A minimum Sobolev norm numerical technique for PDEs

 $S. CHANDRASEKARAN^*$

H. Mhaskar

ECE Dept. Univ. of California, Santa Barbara Claremont Graduate School Claremont

May 21, 2013

^{*.} This material is based upon work supported by the National Science Foundation under grant CCF-0830604.

• A vector-valued function u satisfies:

$$\mathcal{D}_1(\boldsymbol{x}, u) = f(\boldsymbol{x}), \qquad \boldsymbol{x} \in \Omega$$

$$\mathcal{D}_2(\boldsymbol{x}, u) = g(\boldsymbol{x}), \qquad \boldsymbol{x} \in \partial \Omega$$

- \mathcal{D}_i is a local linear differential operator with variable number of "rows"
- Find u numerically

Problem Code

Current Octave code assumes following form of PDE

where

$$u : \mathbb{R}^{2} \to \mathbb{R}^{q}$$

$$f : \mathbb{R}^{2} \to \mathbb{R}^{p}$$

$$A_{1}, A_{2}, B : \mathbb{R}^{2} \to \mathbb{R}^{p \times q}$$

$$r : \mathbb{R}^{2} \to \mathbb{N}$$

$$C(\boldsymbol{x}) : \mathbb{R}^{q} \to \mathbb{R}^{r(\boldsymbol{x})}$$

- u has q components
- f has p; not necessarily square
- Number of boundary conditions, $r(\boldsymbol{x})$, is allowed to vary
- No assumptions of homogeneity
- First-order form

- Our method also works with higher-order derivatives
- FUD from previous attempts to use first-order form:
 - Missing boundary conditions for extra variables in first-order form
 - Mistaken assumption that discretized linear system must be square or skinny
 - Large memory foot-print problem for first-order form
 - Higher-order derivatives require more bits
 - No known numerical work on variable coefficient fourth-order PDEs
 - Seems to be missing from FEM, FD literature
- Fat is a great alternative

Representation Patches

- $\overline{\Omega}$ is covered by strictly convex quadrilaterals called patches
- Patches can overlap
- Curved boundaries don't have to be approximated

Representation Basis

On each patch we use modified 2D Chebyshev as basis

- $T_m(x) = \cos(m\cos^{-1}x)$ for $x \in [-1, 1]$
- $T_{m}(x) = T_{m_1}(x_1) T_{m_2}(x_2)$ for \mathbb{N}^2
- φ_P be the homography from patch P to $[-1,1]^2$
- Bases on patch $P: T_{\boldsymbol{m}} \circ \varphi_P$ for $\boldsymbol{m} \in \mathbb{N}^2$
- Note that φ_P is from a strictly convex quadrilateral to the cube even if the patch overlaps a curved boundary
- No mapping problem like that for curved finite elements

Representation Bases Example

Disretization Grid points

- We pick collocation as the discretization scheme
- Three types of grid points
 - Red points \boldsymbol{x}_i interior to each patch and open set Ω
 - Green points x_i on boundary $\partial \Omega = \Gamma_1 \cup \Gamma_2$
 - Blue points \boldsymbol{x}_i inside open set Ω and on interface edges shared between two patches

Discretization Unknowns

- On each patch coefficients of Chebyshev expansions (α and β) are unknowns
- On blue interface points on each edge common to two patches u is an unknown

Discretization Equations

• For each patch collocate PDE at red interior points

$$\sum_{\boldsymbol{m}\in\mathbb{N}^2} (\boldsymbol{A}_1\,\partial_1 + \boldsymbol{A}_2\,\partial_2 + \boldsymbol{B})(T_{\boldsymbol{m}}\circ\varphi)(\boldsymbol{x}_i)\,\alpha_{\boldsymbol{m}} = f(\boldsymbol{x}_i)$$

• For each patch collocate boundary condition at green boundary points

$$\sum_{\boldsymbol{m}\in\mathbb{N}^2} \boldsymbol{C}(\boldsymbol{x}_i)(T_{\boldsymbol{m}}\circ\varphi)(\boldsymbol{x}_i)\,\alpha_{\boldsymbol{m}} = g(\boldsymbol{x}_i)$$

