
Fast Memory Efficient Construction Algorithm for
Hierarchically Semi-separable Representations

University of California Santa Barbara

Department of Electrical and Computer Engineering

Kristen Lessel, Matthew Hartman, Shivkumar Chandrasekaran

October 29, 2015

10/28/15 Kristen Lessel 2

Overview

● Review of Hierarchically Semi-Separable (HSS)
Representation

– Notation

● Previous HSS Algorithm Complexities

● Memory Efficient Algorithm

– Phase 1

– Phase 2
● Memory Consumption

● “A Fast Memory Efficient Construction Algorithm for
Hierarchically Semi-Separable Representations”
submitted for publication

10/28/15 Kristen Lessel 3

Use a Partition Tree to Block Partition a Matrix

● Partition according to the integers at the first level of the
partition tree

● Recursively partition the block rows and columns of

10/28/15 Kristen Lessel 4

Definition – Complete Partition Tree

10/28/15 Kristen Lessel 5

HSS Representation

● Off-Diagonal blocks thus have low rank and can be compressed

● Only store smaller basis matrices () and translation operators
()

10/28/15 Kristen Lessel 6

Definition - Hankel Blocks

Block rows/columns of , excluding diagonal blocks

10/28/15 Kristen Lessel 7

Definition - Hankel Blocks

Block rows/columns of , excluding diagonal blocks

10/28/15 Kristen Lessel 8

Larger Basis Matrices Can Be Stored as
Translated Versions of Smaller Basis Matrices

10/28/15 Kristen Lessel 9

Example 2 Level Column and Row Bases

10/28/15 Kristen Lessel 10

Note: Notice the larger U's and V's are not stored, and do not appear in the HSS
Tree

Example 2 Level HSS Representation and
Corresponding HSS Tree

10/28/15 Kristen Lessel 11

Definition - HSS Tree

● An HSS tree of a matrix is the corresponding partition tree
decorated with and .
– The matrices are stored at each leaf node .

– The matrices and are stored at each edge which connects
parent to child node, .

– We add edges to the partition tree from node to node
corresponding to .

10/28/15 Kristen Lessel 12

Definition of HSS Representation

● If is a leaf node,

● If is not a leaf node,

● Where,

10/28/15 Kristen Lessel 13

An Inefficient Method to Compute the HSS
Representation

● One obvious way to form the HSS representation of a matrix would be to
take a Singular Value Decomposition (SVD) all Hankel blocks at each level
of the HSS representation.

● This is extremely slow, flops.

● Not memory efficient, memory

10/28/15 Kristen Lessel 14

A More Efficient Way to Compute the HSS
Representation

● Previous HSS construction algorithms (Xia,
Chandrasekeran, Martinsson) focused on speed, requiring
 flops.

● It seems they were unaware they require memory in
the worst case.

● We present an HSS construction algorithm which requires
 peak workspace memory in the worst case, while
still requiring only flops.

● We require only memory for a complete tree.

10/28/15 Kristen Lessel 15

Main Points of this Talk

● Basic building blocks for flop construction
algorithm

● Peak memory consumption

10/28/15 Kristen Lessel 16

Phase 1 & Phase 2 of our Construction Algorithm

● Phase 1 – Computation of Basis Matrices, , and
 , as well as Translation Operators and

