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The Problem

e A vector-valued function u satisfies:

Di(x,u) = f(x), x € ()
Do(x,u) = g(x), x € 0}

e D, is a local linear differential operator with variable number of “rows”

e Find uw numerically



Problem | Code

Current Octave code assumes following form of PDE

A181u+A282u—|—Bu = f, on ()
Cu = g, on O
where
u : R?*— R4
f: R? — RP
Al,AQ,B . R? — RP*4
r : R2—=N

C(x) : Ri— R"(®)
e 1w has ¢ components
e f has p; not necessarily square
e Number of boundary conditions, r(x), is allowed to vary
e No assumptions of homogeneity

e First-order form



First-order form

e Our method also works with higher-order derivatives
e FUD from previous attempts to use first-order form:

— Missing boundary conditions for extra variables in first-order
form

— Mistaken assumption that discretized linear system must be
square or skinny

— Large memory foot-print problem for first-order form
— Higher-order derivatives require more bits

— No known numerical work on variable coefficient fourth-order
PDEs

— Seems to be missing from FEM, FD literature

e Fat is a great alternative



Representation | Patches

e () is covered by strictly convex quadrilaterals called patches
e Patches can overlap

e (Curved boundaries don’t have to be approximated




Representation | Basis

On each patch we use modified 2D Chebyshev as basis
e T,.(x)=cos(mcos™ ') for v €[-1,1]

o Tp(x)=Tm,(x1) T, (xz2) for N?

2
e p be the homography from patch P to [—1, 1]?
e Bases on patch P: T,,0pp for m & N2

e Note that ¢p is from a strictly convex quadrilateral to the cube even if
the patch overlaps a curved boundary

e No mapping problem like that for curved finite elements



Representation

Bases

Example

Patch 1

Patch 2

u |Patch1 = g Qm, Lo © PPatch;
meN?2
u ‘Patchg — E 5m Tm O @PPatchsy

meN?2



Disretization | Grid points

e We pick collocation as the discretization scheme

e Three types of grid points
— Red points x; interior to each patch and open set (2
—  Green points x; on boundary 02 =1'yUI'y

— Blue points x; inside open set {2 and on interface edges shared
between two patches

Patch 1




Discretization | Unknowns

e On each patch coefficients of Chebyshev expansions (a and () are
unknowns

e On blue interface points on each edge common to two patches v is an
unknown

Patch 1

Patch 2



Discretization | Equations

e For each patch collocate PDE at red interior points

> (A1014 A2024 B)(Trm 0 ) () i = f(24)

mEN?2

e For each patch collocate boundary condition at green boundary points

Y C(x)(Tmo ©) () m = g(x:)

mEN?2

e For each patch collocate continuity conditions at blue interface points

S (Timo 9)(@i) am =ul)

mEN?2

e Note that u(x;) are the only unknowns connecting equations across
patches
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Assembled equations

The equations for the example problem:




Minimum Sobolev norm solution

e System is fat. Choose minimum norm solution. Which norm?

e Local s-Sobolev 2-norm on each patch

ulpaten, 3= ) llam|? (14 |m|?)* =D |3
meN?2

where the standard Euclidean 2-norm uses
D, =diag((1+ [|m|?)*/?)

e Global s-Sobolev norm

lullZ= ) lulpaten,|I?

Patch

e Large s leads to higher-order convergence. We use s =10.

e Large s leads to severely ill-conditioned systems. We use special solvers.
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Standard solver

e Write the equation as

A 00 fg

A21 0 A23 . 0 \
0 Ass O fg
0 Aio Asg 0

e For minimum s-Sobolev 2-norm solution insert Dy

[ AuD;t 0 0 ) f
A;D—l 0 Ay |[ Do /og\

S DS —
0 A3 D710 ul_ﬂ kfg)
\ 0 ApDI! Ay ) 0

e Compute ordinary minimum 2-norm solution using standard sparse L ()
factorization.

e Convergence of solution (Golomb-Weinberger) can be established by
standard compactness arguments using a variant of the Ascoli-Arzelia
theorem with interpolation conditions.

e Assumptions include: existence & uniqueness of solution in appropriate
Sobolev space, and linear independence of collocated equations.
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Special solver

For large s values standard solver fails numerically
Similar problem for classical high-order methods

Our problem has the form well-conditioned fat matrix times highly ill-
conditioned diagonal matrix

Matrix was made fat to make it well-conditioned (similar to compressive
sensing)

For such under-determined problems special work by [Stewart|, [Hough

& Vavasis|, |Gu|, |Castro-Gonzalez, Ceballos, Dopico & Moleral,
|[Higham]|, etc.