• For each patch collocate continuity conditions at blue interface points

$$\sum_{\boldsymbol{m}\in\mathbb{N}^2} (T_{\boldsymbol{m}}\circ\varphi)(\boldsymbol{x}_i)\,\alpha_{\boldsymbol{m}} = u(\boldsymbol{x}_i)$$

• Note that $u(\boldsymbol{x}_i)$ are the only unknowns connecting equations across patches

Assembled equations

The equations for the example problem:

Minimum Sobolev norm solution

- System is fat. Choose minimum norm solution. Which norm?
- Local *s*-Sobolev 2-norm on each patch

$$\|u\|_{\operatorname{Patch}_1}\|_s^2 \equiv \sum_{\boldsymbol{m}\in\mathbb{N}^2} \|\alpha_{\boldsymbol{m}}\|^2 (1+\|\boldsymbol{m}\|^2)^s = \|D_s\alpha\|_2^2$$

where the standard Euclidean 2-norm uses

$$D_s = \operatorname{diag}((1 + \|\boldsymbol{m}\|^2)^{s/2})$$

• Global *s*-Sobolev norm

$$||u||_{s}^{2} = \sum_{\text{Patch}} ||u|_{\text{Patch}_{1}}||_{s}^{2}$$

- Large s leads to higher-order convergence. We use s = 10.
- Large *s* leads to severely ill-conditioned systems. We use special solvers.

Standard solver

• Write the equation as

$$\begin{pmatrix} A_{11} & 0 & 0 \\ A_{21} & 0 & A_{23} \\ 0 & A_{32} & 0 \\ 0 & A_{42} & A_{43} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ u_I \end{pmatrix} = \begin{pmatrix} fg \\ 0 \\ fg \\ 0 \end{pmatrix}$$

• For minimum s-Sobolev 2-norm solution insert D_s

$$\begin{pmatrix} A_{11}D_s^{-1} & 0 & 0\\ A_{21}D_s^{-1} & 0 & A_{23}\\ 0 & A_{32}D_s^{-1} & 0\\ 0 & A_{42}D_s^{-1} & A_{43} \end{pmatrix} \begin{pmatrix} D_s \alpha\\ D_s \beta\\ u_I \end{pmatrix} = \begin{pmatrix} fg\\ 0\\ fg\\ 0 \end{pmatrix}$$

- Compute ordinary minimum 2-norm solution using standard sparse LQ factorization.
- Convergence of solution (Golomb-Weinberger) can be established by standard compactness arguments using a variant of the Ascoli-Arzelia theorem with interpolation conditions.
- Assumptions include: existence & uniqueness of solution in appropriate Sobolev space, and linear independence of collocated equations.

Special solver

- For large *s* values standard solver fails numerically
- Similar problem for classical high-order methods
- Our problem has the form well-conditioned fat matrix times highly illconditioned diagonal matrix
- Matrix was made fat to make it well-conditioned (similar to compressive sensing)
- For such under-determined problems special work by [Stewart], [Hough & Vavasis], [Gu], [Castro-Gonzalez, Ceballos, Dopico & Molera], [Higham], etc.
- Special two-sided orthogonal decomposition with complete pivoting
- Extension by us to sparse case; also greatly reduces memory consumption
- Used in all numerical experiments
- Truncation of expansion requires sophisticated analysis [Chandrasekaran & Mhaskar, JCP, 2013]

Numerical experiment Exterior of car

- Large domain $\subseteq [0, 36] \times [0, 14]$
- Outer boundary is not rectangle; includes wheels
- Covered by 45 patches
- *p*-convergence; so no refinement of mesh in these experiments

Numerical experiments Auxiliary functions

$$egin{aligned} & heta(m{x}) &= rac{m{x}_1}{1+m{x}_2} \ \lambda(m{x}) &= rac{1+m{x}_2}{1+m{x}_1} \ \mu(m{x}) &= rac{1+m{x}_1}{1+m{x}_2} \ \mathcal{A}(\cdot) &= egin{pmatrix} \lambda\cos^2 heta+\mu\sin^2 heta & rac{1}{2}\,(\mu-\lambda)\sin2 heta \ rac{1}{2}\,(\mu-\lambda)\sin2 heta & \mu\cos^2 heta+\lambda\sin^2 heta \ rac{1}{2}\,(\mu-\lambda)\sin2 heta & \mu\cos^2 heta+\lambda\sin^2 heta \ \mathcal{M}(m{x}) &= rac{1}{1+a\,(m{x}_1-m{x}_2^2)^2} \
ho_b(m{x}) &= (1+\|m{x}\|_2^2)^b \end{aligned}$$