● Phase 2 – Computation of Expansion Coefficients

10/28/15 Kristen Lessel 17

Phase 1 - Take SVD's Hankel Blocks at Leaf Nodes

10/28/15 Kristen Lessel 18

Construction Algorithm - Phase 1

10/28/15 Kristen Lessel 19

Construction Algorithm - Phase 1

10/28/15 Kristen Lessel 20

Construction Algorithm - Phase 1

10/28/15 Kristen Lessel 21

Construction Algorithm - Phase 1

10/28/15 Kristen Lessel 22

Construction Algorithm - Phase 1

10/28/15 Kristen Lessel 23

Construction Algorithm - Phase 1

10/28/15 Kristen Lessel 24

Construction Algorithm - Phase 1

10/28/15 Kristen Lessel 25

Construction Algorithm - Phase 1

10/28/15 Kristen Lessel 26

10/28/15 Kristen Lessel 27

Construction Algorithm - Phase 1

10/28/15 Kristen Lessel 28

Construction Algorithm - Phase 1

10/28/15 Kristen Lessel 29

Phase 1 Complete

10/28/15 Kristen Lessel 30

Construction Algorithm - Phase 2 – The Naive Way

10/28/15 Kristen Lessel 31

Construction Algorithm - Phase 2 – The Naive Way

10/28/15 Kristen Lessel 32

Construction Algorithm - Phase 2 – The Naive Way

10/28/15 Kristen Lessel 33

Construction Algorithm - Phase 2 – The Naive Way

10/28/15 Kristen Lessel 34

Construction Algorithm - Phase 2 – The Naive Way

10/28/15 Kristen Lessel 35

Construction Algorithm - Phase 2 – The Naive Way

10/28/15 Kristen Lessel 36

Phase 2 – A Better Way: Divide and Conquer

10/28/15 Kristen Lessel 37

Phase 2 – A Better Way: Divide and Conquer

10/28/15 Kristen Lessel 38

Phase 2 – A Better Way: Divide and Conquer

10/28/15 Kristen Lessel 39

Phase 2 – A Better Way: Divide and Conquer

10/28/15 Kristen Lessel 40

Phase 2 – A Better Way: Divide and Conquer

10/28/15 Kristen Lessel 41

Phase 2 – A Better Way: Divide and Conquer

10/28/15 Kristen Lessel 42

Phase 2 – A Better Way: Divide and Conquer

10/28/15 Kristen Lessel 44

Phase 2 – A Better Way: Divide and Conquer

10/28/15 Kristen Lessel 45

Phase 2 – A Better Way: Divide and Conquer

10/28/15 Kristen Lessel 46

Phase 2 – A Better Way: Divide and Conquer

10/28/15 Kristen Lessel 47

Phase 2 – A Better Way: Divide and Conquer

10/28/15 Kristen Lessel 48

Phase 2 – A Better Way: Divide and Conquer

10/28/15 Kristen Lessel 49

Phase 2 – A Better Way: Divide and Conquer

10/28/15 Kristen Lessel 50

Phase 2 – A Better Way: Divide and Conquer

10/28/15 Kristen Lessel 51

Phase 2 – A Better Way: Divide and Conquer

10/28/15 Kristen Lessel 52

Phase 2 – A Better Way: Divide and Conquer

10/28/15 Kristen Lessel 53

Phase 1 & 2 Complete

● We have calculated every , , , and
in the HSS Representation

10/28/15 Kristen Lessel 54

Algorithm Memory Consumption

● Other algorithms can take as much as memory
due to a depth first traversal of the HSS tree

● Our algorithm traverses the tree in a deepest first
order instead, and takes memory in the
worst case, where is the rank of the off diagonal
blocks of the matrix , while still taking only
flops

10/28/15 Kristen Lessel 55

What is the Worst Case Memory Consumption for
Our Algorithm?

● Phase 2 of our algorithm (computation of Expansion
Coefficients) consumes at most memory

– One block is stored in memory for each recursive
call.

– Tree of max depth is

– This implies peak memory consumption for a tree
of maximal depth

● We need to focus on Phase 1 (computation of basis
matrices, and , and translation operators and
) of our algorithm in order to determine peak workspace
consumption

10/28/15 Kristen Lessel 56

Depth First Traversal is Not Optimal for Peak
Memory Consumption

10/28/15 Kristen Lessel 57

Depth First Traversal is Not Optimal for Peak
Memory Consumption

10/28/15 Kristen Lessel 58

Depth First Traversal is Not Optimal for Peak
Memory Consumption

10/28/15 Kristen Lessel 59

Depth First Traversal is Not Optimal for Peak
Memory Consumption

10/28/15 Kristen Lessel 60

Depth First Traversal is Not Optimal for Peak
Memory Consumption

10/28/15 Kristen Lessel 61

Depth First Traversal is Not Optimal for Peak
Memory Consumption

10/28/15 Kristen Lessel 62

Depth First Traversal is Not Optimal for Peak
Memory Consumption

10/28/15 Kristen Lessel 63

Depth First Traversal is Not Optimal for Peak
Memory Consumption

10/28/15 Kristen Lessel 64

Depth First Traversal is Not Optimal for Peak
Memory Consumption

10/28/15 Kristen Lessel 65

● Each block shown is of dimension , where is
the rank of the off-diagonal blocks of the original
matrix

