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Chapter 1

Introduction

The field of inverse problems is broad and diverse. The inverse problem is to

determine some coefficient(s) of the equation given some information about the

solutions. Analysis of such problems brings together diverse areas of mathemat-

ics such as complex analysis, differential geometry, harmonic analysis, integral

geometry, numerical analysis, optimization, partial differential equations, prob-

ability, statistics etc. [1]. One of the critical components of inverse problems is

the problem of inverse scattering.

Inverse scattering problem arises when we illuminate a medium with (acous-

tic, electromagnetic, elastic) energy, observe the scattered field, and from these

observations, infer the contents of the medium. Figure (1.1) demonstrates a setup

for an inverse scattering problem. The region denoted by X corresponds to the

unknown inhomogeneous medium. The waves (in blue) on the lower left corner

represent the incident energy. These waves travel in the homogeneous medium

until it encounters the inhomogeneity, X. This causes the waves to scatter (shown

in red). It is assumed that the interaction mechanisms of the wave field with the

target are qualitatively known, i.e. we know the mechanism of wave travel in
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X

Incident Field

Scattered Field

Figure 1.1. Inverse Scattering

the homogeneous medium, and we know how the wave field will behave upon

reaching the scatterer. The inverse scattering problem is to observe the scattered

energy, and estimate the properties of the medium, X.

1.1 Applications of Inverse Scattering

There are various applications of the inverse scattering problem ([2],[3]), some

of which are listed below:

1. Radar Imaging: radio waves are emitted and reflected signal is observed.

Based on the received signal a decision is made on the nature of the reflect-

ing body (figure (1.2)).

2. Non-destructive testing: an object to be tested is bombarded with acoustic

waves [5]. The waves scattered by the object are observed, and based

on the scattered signal, a decision is made on the wellness of the object

(figure(1.3)).

2



Figure 1.2. Inverse scattering application: Radar Imaging [4]

Figure 1.3. Inverse scattering application: Non Destructive Testing [6]

3. For imaging earth’s interior, huge trucks are made to oscillate on the earth’s

surface, causing the energy to propagate below. The scattered field is ob-

served on the surface, and characteristics like density, or bulk modulus of

earth’s interior, are estimated.

4. Fault detection: Cables do occasionally fail, for a variety of reasons and in

many different ways. Lightening strikes, overloads or surges, installation

problems, shovel and rodent damage are some of the common causes of

damage that can lead to cable failure. Concepts of inverse scattering are

widely implemented in various tools and technologies to detect such faults

along a transmission line or along underwater cables

3



1.2 Problem Statement

In 1955 Gel’fand and Levitan [7] reduced the solution to the Schrodinger in-

verse scattering problem to the solution of a parameterized set of linear integral

equations [8], [9]. Since then, different approaches have been proposed to solve

the problem. It was in 1992, when Chen and Rokhlin [10] proposed a numeri-

cally stable algorithm to solve a version of the one dimensional inverse scattering

problem. The problem setup in [10] was different in comparison to all the works

that had been done in this field till then. The authors consider a string of infinite

length. For a fixed section along the length (x ∈ [0, 1]), the mass per unit length

of the string is an unknown function q(x) (shown in red in figure (1.4)). The rest

of the string is homogeneous, with a known constant mass per unit length.

Figure 1.4. Infinite string: Inverse scattering problem for the Helmholtz equation

in one dimension

Energy is incident from the left (x < 0), and the scattered data (amplitude

φ(0, ω)) is measured at the boundary x = 0. The CR algorithm stably recovers

q(x) from φ(0, ω) by solving a system of integro-differential equations. This

system of equations is obtained due to the characteristic behavior of the infinite

sections at the boundary. A solution that can provide the same characteristic

behavior of an infinite transmission line in real world problems based on Chen

4



and Rokhlin’s method demands exploration and research.

This dissertation proposes an equivalent problem in a discrete setting, and

extends the Chen and Rokhlin’s method to provide insights into actual imple-

mentation of inverse scattering problem. The problem has now been explained

in further details in the following section.