- $\mathcal{A}(\boldsymbol{x}) > 0$ whenever $\boldsymbol{x} > 0$
- \mathcal{A} has variable eigenvalues and variable eigenvectors
- ω_a has singularities on a parabola in \mathbb{C}^2 whose distance to the real plane \mathbb{R}^2 is controlled by a
- ρ_b is not a polynomial or a rational for $b \notin \mathbb{Z}$

Exterior of car Variable coefficient generalized div-curl

Coefficients of PDE in first-order form

$$\begin{aligned} \mathbf{A}_{1} &= \begin{pmatrix} \mathcal{A}_{11} & \mathcal{A}_{12} \\ 0 & 1 \end{pmatrix} \\ \mathbf{A}_{2} &= \begin{pmatrix} \mathcal{A}_{21} & \mathcal{A}_{22} \\ -1 & 0 \end{pmatrix} \\ \mathbf{B} &= \begin{pmatrix} \mu \cos \theta - \lambda \sin \theta & \lambda \cos \theta + \mu \sin \theta \\ 0 & 0 \end{pmatrix} \\ u &= \begin{pmatrix} \omega_{1} \\ \rho_{1/4} \end{pmatrix} & \text{known solution} \\ \mathbf{C} &= \tau^{T} & \text{tangential boundary conditions on outer rectangle} \\ \mathbf{C} &= \nu^{T} \mathcal{A} & \text{normal boundary conditions on car body} \end{aligned}$$

Grid size	Max rel. error	Compr. time (secs./patch)	Sparse solve time
0.62	1E-2	5	0.5
0.35	1E - 3	78	2.3
0.24	$3 ext{E-4}$	599	6.3

Exterior of car Variable coefficient scalar elliptic PDE

$$\nabla^T \mathcal{A} \nabla v + b^T \mathcal{A} \nabla v + c v = f_1$$

Coefficients in 3×3 first-order form:

$$A_{1} = \begin{pmatrix} 0 & 1 & 0 \\ \mathcal{A}_{11} & 0 & 0 \\ \mathcal{A}_{21} & 0 & 0 \end{pmatrix} \qquad A_{2} = \begin{pmatrix} 0 & 0 & 1 \\ \mathcal{A}_{12} & 0 & 0 \\ \mathcal{A}_{22} & 0 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} c & b_{1} & b_{2} \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
$$b = \begin{pmatrix} \mu \cos \theta - \lambda \sin \theta \\ \lambda \cos \theta + \mu \sin \theta \end{pmatrix} \qquad c = -\sqrt{\lambda^{2} + \mu^{2}}$$
$$f = \begin{pmatrix} f_{1} \\ 0 \\ 0 \end{pmatrix} \qquad u = \begin{pmatrix} v \\ \mathcal{A} \nabla v \end{pmatrix} \qquad v = \omega_{1/10}$$
$$C = (1 & 0 & 0) \quad \text{or} \quad (0 & \nu_{1} & \nu_{2}) \quad \text{or} \quad (0 & \tau_{1} & \tau_{2}) \quad \text{or} \quad (* * *)$$
$$\text{Dirichlet} \qquad \text{Neumann} \qquad \text{Tangential} \qquad \text{Mixed}$$

Exterior car Variable coefficient scalar elliptic PDE Contd.

Experimental results:

Grid size	Max rel. error	Compr. time (secs./patch)	Sparse solve time
0.62	4E-2	23	2.4
0.35	1E-3	413	13.4
0.24	8E-5	3192	39.5

• This includes error in (some linear combination of) derivatives of the solution

Exterior of car Variable coefficient elasticity equation

E > 0 is Young's modulus, $-1 < v < \frac{1}{2}$ is Poisson's ratio,

$$\mathcal{D} = \frac{E}{(1+v)(1-2v)} \begin{pmatrix} 1-v & v & 0 \\ v & 1-v & 0 \\ 0 & 0 & \frac{1}{2}(1-2v) \end{pmatrix}, \qquad E = \lambda, \qquad v = \frac{\mu - 2\lambda}{2(\mu + \lambda)}$$

w is displacement, σ is elastic stress tensor, u is unknown,

$$\sigma = \mathcal{D} \left(\begin{array}{cc} \partial_1 & 0 \\ 0 & \partial_2 \\ \partial_2 & \partial_1 \end{array} \right) w, \qquad \qquad w = \left(\begin{array}{c} \omega_{1/10} \\ \rho_{3/4} \end{array} \right), \qquad \qquad u = \left(\begin{array}{c} w \\ \sigma \end{array} \right) \in \mathbb{R}^5$$

Exterior of car Variable coefficient elasticity equation Contd.