● Maximum Depth of this tree is

● This implies a memory consumption of

Depth First Traversal is Not Optimal for Peak
Memory Consumption

10/28/15 Kristen Lessel 66

How to fix this: Deepest First Traversal

● Traverse in a Deepest first ordering

● Peak workspace memory consumption of for a
tree of maximal depth

10/28/15 Kristen Lessel 67

Method We Use: Deepest First Traversal

10/28/15 Kristen Lessel 68

Method We Use: Deepest First Traversal

10/28/15 Kristen Lessel 69

Method We Use: Deepest First Traversal

10/28/15 Kristen Lessel 70

Method We Use: Deepest First Traversal

10/28/15 Kristen Lessel 71

Method We Use: Deepest First Traversal

10/28/15 Kristen Lessel 72

Method We Use: Deepest First Traversal

10/28/15 Kristen Lessel 73

Method We Use: Deepest First Traversal

10/28/15 Kristen Lessel 74

Method We Use: Deepest First Traversal

10/28/15 Kristen Lessel 75

Method We Use: Deepest First Traversal

10/28/15 Kristen Lessel 76

Deepest First Traversal Memory Count

● For the maximal depth tree, only 2 blocks of size
 are in memory at any given time

● Peak workspace consumption for a tree of maximal
depth is using deepest first traversal vs
for depth-first traversal

● Further, for a complete tree, the deepest first traversal
leads to a peak workspace consumption of

10/28/15 Kristen Lessel 77

Worst Case Memory Consumption for our
Algorithm

● How does worst case memory usage grow with matrix
size, ?

● This can be formulated as a graph theory problem

10/28/15 Kristen Lessel 78

Memory Block Cardinality for a Root-leaf Path

Memory Block
Cardinality for this
root-leaf path is 3

● Without loss of generality, any HSS tree can be re-ordered such that the depth of
the left subtree is always equal to or greater than the depth of the right subtree.

● Block is stored in memory when we return from a left call.

● Memory Block Cardinality for a root-leaf path is equal to the number of right children
in that path plus one.

10/28/15 Kristen Lessel 79

Memory Block Cardinality for a Root-leaf Path

Memory Block
Cardinality for this
root-leaf path is 4

● Without loss of generality, any HSS tree can be re-ordered such that the depth of
the left subtree is always equal to or greater than the depth of the right subtree.

● Block is stored in memory when we return from a left call.

● Memory Block Cardinality for a root-leaf path is equal to the number of right children
in that path plus one.

10/28/15 Kristen Lessel 80

The Search for Maximum Memory Consumption
Can Be Formulated as a Graph Theory Problem

● Branch with maximum memory block cardinality will give peak memory consumption.

● Number of leaf nodes, , is proportional to the size of the matrix .

● Number of leaf nodes, , is proportional to the number of nodes, .

● We are looking for a class of trees that maximizes the ratio of the worst case memory
block cardinality to number of nodes.

10/28/15 Kristen Lessel 81

● We can rule out the class of trees that don't have the worst case memory block
cardinality along their right-most branch.

● Worst-case memory block cardinality = 3 for both trees shown below.

We Can Narrow Down Our Search By Excluding
Some Classes of Trees

10/28/15 Kristen Lessel 82

● Complete trees have the property that the worst case memory block cardinality occurs
along the right-most branch.

● Worst-case memory block cardinality = 4 for both trees shown below.

