn−1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

X
1/2
p1

X
1/2
p2

X
1/2
p3

. . .

X
1/2
pn

⎞
⎟⎟⎟⎟⎟⎟⎠

,

= LBLD,

where LB denotes the bidiagonal part and LD denotes the diagonal part. The inverse of the bidiagonal

part LB of the above matrix, using Lemma 1.1, is

LB
−1
kj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)|k−j|bj..k
Xpj..k

for k > j

1 for k = j

0 else.

This expression can be reduced to

LB
−1
kj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−1)|k−j|
γ

1/2
j..k

for k > j

1 for k = j

0 else.

That is

L−1∞ = LD
−1LB

−1,

where LB
−1 looks like⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

−γ
1/2
1 1

γ
1/2
1..2 −γ

1/2
2 1

−γ
1/2
1..3 γ

1/2
2..3 −γ

1/2
3 1

. . .
. . .

. . .
. . .

−γ
1/2
n−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Note that the (−1)|k−j| term in the aboveexpressionneeds tobe replacedby1 ifb is a negative function.

But, as this does not alter the analysis we proceed assuming the above expression. In particular, we

get v to be

v = LD
−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

−γ
1/2
1

γ
1/2
1..2

−γ
1/2
1..3

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
X1/2
n1

.

The expression for vTv is

vTv = γ1 + Xn1γ1X
−1
p2

+ Xn1γ1γ2X
−1
p3

+ Xn1γ1γ2γ3X
−1
p4

+ · · · ,

= γ1 +
n∑

k=2

Xn1γ1...γk−1X
−1
pk

.

Using Assumption 4.2, we see that there exists an α < 1 such that

sup
x

γ � α.

We can then produce an upper bound on vTv as follows

vTv � β
∞∑
k=0

αk+1 < ∞,

where

β = maxx Xn

minx Xp

.

Note that β is well defined from our assumptions. Moreover, the square of the (k + 1)th entry of v is

bounded by

v2k+1 = Xn1γ1...γk−1X
−1
pk

� βαk.

Therefore, v2k goes to zero as k tends to infinity. Now the kth Schur complement of S̃ is given by,

s̃k = 1 + v2k

1 + ∑k−1
m=1 v

2
m

.

Therefore, s̃k converges to 1 as k tends to infinity.We now have to look at the effect of the perturbation

�S̃ on S̃. We know that for γ < 1, the identity plus rank-one matrix has a Schur complement con-

verging to one, so what is the effect of the perturbation? The perturbation bounds of LU and Cholesky

factorizations have been studied by Stewart [9] and Sun [10]. We will use a non-trivial result of Sun

(see [5]) on the Cholesky factors of a perturbed symmetric positive definite matrix.

Theorem 4.2. Suppose A be symmetric positive definite and R its Cholesky factor. If �A is a symmetric

perturbation to A with Cholesky factor R + �R, and ‖A−1�A‖2 < 1 then,

‖�R‖F � 1√
2

‖A−1‖2‖�A‖F

1 − ‖A−1‖2‖�A‖F

‖R‖2.
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With A = I + vvT , note that ‖A‖2 = √
1 + vTv and ‖A−1‖2 = 1. Also, ‖R‖2 � ‖A‖2 = √

1 + vTv.

So, we just need to make an estimate on ‖�A‖F . With �A = L−1∞ DεL
−T∞ , first note that,

‖�S̃‖ = ‖L−1∞ DεL
−T∞ ‖F

� ‖ |L−1∞ | |Dε L−T∞ | ‖F ,

� ε‖ |L−1∞ | |L−T∞ | ‖F ,

where ε is the maximal entry in Dε . Now

L−1∞ = LD
−1LB

−1,

and since ‖DA‖F � m‖A‖F , for any matrix A and diagonal matrix D, with m = maxi |Di|, by taking m

to be

m = 1

minx Xp

,

we have

‖�S̃‖F � mε‖|LB−1||LB−T |‖F ,

� mε

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

α 1

α2 α 1

α3 α2 α 1
. . .

. . .
. . .

. . .

α 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

α 1

α2 α 1

α3 α2 α 1
. . .

. . .
. . .

. . .

α 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T
∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
F

,

= mε

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 α α2 α3

α 1 + α2 α(1 + α2)
α2 α(1 + α2) 1 + α2 + α4

α3 α2(1 + α2) α(1 + α2 + α4)
. . .

. . .
. . .

. . .
. . .

