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Overview

● Review of Hierarchically Semi-Separable (HSS) 
Representation

– Notation

● Previous HSS Algorithm Complexities

● Memory Efficient Algorithm

– Phase 1

– Phase 2
● Memory Consumption

● “A Fast Memory Efficient Construction Algorithm for 
Hierarchically Semi-Separable Representations”  
submitted for publication
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Use a Partition Tree to Block Partition a Matrix

● Partition    according to the integers at the first level of the 
partition tree

● Recursively partition the block rows and columns of    
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Definition – Complete Partition Tree
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HSS Representation

● Off-Diagonal blocks thus have low rank and can be compressed

● Only store smaller basis matrices (               ) and translation operators          
(                )
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Definition - Hankel Blocks

Block rows/columns of    , excluding diagonal blocks
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Definition - Hankel Blocks

Block rows/columns of    , excluding diagonal blocks
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Larger Basis Matrices Can Be Stored as 
Translated Versions of Smaller Basis Matrices
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Example 2 Level Column and Row Bases
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Note: Notice the larger U's and V's are not stored, and do not appear in the HSS 
Tree

Example 2 Level HSS Representation and 
Corresponding HSS Tree 
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Definition - HSS Tree

● An HSS tree of a matrix is the corresponding partition tree 
decorated with                                        and         .  
– The matrices                        are stored at each leaf node        .   

– The matrices        and        are stored at each edge which connects 
parent to child node,        . 

– We add edges to the partition tree from node         to node         
corresponding to         .        
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Definition of HSS Representation

● If         is a leaf node,

● If         is not a leaf node,

● Where,
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An Inefficient Method to Compute the HSS 
Representation

● One obvious way to form the HSS representation of a matrix would be to 
take a Singular Value Decomposition (SVD) all Hankel blocks at each level 
of the HSS representation.

● This is extremely slow,           flops.  

● Not memory efficient,           memory
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A More Efficient Way to Compute the HSS 
Representation

● Previous HSS construction algorithms (Xia, 
Chandrasekeran, Martinsson) focused on speed, requiring   
          flops.

● It seems they were unaware they require           memory in 
the worst case. 

● We present an HSS construction algorithm which requires    
            peak workspace memory in the worst case, while 
still requiring only           flops.

● We require only                 memory for a complete tree.
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Main Points of this Talk

● Basic building blocks for          flop construction 
algorithm

● Peak memory consumption 
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Phase 1 & Phase 2 of our Construction Algorithm

● Phase 1 – Computation of Basis Matrices,       , and      
      , as well as Translation Operators         and        

● Phase 2 – Computation of Expansion Coefficients
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Phase 1 - Take SVD's Hankel Blocks at Leaf Nodes
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Construction Algorithm - Phase 1 
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Construction Algorithm - Phase 1 
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Construction Algorithm - Phase 1 
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Construction Algorithm - Phase 1 
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Construction Algorithm - Phase 1 
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Construction Algorithm - Phase 1 
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Construction Algorithm - Phase 1 
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Construction Algorithm - Phase 1 



10/28/15 Kristen Lessel 26



10/28/15 Kristen Lessel 27

Construction Algorithm - Phase 1 
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Construction Algorithm - Phase 1 
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Phase 1 Complete
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Construction Algorithm - Phase 2 – The Naive Way
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Construction Algorithm - Phase 2 – The Naive Way
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Construction Algorithm - Phase 2 – The Naive Way



10/28/15 Kristen Lessel 33

Construction Algorithm - Phase 2 – The Naive Way
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Construction Algorithm - Phase 2 – The Naive Way
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Construction Algorithm - Phase 2 – The Naive Way
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Phase 2 – A Better Way: Divide and Conquer
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Phase 2 – A Better Way: Divide and Conquer
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Phase 2 – A Better Way: Divide and Conquer
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Phase 2 – A Better Way: Divide and Conquer
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Phase 2 – A Better Way: Divide and Conquer
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Phase 2 – A Better Way: Divide and Conquer
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Phase 2 – A Better Way: Divide and Conquer
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Phase 2 – A Better Way: Divide and Conquer