Special two-sided orthogonal decomposition with complete pivoting

Extension by us to sparse case; also greatly reduces memory consump-
tion

Used in all numerical experiments

Truncation of expansion requires sophisticated analysis [Chan-
drasekaran & Mhaskar, JCP, 2013]
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Numerical experiment | Exterior of car

e Large domain C |0, 36] x [0, 14]

e QOuter boundary is not rectangle; includes wheels

e Covered by 45 patches

e p-convergence; so no refinement of mesh in these experiments
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Numerical experiments [ Auxiliary functions

x
O(x) = 1+1:132
l+x
AMx) = 1+iL‘i
14+ a4
ALy — Acos?0 + psin®0 < (u—A)sin26
B %(,u—)\)sin% 1 cos?0 + X sin?
we(x) = !

1+a(x;— z3)?
po(x) = (1+]z]3)°

e A(x)>0 whenever >0

e A has variable eigenvalues and variable eigenvectors

e w, has singularities on a parabola in C? whose distance to the real plane
R? is controlled by a

e pp is not a polynomial or a rational for b¢ 7Z
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Eiterior of cor | VARAEOSHeieTEoRerAZaa Tveu]

Coeflicients of PDE in first-order form

Al — (All ~A12>

A, = ( Az1 Asz >
B — ,ucosé’ Asinf Acos6+ psinf
N 0
U = ( 1 ) known solution
P1/4
C = 1t tangential boundary conditions on outer rectangle
C = viA normal boundary conditions on car body

Grid size Max rel. error Compr. time (secs./patch) Sparse solve time
0.62 1E-2 D 0.5
0.35 1E-3 78 2.3
0.24 3E-4 099 6.3
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Extcrior of cor [ Vatiable cosficiont scalat eliptic PDE]

VIAVY + b AVY +cv = f;

Coefficients in 3 x 3 first-order form:

0 1 0 0 0 1 C bl b2
A= A1 00 As=| A2 00 B=| 0 -1 0
As1 0 0 Ass 0 0 0 0 -1
[ pcos — Asinf _  N”T 32
b_( )\COSH—I—,LLSine) = At
f1
J=| O U= : V=W /10
AV
0
C = (10 0) or (0 v1 vo) or (0 71 72) or (% % %)

Dirichlet Neumann Tangential Mixed
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Eiicrior car | Vatiable coefcient scalas eliptie PDE] Corid

Experimental results:

Grid size Max rel. error Compr. time (secs./patch) Sparse solve time

0.62 4E-2 23 2.4
0.35 1E-3 413 13.4
0.24 8E-5 3192 39.5

e This includes error in (some linear combination of) derivatives of the
solution
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Extcrion of car [ Variable coeffciont elsticiy oquation]

E >0 is Young’s modulus, —1 <wv <% is Poisson’s ratio,

/1—2} v 0 \
D= L v 1—w 0 = 2)

(1+U)(1_zv)k o %(1_%)), B=)  v=gl=s

w is displacement, o is elastic stress tensor, u is unknown,

O 0 W1/10 w
o=D| 0 & |w, W= , u:( )E]R5
82 81 P3/4
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Eiterior of car [ Vasiable coofficient clastiety equafion] Conid

First-order 5 x 5 form coeflicients:

[0 0 100\ [0 0 00 1)
0 0 001 0 0 010
A=l D;y 0 000 A= 0 D1, 000
Dyy 0 000 0 Dy 000
\ 0 Dy3 000 ) \D3; 0 000 )
(00 0 0 0 ) [ —F1
00 0 0 O —Fy
B=| 00 -1 0 0 f=1 0
00 0 —1 0 0
\0o0 0 0 -1/ \ 0 )
F' is body force
C :< L (1) 8 8 8 > Displacement boundary condition

. 00 V1 0 1%5) . .l
C’—( 00 0 w V1> Traction boundary condition
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Eiterior of car [ Vasiable coofficient clastiety equafion] Conid

We chose displacement boundary conditions everywhere.