First-order 5×5 form coefficients:

F is body force

$$C = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$
$$C = \begin{pmatrix} 0 & 0 & \nu_1 & 0 & \nu_2 \\ 0 & 0 & 0 & \nu_2 & \nu_1 \end{pmatrix}$$

Displacement boundary condition

Traction boundary condition

Exterior of car Variable coefficient elasticity equation Contd.

We chose displacement boundary conditions everywhere.

Experimental results:

Grid size	Max rel. error	Compr. time (secs./patch)	Sparse solve time
0.73	9E-4	16	3.4
0.62	3E-4	39	5.8
0.53	$1\mathrm{E}$ -4	84	8.6
0.47	6E-5	169	12.8
0.42	3E-5	319	17.4
0.38	1E-5	551	23.0
0.35	5E-6	960	30.1

• This includes error in (some linear combination of) derivatives of the displacement (the elastic stress tensor)

Ext. of car Linearized stationary Navier-Stokes for incompressible flow

b is base flow, w is deviation from base flow, p is pressure, v is viscosity coeff.

$$-\nabla p + v\nabla^T \nabla w + (b^T \nabla)w + (w^T \nabla)b = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} \qquad \nabla^T w = f_3$$

We chose

$$b = \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$$
 $v = \frac{1}{10}$ $w = \begin{pmatrix} \omega_{1/10} \\ \rho_{3/4} \end{pmatrix}$ $p(\boldsymbol{x}) = \sin(\boldsymbol{x}_1 - \boldsymbol{x}_2)$

Unknowns for 7×7 first-order form:

$$u \!=\! \left(\begin{array}{c} w \\ p \\ \nabla w_1 \\ \nabla w_2 \end{array} \right)$$

Ext. car Lin. stationary Navier-Stokes for incompr. flow Contd.

Coefficients of 7×7 first-order form:

Ext. car Lin. stationary Navier-Stokes for incompr. flow Contd.

 $C = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$ Flow boundary conditions $C = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}$ Pressure boundary condition

- Specified pressure on left and right outer vertical edges
- Specified flow everywhere else on boundary
- Note different number of boundary conditions on different parts of boundary

Experimental results:

Grid size	Max rel. error	Compr. time (secs./patch)	Sparse solve time
1.14	1E-3	3	2.4
0.89	4E-4	11	5.0
0.73	$1\mathrm{E}$ -4	35	9.1
0.62	7E-5	91	14.9
0.53	3E-5	205	23.0
0.47	7E-6	416	33.3

Exterior of car Variable coefficient scalar fourth-order elliptic PDE

$$\Box = \begin{pmatrix} \partial_1^2 \\ \partial_1 \partial_2 \\ \partial_2^2 \end{pmatrix} \qquad \Box^T = \begin{pmatrix} \partial_1^2 & \partial_1 \partial_2 & \partial_2^2 \end{pmatrix}$$

• $\mathcal{B}: \mathbb{R}^2 \to \mathbb{R}^{3 \times 3}$ take values that are symmetric positive-definite matrices

•
$$\mathcal{C}: \mathbb{R}^2 \to \mathbb{R}^{3 \times 2} \text{ and } \mathcal{C} \circ \nabla = (\Sigma_j \mathcal{C}_{1j} \partial_j \Sigma_j \mathcal{C}_{2j} \partial_j \Sigma_j \mathcal{C}_{3j} \partial_j)$$

PDE:

$$\Box^T \mathcal{B} \Box w + (\mathcal{C} \circ \nabla) \mathcal{B} \Box w + d^T \mathcal{B} \Box w + e^T \nabla w + c w = f_1$$

Bi-harmonic equation is a special case. We chose

Ext. car Variable coefficient fourth-order scalar elliptic PDE Contd.