Complete Trees Do Not Give Rise to Worst Case
Memory Usage

10/28/15 Kristen Lessel 83

Class of 'Worst Case' Trees* Has a Surprising
Structure

* K. Lessel, M. Hartman, and S. Chandrasekaran. A Fast Memory Efficient Construction Algorithm for
Hierarchically Semi-Separable Representations. Submitted to SIAM J. Matrix Analysis and Applications

10/28/15 Kristen Lessel 85

Worst Case Memory Consumption for our
Algorithm

● Worst case number of memory blocks we can
generate is , and is generated by the binary
tree with a structure as shown

10/28/15 Kristen Lessel 86

Worst Case Memory Consumption for our
Algorithm

● Worst case number of memory blocks we can
generate is , and is generated by the binary
tree with a structure as shown

10/28/15 Kristen Lessel 87

Worst Case Number of Memory Blocks is

Worst case number of memory blocks =

Worst case number of memory blocks *
* K. Lessel, M. Hartman, and S. Chandrasekaran. A Fast Memory Efficient Construction Algorithm for
Hierarchically Semi-Separable Representations. Submitted to SIAM J. Matrix Analysis and
Applications

10/28/15 Kristen Lessel 88

Relationship between the number of nodes, , and
the size of our matrix,

● Number of non-leaf nodes, , is one less than the
number of leaf nodes, , i.e,

●

●

● The worst case number of memory blocks is

● Peak memory consumption is

10/28/15 Kristen Lessel 89

Numerical Results

● Upper bound for worst case peak memory consumption is
 , and we can show this is a tight bound for
'Worst Case' trees.

10/28/15 Kristen Lessel 90

Conclusion

● Our 2 Phase Algorithm allows for a deepest first traversal of the HSS
tree, yielding a reduction in peak memory complexity from to
 as compared with previous algorithms, while still taking
only flops.

● Open question: Does there exist a 'linear' memory algorithm which
does not give up the flop constraint?

References

[1] Shivkumar Chandrasekaran, Ming Gu, and Timothy Pals. A Fast ULV Decomposition Solver for Hierarchically Semiseparable
Representations. SIAM Journal on Matrix Analysis and Applications, 28(3):603-622, 2006

[2] K. Lessel, M. Hartman, and S. Chandrasekaran. A Fast Memory Efficient Construction Algorithm for Hierarchically
Semi-Separable Representations. Submitted to SIAM J. Matrix Analysis and Applications

[3] Per-Gunnar Martinsson. A Fast Randomized Algorithm for Computing a Hierarchically Semiseparable Representation Matrix.
SIAM Journal on Matrix Analysis and Applications, 32(4):1251-1274, 2011.

[4] Jianlin Xia, Shivkumar Chandrasekaran, Ming Gu, and Xiaoye~S Li. Fast Algorithms for Hierarchically Semiseparable Matrices.
Numerical Linear Algebra with Applications, 17(6):953—976, 2010.

10/28/15 Kristen Lessel 91

Appendix

10/28/15 Kristen Lessel 92

Why HSS?

● Matrix vector multiply: flops vs HSS vector multiply: flops

● Solution, x, of Ax = b. Gaussian Elimination: flops vs Fast HSS
solver: flops

10/28/15 Kristen Lessel 93

Leaf Node Computations

● For leaf nodes define

● For a leaf node, and is not, define

● For not a leaf node, and is a leaf node,
define

10/28/15 Kristen Lessel 94

Non-Leaf Node Computations

● For not leaf nodes, we will have
and can then write

where

● Then define

10/28/15 Kristen Lessel 95

Phase 1 - Leaf Node Computations

10/28/15 Kristen Lessel 96

Phase 1 – Non-leaf Node Computations

10/28/15 Kristen Lessel 97

Phase 1 – Non-leaf Node Computations

● Remove block cloumns of which corresond to
the columns that lie in the diagonal block

● Compressed Hankel blocks at node

10/28/15 Kristen Lessel 98

Algorithm 1 Pass 1U

10/28/15 Kristen Lessel 99

Algorithm 2 Pass 2BU

10/28/15 Kristen Lessel 100

Algorithm 3 Pass 2BU

10/28/15 Kristen Lessel 101

Worst Case Memory Consumption for our
Algorithm

10/28/15 Kristen Lessel 102

Example Block Partitioning of a Matrix with
Corresponding Partition Trees

10/28/15 Kristen Lessel 119

Future Work

● Fast Multipole Method (FMM) construction Algorithm

● FMM x FMM

● Application to classical HSS algorithms: HSS Multiply
& HSS Solver

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 119