Experimental results:

Grid size Max rel. error Compr. time (secs./patch) Sparse solve time

0.73 9E-4 16 3.4
0.62 3E-4 39 5.8
0.93 1E-4 84 8.6
0.47 6E-5 169 12.8
0.42 SE-5 319 17.4
0.38 1E-5 001 23.0
0.35 SE-6 960 30.1

e This includes error in (some linear combination of) derivatives of the
displacement (the elastic stress tensor)
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b is base flow, w is deviation from base flow, p is pressure, v is viscosity coeft.

—Vp+oVIVw+ (' V)w+ (w!'V)b= ( ;; ) Viw=f3

We chose

)\ 1 wl/l() .
<M) 10 ( P3/4 ) p(@) (@1 = @2)

Unknowns for 7 x 7 first-order form:
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Fixt. car [ Lin. stationary Navier-Stokes for fncompr. flow | Contd

Coefhicients of 7 x 7 first-order form:

\ 1/
O 2 OO0 OO
SO0 O OO
SN N oNoNoeNo N
N ol ool NN
A
S | ocococoo
OO o O
Sooco— oo
N -
1
<
\ 1/
OO0 O OO
O 2D OO0 OO
N ool NN
SN eNoNeNoNoNo)
™
| S o oo oo
O S oo o O
So—-~ o0 oo
N -
1
<

vl N
Tl Lo ooo
N -
||
S~
ol N
—
SO oo oo
—
Soooo O
—
Sooo oo
—
SCoo | ooo
oo o oo oo
—
RRoocooc oo
QD
— N
LS L oocooo
QD
N -
||
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Fixt. car [ Lin. stationary Navier-Stokes for fncompr. flow | Contd

1 00000O0O .
C= 010000 0> Flow boundary conditions

C=(0010000) Pressure boundary condition

e Specified pressure on left and right outer vertical edges
e Specified flow everywhere else on boundary

e Note different number of boundary conditions on different parts of
boundary

Experimental results:

Grid size Max rel. error Compr. time (secs./patch) Sparse solve time

1.14 1E-3 3 2.4
0.89 4E-4 11 5.0
0.73 1E-4 39 9.1
0.62 TE-5 91 14.9
0.93 3E-5 205 23.0

0.47 TE-6 416 33.3
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Extcrion of car [ Variable coeffcient scalar fourth-order ollptie PDE |

m:ka@) 07 =( 0 0105 03 )

o B:R?—R3*3 take values that are symmetric positive-definite matrices
o C:R?2—=R3*2and CoV =(5,01,8, £;C2;0; %,C3,0; )
PDE:
O7BOw + (C o V)BOw + d'BOw + e Vw + cw = f3

Bi-harmonic equation is a special case.

We chose
/1 b 0 \ 0 A 1 1
B=| p 1+up* A\ C=| pn O d=| —1 |u e:<_1))\
kO A 1—|—)\2) 1 1 1
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Fixt. car | Variable coeficient fourth-order scalar olliptic PDE] Contel

Unknowns for 9 x 9 first-order form:

( w )
Vw
U — BOw e R?

8 0 0
o 8, o |BUOw
\(0052> )

Dirichlet and Neumann boundary conditions everywhere
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Fixt. car | Variable coeficient fourth-order scalar olliptie PDE] Contel

Coeflicients of 9 x 9 first-order form:

0 00 0 00O

0 0

0 By Bi2 00 0 000

0 Bys B2 00 0 00O

0 B3y Bs2 00 0 00O

0 0

\ 0 0

10 0 000

0
0

0 00O

1
0 00 0 000/

0

A=

ol N
— O OO OO o oo
— O OO OO o oo
O OO OO oo oo
S OO OO oo oo H
[a\]
@00000000
(@]
QOOOOOOOO
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~ -
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<
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Fixt. car | Variable coeficient fourth-order scalar olliptic PDE] Contel