Unknowns for 9×9 first-order form:

$$u = \begin{pmatrix} w \\ \nabla w \\ \mathcal{B} \Box w \\ \begin{pmatrix} \partial_1 & 0 & 0 \\ 0 & \partial_1 & 0 \\ 0 & 0 & \partial_2 \end{pmatrix} \mathcal{B} \Box w \end{pmatrix} \in \mathbb{R}^9$$

Dirichlet and Neumann boundary conditions everywhere

Ext. car Variable coefficient fourth-order scalar elliptic PDE Contd.

Coefficients of 9×9 first-order form:

Ext. car Variable coefficient fourth-order scalar elliptic PDE Contd.

$$\boldsymbol{B} = \begin{pmatrix} c & e_1 & e_2 & d_1 & d_2 & d_3 & \mathcal{C}_{11} & \mathcal{C}_{21} & \mathcal{C}_{32} \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \end{pmatrix} \qquad \qquad f = \begin{pmatrix} f_1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Experimental results:

Grid size	Max rel. error	Compr. time (secs./patch)	Sparse solve time
1.14	5E-3	6	5.0
0.89	2E-3	24	10.6
0.73	9E-4	73	19.1
0.62	4E-4	185	32.3
0.53	$1\mathrm{E}$ -4	422	48.4
0.47	8E-5	850	70.0

• This includes error in (some linear combination of) third derivatives

Exterior of car Poisson's equation in polar coordinates

 $\boldsymbol{x}_1^2 \partial_1^2 \boldsymbol{w} + \boldsymbol{x}_1 \partial_1 \boldsymbol{w} + \partial_2 \boldsymbol{w} = f_1$

Coefficients of 3×3 first-order form:

$$\boldsymbol{A}_{1} = \left(\begin{array}{ccc} \boldsymbol{x}_{1} & \boldsymbol{x}_{1}^{2} & 0\\ 1 & 0 & 0\\ 0 & 0 & 0\end{array}\right) \quad \boldsymbol{A}_{2} = \left(\begin{array}{ccc} 0 & 0 & 1\\ 0 & 0 & 0\\ 1 & 0 & 0\end{array}\right) \quad \boldsymbol{B} = \left(\begin{array}{ccc} 0 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1\end{array}\right) \quad \boldsymbol{f} = \left(\begin{array}{ccc} f_{1}\\ 0\\ 0\\ 0\end{array}\right)$$

with solution

$$u = \begin{pmatrix} w \\ \nabla w \end{pmatrix} \qquad \qquad w = \boldsymbol{x}_1^{5/2} \omega_1(\boldsymbol{x})$$

Dirichlet boundary conditions everywhere $C = (1 \ 0 \ 0)$

Experimental results:

Grid size	Max rel. error	Compr. time (secs./patch)	Sparse solve time
0.62	9E-2	10	1.5
0.53	4E-2	20	2.1
0.35	6E-3	212	7.2
0.32	3E-3	351	10.3
0.30	$2 ext{E-3}$	577	13.4

Exterior of car Variable coefficient telegrapher's equation with 2-pt BC

- Vertical axis is cable
- Horizontal axis is time
- Along cable
 - V is voltage (unknown)
 - I is current (unknown)
 - C is capacitance
 - L is inductance
 - R is resistance
 - G is conductance
- Telegraphers equation in 2×2 first-order form is hyperbolic

$$\boldsymbol{A}_1 = \left(\begin{array}{cc} C & 0 \\ 0 & L \end{array}\right) \qquad \boldsymbol{A}_2 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \qquad \boldsymbol{B} = \left(\begin{array}{cc} 0 & R \\ G & 0 \end{array}\right) \qquad \boldsymbol{u} = \left(\begin{array}{cc} V \\ I \end{array}\right)$$

- Rather than $V(0, \mathbf{x}_2)$ and $I(0, \mathbf{x}_2)$ as initial conditions we provide $V(0, \mathbf{x}_2)$ and I(0, 36) as 2-point boundary conditions. Also V is provided at cable ends.
- Cable geometry and topology changes with time (ill-posed?)

Exterior of car Variable coefficient telegrapher's equation with 2-pt BC Contd.