1 + α2 + .. + αn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
F

,

with α < 1. Now suppose

r = ∑
k

α2k,

then

‖�S̃‖F � εm

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r rα rα2 rα3

rα r rα
rα2 rα r

rα3 rα2 rα
. . .

. . .
. . .

. . .
. . .

rα r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
F

,

� εm
√

2nr3.
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Fig. 2. Schur complements with a(x) = 5 + x2 and b(x) = c(x) = 1 + e−x for grid sizes of n = 10, 100, 200 and 1000.

Since ε = O(1/n), ‖
A‖F goes to zero as n tends to infinity. As ‖
A‖F goes to zero, we have that

‖
R‖F goes to zero, therefore the Schur complements of the perturbed matrix must converge to one.

We are now ready to give a proof of Theorem 4.1.

Proof of Theorem 4.1. The matrix A in Eq. 5 could be written as

A = L∞
(
S̃ + �S̃

)
LT∞,

where it has been shown that the Schur complements of the middle term goes to one as n tends to infinity.

Since the kth Schur complement of A is just the product of the kth Schur complement of middle term times

Xpk
, then the Schur complement corresponding to a point x = kh on the grid converges to s(x). This

completes the proof of Theorem 4.1.

We can now extend Theorem 4.1 to non-symmetric tridiagonal matrices of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 b1
c1 a2 b2

c2 a2 b3
. . .

. . .
. . .

cn−2 an−1 bn−1

cn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (7)

where we assume that A is sign-symmetric. We make the assumptions explicit.

Assumption 4.3. a,b, c are continuous functions with bounded derivatives on [0, 1].
Assumption 4.4. b, c are bounded away from zero and have the same sign.

Assumption 4.5. There exists a constant δ such that

a − 2
√

bc � δ > 0.

Corollary 4.1. Consider the matrix A as given by Eq. 7. Then the Schur complements of A converge point-

wise to

s(x) = a(x) +
√
a2(x) − 4b(x)c(x)

2
.
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Fig. 3. Log error of the Schur complements to the limiting function s(x)with a(x) = 5+ x2 and b(x) = c(x) = 1+ e−x for grid sizes

of n = 100, 1000, 10,000 and 100,000.
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Fig. 4. Schur complements with a(x) = 3 + cos(10πx) and b(x) = c(x) = e−| sin(πx)| for grid sizes of n = 10, 100, 200 and 1000.

Proof of Corollary 4.1. First, we claim that for every sign-symmetric matrix of the form given in Eq. 7

there exists a diagonal matrix D such that DAD−1 is symmetric. In fact, consider the following diagonal

matrix

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 (
b1
c1

) 1
2 (

b1b2
c1c2

) 1
2

. . . (
b1..bn−1

c1..cn−1

) 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then, DAD−1 is a symmetric matrix of the form
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Fig. 5. Log error of the Schur complements to the limiting function s(x) with a(x) = 3 + cos(10πx) and b(x) = c(x) = e−| sin(πx)|
for grid sizes of n = 100, 1000, 10,000 and 100,000.
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Fig. 6. Schur complementswith a(x) = 2
√

2 + |x − 0.5|, b(x) = 1+e−0.5x2 , and c(x) = | sin(2πx)| for grid sizes of n = 10, 100, 200

and 1000.

Asym = DAD−1,

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1
√

b1c1√
b1c1 a2

√
b2c2

. . .
. . .

. . .
√

bn−2cn−2 an−1

√
bn−1cn−1√

bn−1cn−1 an

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This is easy to see by considering any2×2block interactionof the abovemultiplicationat anygivenkth level,⎛
⎜⎜⎝

(
b1..(k−2)

c1..(k−2)

)1/2

(
b1..k−1

c1..k−1

)1/2
⎞
⎟⎟⎠

⎛
⎝ak−1 bk−1

ck−1 ak

⎞
⎠

⎛
⎜⎝

(
c1..k−2

b1..k−2

)1/2
(
c1..k−1

b1..k−1

)1/2
⎞
⎟⎠
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Fig. 7. Log error of the Schur complements to the limiting function s(x) with a(x) = 2
√

2 + |x − 0.5|, b(x) = 1 + e−0.5x2 , and

c(x) = | sin(2πx)| for grid sizes of n = 100, 1000, 10,000 and 100,000.
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Fig. 8. Schur complementswith a(x) = 2+sign(x−0.5), b(x) = 0.5(1−x), and c(x) = |x−0.75|3 for grid sizes of n = 10, 100, 200

and 1000.