( C e1 €9 d1 d2 d3 Cll 621 C32 \ / fl \
0o-1 0 0 0 O 0 0 O 0
00 -1 0 0 0O 0 0 O 0
00 0 —-1 0 0 0 0 O 0
B=|00 0 0 -1 0 0 0 0 /=1 0
0O 0 0O 0 0O —1 0 0 0 0
o0 0 0O 0O 0O —1 0 0 0
o0 0 O 0O O 0 —-10 0
\00 0 0 0 0 0 0 —1) \ 0/

Experimental results:

Grid size Max rel. error Compr. time (secs./patch) Sparse solve time

1.14 SE-3 6 5.0
0.89 2E-3 24 10.6
0.73 9E-4 73 19.1
0.62 4E-4 185 32.3
0.3 1E-4 422 48.4
0.47 S8E-5 850 70.0

e This includes error in (some linear combination of) third derivatives
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Eiterior of cor | PORSONE SGUATON T pOAEOaHARS]

w%@%w + 101w + Ow = f1

Coefficients of 3 x 3 first-order form:

/:claz%o\ 00 1 0 0 O fi
A= 1 0 0 A= 0 0 0 B=| 0 -1 0 f=| O
k 0 O O) 1 0 0 0 0 -1 0
with solution
w 5/2
u:(Vw) w:wl/ wi(x)

Dirichlet boundary conditions everywhere C'=(1 0 0)

Experimental results:
Grid size Max rel. error Compr. time (secs./patch) Sparse solve time

0.62 9E-2 10 1.5
0.93 4E-2 20 2.1
0.35 6E-3 212 7.2
0.32 JE-3 301 10.3

0.30 2E-3 77 13.4
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Extcrion of car [ Variable coeffcient telographer's equation with 2-pi BC|

Vertical axis is cable
Horizontal axis is time
Along cable
— V is voltage (unknown)
— I is current (unknown)
— (' is capacitance
— L is inductance
— R is resistance
— (G is conductance

Telegraphers equation in 2 x 2 first-order form is hyperbolic

w=(51) 2=(Vs) #=(&v) «(7)

Rather than V(0, x2) and (0, x2) as initial conditions we provide
V(0,x2) and 1(0,36) as 2-point boundary conditions. Also V' is provided
at cable ends.

Cable geometry and topology changes with time (ill-posed?)
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Fitcrior of car | Vasiable coeficient felegrapher’s equation with 2t BC] Contd

We chose space and time-varying cable parameters

A
C=A L=y R=§—I—,u Gz)\—l-% V =w1i/10 I'=p3/4
Experimental results:

Grid size Max rel. error Compr. time (secs./patch) Sparse solve time

1.14 9E-5 4 0.1
0.89 TE-5 13 0.1
0.73 3E-5 36 0.2
0.62 2E-5 92 0.3
0.93 SE-5 201 0.5

e [Last row shows a stall

e We used much longer Chebyshev expansions in this test than the other
ones

e We conjecture that an even longer expansion will get out of the stall,
or, the problem is ill-posed
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Rectangle with slit

e 6 patches
e Thick line in the middle is a slit at [—1, 1]

e Outer rectangle is [—2,2] x [—1, 1]
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Rectangle with slit | Div-Curl

Standard constant coeflicient div-curl:

w(30) we(hy) e(00) s

o ’=-1 z=x1+ 12

(7)

o (22-1)%2=up(x)+ tus(x) with branch cut on [—1,1] which is also the
slit in the rectangle

e upg 1s continuous across slit
e s 1s dis-continuous across slit

e We choose solution as



Rectangle with slit | Div-Curl | Single normal BC

e Tangential boundary condition on outer boundary
e Single normal boundary condition on slit

Experimental results:

Grid size Max rel. error Compr. time (secs./patch) Sparse solve time

0.29 6E-4 0.5 0.001
0.22 3E-4 1 0.001
0.18 2E-4 2 0.002
0.15 9E-5 4 0.002
0.09 1E-5 70 0.012

0.06 JE-6 933 0.035
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Rectangle with slit | Div-Curl | Double tangential BC

e Normal boundary condition on outer boundary

e Double tangential boundary condition on slit; one as we approach slit
from top, and one as we approach from bottom

Grid size Max rel. error Compr. time (secs./patch) Sparse solve time

0.29 1E-3 0.5 0.001
0.22 k-4 1 0.001
0.18 2E-4 2 0.002
0.15 1E-4 1 0.003
0.09 1E-5 67 0.012