10/28/15 Kristen Lessel 45

Phase 2 – A Better Way: Divide and Conquer
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Phase 2 – A Better Way: Divide and Conquer
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Phase 2 – A Better Way: Divide and Conquer
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Phase 2 – A Better Way: Divide and Conquer
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Phase 2 – A Better Way: Divide and Conquer
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Phase 2 – A Better Way: Divide and Conquer
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Phase 2 – A Better Way: Divide and Conquer
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Phase 2 – A Better Way: Divide and Conquer
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Phase 1 & 2 Complete

● We have calculated every       ,     ,       ,        and         
in the HSS Representation   
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Algorithm Memory Consumption

● Other algorithms can take as much as           memory 
due to a depth first traversal of the HSS tree   

● Our algorithm traverses the tree in a deepest first 
order instead, and takes                    memory in the 
worst case, where    is the rank of the off diagonal 
blocks of the matrix    , while still taking only             
flops  
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What is the Worst Case Memory Consumption for 
Our Algorithm?

● Phase 2 of our algorithm (computation of Expansion 
Coefficients          ) consumes at most           memory

– One          block is stored in memory for each recursive 
call.  

– Tree of max depth is  

– This implies           peak memory consumption for a tree 
of maximal depth

● We need to focus on Phase 1 (computation of basis 
matrices,        and        , and translation operators         and    
       ) of our algorithm in order to determine peak workspace 
consumption
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Depth First Traversal is Not Optimal for Peak 
Memory Consumption
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Depth First Traversal is Not Optimal for Peak 
Memory Consumption



10/28/15 Kristen Lessel 58

Depth First Traversal is Not Optimal for Peak 
Memory Consumption
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Depth First Traversal is Not Optimal for Peak 
Memory Consumption
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Depth First Traversal is Not Optimal for Peak 
Memory Consumption
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Depth First Traversal is Not Optimal for Peak 
Memory Consumption
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Depth First Traversal is Not Optimal for Peak 
Memory Consumption
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Depth First Traversal is Not Optimal for Peak 
Memory Consumption
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Depth First Traversal is Not Optimal for Peak 
Memory Consumption
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● Each block shown is of dimension          , where      is 
the rank of the off-diagonal blocks of the original 
matrix     

● Maximum Depth of this tree is         

● This implies a memory consumption of        

Depth First Traversal is Not Optimal for Peak 
Memory Consumption
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How to fix this: Deepest First Traversal

● Traverse in a Deepest first ordering 

● Peak workspace memory consumption of           for a 
tree of maximal depth
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Method We Use: Deepest First Traversal
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Method We Use: Deepest First Traversal
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Method We Use: Deepest First Traversal



10/28/15 Kristen Lessel 70

Method We Use: Deepest First Traversal
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Method We Use: Deepest First Traversal
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Method We Use: Deepest First Traversal
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Method We Use: Deepest First Traversal
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Method We Use: Deepest First Traversal
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Method We Use: Deepest First Traversal
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Deepest First Traversal Memory Count

● For the maximal depth tree, only 2 blocks of size           
          are in memory at any given time

● Peak workspace consumption for a tree of maximal 
depth is           using deepest first traversal vs           
for depth-first traversal

● Further, for a complete tree, the deepest first traversal 
leads to a peak workspace consumption of 
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Worst Case Memory Consumption for our 
Algorithm

● How does worst case memory usage grow with matrix 
size,   ?

● This can be formulated as a graph theory problem
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Memory Block Cardinality for a Root-leaf Path

Memory Block 
Cardinality for this 
root-leaf path is 3

● Without loss of generality, any HSS tree can be re-ordered such that the depth of 
the left subtree is always equal to or greater than the depth of the right subtree.

● Block is stored in memory when we return from a left call.
 

● Memory Block Cardinality for a root-leaf path is equal to the number of right children 
in that path plus one.
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Memory Block Cardinality for a Root-leaf Path

Memory Block 
Cardinality for this 
root-leaf path is 4

● Without loss of generality, any HSS tree can be re-ordered such that the depth of 
the left subtree is always equal to or greater than the depth of the right subtree.