We chose space and time-varying cable parameters

$$C = \lambda$$
 $L = \mu$ $R = \frac{\lambda}{2} + \mu$ $G = \lambda + \frac{\mu}{2}$ $V = \omega_{1/10}$ $I = \rho_{3/4}$

Experimental results:

Grid size	Max rel. error	Compr. time (secs./patch)	Sparse solve time
1.14	9E-5	4	0.1
0.89	7E-5	13	0.1
0.73	3E-5	36	0.2
0.62	2E-5	92	0.3
0.53	5E-5	201	0.5

- Last row shows a stall
- We used much longer Chebyshev expansions in this test than the other ones
- We conjecture that an even longer expansion will get out of the stall, or, the problem is ill-posed

Rectangle with slit

- 6 patches
- Thick line in the middle is a slit at [-1, 1]
- Outer rectangle is $[-2, 2] \times [-1, 1]$

Rectangle with slit Div-Curl

Standard constant coefficient div-curl:

$$\boldsymbol{A}_1 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \qquad \boldsymbol{A}_2 = \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right) \qquad \boldsymbol{B} = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right) \qquad \boldsymbol{f} = \left(\begin{array}{cc} f_1 \\ f_2 \end{array}\right)$$

- $\iota^2 = -1, \ z = \boldsymbol{x}_1 + \iota \boldsymbol{x}_2$
- $(z^2-1)^{5/2} = u_R(\boldsymbol{x}) + \iota u_I(\boldsymbol{x})$ with branch cut on [-1,1] which is also the slit in the rectangle
- u_R is continuous across slit
- u_I is dis-continuous across slit
- We choose solution as

$$u = \left(\begin{array}{c} u_I \\ u_R \end{array}\right)$$

Rectangle with slit Div-Curl Single normal BC

- Tangential boundary condition on outer boundary
- Single normal boundary condition on slit

Experimental results:

•

Grid size	Max rel. error	Compr. time (secs./patch)	Sparse solve time
0.29	6E-4	0.5	0.001
0.22	3E-4	1	0.001
0.18	2E-4	2	0.002
0.15	9E-5	4	0.002
0.09	1E - 5	70	0.012
0.06	3E-6	533	0.035

Rectangle with slit Div-Curl Double tangential BC

- Normal boundary condition on outer boundary
- Double tangential boundary condition on slit; one as we approach slit from top, and one as we approach from bottom

Grid size	Max rel. error	Compr. time (secs./patch)	Sparse solve time
0.29	1E - 3	0.5	0.001
0.22	5E-4	1	0.001
0.18	2E-4	2	0.002
0.15	$1\mathrm{E}$ -4	4	0.003
0.09	1E-5	67	0.012
0.06	4E-6	523	0.037

Polygon Generalized dis-continuous coefficient div-curl

- Contained in $[0,3] \times [0,2]$
- Covered by three patches P_1 , P_2 , P_3
- P_2 is a trapezoid; this is exploited in constructing solution
- Coefficient will be dis-continuous across edges of P_2
- Solution will satisfy a jump condition on those edges

Polygon Generalized dis-continuous div-curl Contd.

• Coefficients of PDE in first-order form

$$A_{1} = \begin{pmatrix} \mathcal{F}_{11} & \mathcal{F}_{12} \\ 0 & 1 \end{pmatrix} \qquad A_{2} = \begin{pmatrix} \mathcal{F}_{21} & \mathcal{F}_{22} \\ -1 & 0 \end{pmatrix}$$
$$B = \begin{pmatrix} \mu \cos \theta - \lambda \sin \theta & \lambda \cos \theta + \mu \sin \theta \\ 0 & 0 \end{pmatrix}$$

• Jump condition at dis-continuity for this PDE

$$\begin{pmatrix} \nu^T \mathcal{F}_+ \\ \tau^T \end{pmatrix} \! u_+ = \! \begin{pmatrix} \nu^T \mathcal{F}_- \\ \tau^T \end{pmatrix} \! u_-$$

• \mathcal{F} makes a complicated jump across edges of P_2

$$\mathcal{F}|_{P_1 \cup P_3} = \mathcal{A} \qquad \mathcal{F}|_{P_2} = \left(\begin{array}{cc} \mu \cos^2\theta + \lambda \sin^2\theta & \frac{1}{2}(\lambda - \mu)\sin 2\theta \\ \frac{1}{2}(\lambda - \mu)\sin 2\theta & \lambda \cos^2\theta + \mu \sin^2\theta \end{array}\right)$$

Polygon Generalized dis-continuous div-curl Contd.