=
⎛
⎜⎜⎝
ak−1

(
b1..(k−2)

c1..(k−2)

)1/2

bk−1

(
b1..(k−2)

c1..(k−2)

)1/2

ck−1

(
b1..(k−1)

c1..(k−1)

)1/2

ak

(
b1..(k−1)

c1..(k−1)

)1/2

⎞
⎟⎟⎠

⎛
⎜⎜⎝

(
c1..(k−2)

b1..(k−2)

)1/2

(
c1..(k−1)

b1..(k−1)

)1/2

⎞
⎟⎟⎠ ,

=
⎛
⎝ ak−1

√
bk−1ck−1√

bk−1ck−1 ak

⎞
⎠ .

Now we can apply Theorem 4.1 to the matrix Asym. Therefore, the Schur complements of Asym converge to

s(x). Since A = D−1AsymD, and as we saw in Section 3 such a diagonal transformation does not change

the diagonal elements of the upper factor of A from that of Asym, we conclude that the Schur complements

of A converge to s(x). This finishes the proof of Corollary 4.1.
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Fig. 9. Log error of the Schur complements to the limiting function s(x) with a(x) = 2 + sign(x − 0.5), b(x) = 0.5(1 − x), and

c(x) = |x − 0.75|3 for grid sizes of n = 100, 1000, 10,000 and 100,000.
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Fig. 10. Schur complements with p(x) = ex for grid sizes of n = 100, 200 and 1000.

5. Numerical results

In this section we look at some numerical plots of the Schur complements of matrices generated

by a variety of functions. Each case is accompanied by a figure that shows the distribution of the Schur

complements as dashed lines, for different grid sizes. The solid-line curve denotes the limiting function

s(x). There is also a figure of the log10 error between the Schur complements at each point and the

curve s(x).

5.1. Diagonally dominant matrices

Figs. 2 and3showtheSchur complementsof amatrixAwitha(x)=5+x2 andb(x)= c(x)=1+e−x .

Figs. 4 and 5 show the Schur complements of a matrix A with a(x) = 3 + cos(10πx) and b(x) =
c(x) = e−| sin(πx)|, which makes the entries of A highly oscillatory.

Figs. 6 and 7 show the Schur complements of amatrix Awith a(x) = 2
√

2 + |x − 0.5|, b(x) = 1+
e−0.5x2 , and c(x) = | sin(2πx)|. This is an interesting case in that both a(x) and b(x) have singularities
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Fig. 11. Log error of the Schur complements with p(x) = ex for grid sizes of n = 100, 1000, 10,000 and 100,000.
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Fig. 12. Schur complements with p(x) = √
2 + sign(x − 0.5) for grid sizes of n = 100, 200 and 1000.

in their derivatives. In fact, the derivative of b has a jump discontinuity at x = 0.5 and the derivative

of a is blowing up at the same point.

Figs. 8 and 9 show the Schur complements of a matrix A with a(x) = 2 + sign(x − 0.5), b(x) =
0.5(1− x), and c(x) = |x− 0.75|3. Note that in this case, there is a jump discontinuity in the diagonal

at x = 0.5.

5.2. Second order variable coefficient operator

Here we also include examples of the matrix equivalent of the equation

− d

dx

(
p(x)

d

dx
(u)

)
= f ,
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Fig. 13. Log error of the Schur complements with p(x) = √
2 + sign(x − 0.5) for grid sizes of n = 100, 1000, 10,000 and 100,000.

with u(0) = u0 and u(1) = u1 on [0, 1]. A second order discretization of this operator leads to a

matrix of the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p3/2 + p1/2 −p3/2

−p3/2 p5/2 + p3/2 −p5/2

. . .
. . .

. . .

−pn−1/2

−pn−1/2 pn−1/2 + pn+1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where pk+1/2 = p((k + 1/2)/(n + 1)) (See [4]). Note that Assumption 4.2 is not valid for this case,

and therefore the Proof of Theorem 4.1 does not hold. However, we can always gain the validity of

Assumption 4.2 by adding an ε to the diagonal of A. For example, consider A + √
εmachI where εmach

is the machine precision.

6. Conclusions

In this paper we proved that it was possible for certain matrices to have Schur complements that

exhibit limiting behavior as the discretization sizes go to zero. This opens up the possibility of interpo-

lating the LU factors of the underlying operator. This property is currently being explored further for

other classes of matrices, such as diagonal plus semiseparable matrices [11] which include the inverse

of tridiagonal matrices. These matters will be published in future papers.
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