0.06 4E-6 023 0.037
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Pulson | Generalized dis-confinmions coeficiont div-cur

Py
Py

e Contained in [0, 3] x [0, 2]

e Covered by three patches P, P, P;3

e P5is a trapezoid; this is exploited in constructing solution
e Coefficient will be dis-continuous across edges of P»

e Solution will satisfy a jump condition on those edges
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Poly con | Genesalized di-confinions div-cil| Conid

e (oefficients of PDE in first-order form
[ F1u1 Fi2 [ Fa1 Fao
a7 7)) as(B )

B—( pcost) —Asinf Acosf+ psind >
— 0 ;

e Jump condition at dis-continuity for this PDE

I/TJT"_|_ U — VTJT"_ U
T + rr N

e JF makes a complicated jump across edges of P

11 cos?0 + X sin?0 %()\ — f4)sin 26

Flpop=A  F| =
PP, %()\—,u)sin%’ A cos?6 + 1 sin?0

Py
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Poly con | Genesalized di-confinions div-cil| Conid

We choose the solution

1
ulpup, = A p+ (e —A)sin 26
1 %()\—,u) sin 20 — p1 cos?0 — A sin?6 w1/10
X
1 )\COSQQ—I—,LLSiIl2t9—|—%(,LL—>\)Sin29 P3/4
1
u\py, =

A+ (A — p)sin 26

1 : :
1 Z(p—A)sin26 — A cos20 — psin?f w1 /10
1 pcos®d + Asin?6 + %()\ — ) sin 26 P3/4

The matrices in the above formulas are essentially the inverses of the jump
operators.
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Poly con | Genesalized di-confinions div-cil| Conid

Experimental results:

Grid size Max rel. error Compr. time (secs./patch) Sparse solve time

0.18 1E-3 2 0.001
0.15 SE-4 4 0.001
0.10 SE-6 45 0.001
0.09 2E-6 74 0.001
0.08 SE-7 115 0.001

0.06 2E-8 957 0.003
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Cylindrical surface | Poisson’s equation in polar coordinates

"’;/\ i P3\ P

e Surface of cylinder on left is covered by 3 patches

e These patches are mapped bijectively onto 2 squares P;, P, and a rec-
tangle Ps

e P5 exactly overlaps P, U P
e There are 2 left vertical edges in the boundary
e There are 2 right vertical edges in the boundary

e The top and bottom horizontal edges are not part of the boundary

e We chose the solution w(x) = $?/2COS(57T$2/2)
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Cylindrical surface | POTSSOM S GGRATGR A pOIA OOHATRS] Conrd

Experimental results:

Grid size Max rel. error Compr. time (secs./patch) Sparse solve time

0.18 1E-2 4 0.002

0.10 S8E-6 125 0.009

0.06 2E-6 1241 0.027
Note:

e Singular PDE
e Singular solution

e Non-trivial geometry
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Cirele [ Constant coefficient scalar elipic|

ViVu—u=f

e Solution: (1+ 10(z — y*)?)~!
e Domain: Circle of diameter 1
e Covered by two rectangular patches (no mapping required!)

e One-off code

Grid spacing | Error

0.1 2E-3
0.075 3E-4
0.05 4E-5
0.0375 1E-5

0.025 2E-6
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Half-circle plus rectangle | Constant coefficient div-curl

Domain:

e Covered by 2 rectangular patches (no mapping required!)

N\ 222y +xy—ax+1

e Solution

e One-off code

Experimental results:

Grid spacing | Digits of accuracy
0.4 3
0.2 4
0.1 8
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Summary

e Make the equations fat

e Choose a diagonal Sobolev norm

e Use high-relative accuracy numerical linear algebra techniques
e Convergence proof by compactness arguments

e Single Octave code <400 lines for all experiments, except curved geome-
tries

e C(Code, papers, etc: http://scg.ece.ucsb.edu/

Future work

e Proper API for curved geometry yielding simple high-order solver
e [Extension to inhomogenous jump conditions

e Applications to eigenvalue problems

e Applications to non-linear elliptic problems

e FExtension to 3D
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