● Block is stored in memory when we return from a left call.
 

● Memory Block Cardinality for a root-leaf path is equal to the number of right children 
in that path plus one.
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The Search for Maximum Memory Consumption 
Can Be Formulated as a Graph Theory Problem

● Branch with maximum memory block cardinality will give peak memory consumption.

● Number of leaf nodes,      , is proportional to the size of the matrix    .

● Number of leaf nodes,      , is proportional to the number of nodes,    . 

● We are looking for a class of trees that maximizes the ratio of the worst case memory 
block cardinality to number of nodes.
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● We can rule out the class of trees that don't have the worst case memory block 
cardinality along their right-most branch.

● Worst-case memory block cardinality = 3 for both trees shown below.

We Can Narrow Down Our Search By Excluding 
Some Classes of Trees
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● Complete trees have the property that the worst case memory block cardinality occurs 
along the right-most branch. 

● Worst-case memory block cardinality = 4 for both trees shown below.

Complete Trees Do Not Give Rise to Worst Case 
Memory Usage
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Class of 'Worst Case' Trees* Has a Surprising 
Structure

* K. Lessel, M. Hartman, and S. Chandrasekaran. A Fast Memory Efficient Construction Algorithm for 
Hierarchically Semi-Separable Representations. Submitted to SIAM J. Matrix Analysis and Applications
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Worst Case Memory Consumption for our 
Algorithm

● Worst case number of memory blocks we can 
generate is              , and is generated by the binary 
tree with a structure as shown   
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Worst Case Memory Consumption for our 
Algorithm

● Worst case number of memory blocks we can 
generate is              , and is generated by the binary 
tree with a structure as shown   
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Worst Case Number of Memory Blocks is             

Worst case number of memory blocks  =         

Worst case number of memory blocks             *
* K. Lessel, M. Hartman, and S. Chandrasekaran. A Fast Memory Efficient Construction Algorithm for 
Hierarchically Semi-Separable Representations. Submitted to SIAM J. Matrix Analysis and 
Applications
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Relationship between the number of nodes,    , and 
the size of our matrix,       

● Number of non-leaf nodes,      , is one less than the 
number of leaf nodes,      , i.e,

●

●

● The worst case number of memory blocks is        

● Peak memory consumption is                
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Numerical Results

● Upper bound for worst case peak memory consumption is  
                   , and we can show this is a tight bound for 
'Worst Case' trees.          
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Conclusion

● Our 2 Phase Algorithm allows for a deepest first traversal of the HSS 
tree, yielding a reduction in peak memory complexity from           to        
                   as compared with previous algorithms, while still taking 
only            flops.

● Open question: Does there exist a 'linear' memory algorithm which 
does not give up the            flop constraint?
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Appendix
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Why HSS?

● Matrix vector multiply:            flops vs  HSS vector multiply:          flops

● Solution, x, of Ax = b.  Gaussian Elimination:            flops vs Fast HSS 
solver:          flops
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Leaf Node Computations

● For                      leaf nodes define

● For           a leaf node, and           is not, define

● For          not a leaf node, and           is a leaf node, 
define
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Non-Leaf Node Computations

● For                      not leaf nodes, we will have          
and can then write

where              

● Then define
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Phase 1 - Leaf Node Computations
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Phase 1 – Non-leaf Node Computations
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Phase 1 – Non-leaf Node Computations

● Remove block cloumns of          which corresond to 
the columns that lie in the diagonal block

● Compressed Hankel blocks at node     
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Algorithm 1 Pass 1U
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Algorithm 2 Pass 2BU
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Algorithm 3 Pass 2BU
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Worst Case Memory Consumption for our 
Algorithm

 



10/28/15 Kristen Lessel 102

Example Block Partitioning of a Matrix with 
Corresponding Partition Trees
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Future Work

● Fast Multipole Method (FMM) construction Algorithm

● FMM x FMM

● Application to classical HSS algorithms: HSS Multiply 
& HSS Solver
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