We choose the solution

$$u|_{P_1 \cup P_3} = \frac{1}{\lambda + \mu + (\mu - \lambda)\sin 2\theta} \\ \times \left(\begin{array}{c} 1 & \frac{1}{2}(\lambda - \mu)\sin 2\theta - \mu\cos^2\theta - \lambda\sin^2\theta \\ 1 & \lambda\cos^2\theta + \mu\sin^2\theta + \frac{1}{2}(\mu - \lambda)\sin 2\theta \end{array} \right) \left(\begin{array}{c} \omega_{1/10} \\ \rho_{3/4} \end{array} \right)$$

$$\begin{aligned} u|_{P_2} &= \frac{1}{\lambda + \mu + (\lambda - \mu)\sin 2\theta} \\ &\times \left(\begin{array}{cc} 1 & \frac{1}{2}(\mu - \lambda)\sin 2\theta - \lambda\cos^2\theta - \mu\sin^2\theta \\ 1 & \mu\cos^2\theta + \lambda\sin^2\theta + \frac{1}{2}(\lambda - \mu)\sin 2\theta \end{array} \right) \left(\begin{array}{c} \omega_{1/10} \\ \rho_{3/4} \end{array} \right) \end{aligned}$$

The matrices in the above formulas are essentially the inverses of the jump operators.

Polygon Generalized dis-continuous div-curl Contd.

Experimental results:

Grid size	Max rel. error	Compr. time (secs./patch)	Sparse solve time
0.18	1E - 3	2	0.001
0.15	5E-4	4	0.001
0.10	5E-6	45	0.001
0.09	2E-6	74	0.001
0.08	8E-7	115	0.001
0.06	2E-8	557	0.003

Cylindrical surface Poisson's equation in polar coordinates

- Surface of cylinder on left is covered by 3 patches
- These patches are mapped bijectively onto 2 squares P_1 , P_2 and a rectangle P_3
- P_3 exactly overlaps $P_1 \cup P_2$
- There are 2 left vertical edges in the boundary
- There are 2 right vertical edges in the boundary
- The top and bottom horizontal edges are not part of the boundary
- We chose the solution $w(\boldsymbol{x}) = \boldsymbol{x}_1^{5/2} \cos(5\pi \boldsymbol{x}_2/2)$

Cylindrical surface Poisson's equation in polar coordinates Contd.

Experimental results:

Grid size	Max rel. error	Compr. time (secs./patch)	Sparse solve time
0.18	1E-2	4	0.002
0.10	8E-6	125	0.009
0.06	2E-6	1241	0.027

Note:

- Singular PDE
- Singular solution
- Non-trivial geometry

Circle Constant coefficient scalar elliptic

$$\nabla^T \nabla u - u = f$$

- Solution: $(1 + 10(x y^2)^2)^{-1}$
- Domain: Circle of diameter 1
- Covered by two rectangular patches (no mapping required!)
- One-off code

Grid spacing	Error
0.1	2E-3
0.075	3E-4
0.05	4E-5
0.0375	1E-5
0.025	2E-6

 Half-circle plus rectangle
 Constant coefficient div-curl

 Omain:
 Omation

- Covered by 2 rectangular patches (no mapping required!)
- Solution

$$u \!=\! \left(\begin{array}{c} (1 \!+\! x^2 \!+\! y^2)^{-1} \\ x^2 \!-\! 2y^2 \!+\! x\, y \!-\! x \!+\! 1 \end{array} \right)$$

• One-off code

Experimental results:

Grid spacing	Digits of accuracy
0.4	3
0.2	4
0.1	8

Summary

- Make the equations fat
- Choose a diagonal Sobolev norm
- Use high-relative accuracy numerical linear algebra techniques
- Convergence proof by compactness arguments
- Single Octave code <400 lines for all experiments, except curved geometries
- Code, papers, etc: http://scg.ece.ucsb.edu/

Future work

- Proper API for curved geometry yielding simple high-order solver
- Extension to inhomogenous jump conditions
- Applications to eigenvalue problems
- Applications to non-linear elliptic problems
- Extension to 3D