The dissertation also takes an initiative to explore an alternative algorithm

proposed by Sylvester et. al. [11],[12],and [13]. The authors consider the inverse

scattering problem for a semi-infinite transmission line, and propose a completely

different approach as compared to the Chen-Rokhlin algorithm.

1.3 Problem Setup

To describe the inverse scattering problem in one dimension, we consider an

infinite length transmission line. (The equations governing the wave propaga-

tion are the same for the string and the transmission line.) Figure (1.5) shows

a transmission line, which is a medium used to transfer energy (mainly electro-

magnetic) from one point to another [14]. Due to the magnetic field around the

x = 1

L(x)

C(x)C(x) = C0

L(x) = L0

C(x) = C0

L(x) = L0

x = 0

Figure 1.5. Transmission Line

wires, there is an inductance L(x) at any point x. Also, at any point x, there
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is a capacitive effect, C(x), between the two conductors. We consider an ideal,

loss less transmission line, with no series resistance or shunt conductance. Note

that, although the figure (1.5) shows only one inductor for x ∈ [0, 1], there is

an inductance at each point on the line, and is a function of depth x. Also, for

most part of the line (x /∈ [0, 1]), the inductance and capacitance are constants,

L0 and C0 respectively. The voltage, V (x, t) and current, I(x, t), on such a line

are functions of distance, x and time, t, and are given by Telegrapher’s equation

[15].

∂V (x, t)

∂x
= −L(x)

∂I(x, t)

∂t
,

∂I(x, t)

∂x
= −C(x)

∂V (x, t)

∂t
.

Consider the case when x < 0. Since the inductance and capacitance are constant

in this part of the transmission line, the telegrapher’s equation boils down to wave

equation for both, current and voltage [9].

∂2I(x, t)

∂t2
= c2

0

∂2I(x, t)

∂x2
. (1.1)

where c2
0 = 1

L0C0
is the velocity of the wave. The solution of such an equation is

given as

I(x, t) = f(x − c0t) + g(x + c0t),

for some functions f(.) and g(.), which depend on the initial condition. Assuming

a source function at x = x0, f represents a wave traveling to the right of x0,

and g represents a wave traveling to the left of x0. If the values of L and C

remain constant throughout, then the two waves will travel in opposite directions,

without any interruption. The amount of time taken to travel distance d, depends

on the velocity of the wave, c0.

In the case under consideration, L(x) and C(x) change at x = 0. As a result,

when f reaches the boundary at x = 0, it is split into two: part of the wave keeps

6



on moving to the right, call it ft, for transmitted wave and other part is reflected

back, call it fr, for the reflected wave. The transmitted wave ft, as it penetrates

in x ∈ [0, 1], it becomes the source wave and is further divided into left and right

going waves. This happens because the inductance and capacitance are functions

of depth inside the region.

The one dimensional inverse problem can now be stated as :

Inverse Scattering for continuous transmission line: Ob-
serve the reflected energy at x = 0, and estimate the values of L(x)
and C(x) for x ∈ [0, 1].

It turns out that under this problem setting, one cannot recover both L and

C separately. It is the product that appears as the velocity, and that is what we

can recover. Or we can consider constant capacitance and unknown inductance

(as in this dissertation),or constant inductance and unknown capacitance, or we

can consider both the capacitance and the inductance to be the unknown, but

both taking the same value (as done in [8]).

Bruckstein and Kailath in [8] consider a special case for the inductance (figure

1.6). In the region, where the inductance is a constant, we have left and right

going waves. On the boundary of such a region, the mismatch in the value of the

inductance divides the wave into reflected and transmitted wave. The authors

use the principle of causality to recover the values of Lk’s. For example, the

first reflected wave to be observed, would be due to the mismatch in L0 and

L1. Assuming that L0 is known, this reflection data is used to recover L1. The

same L1 is used to recover the reflection data in the interior, and the process is

repeated. Although unstable, their algorithm is general enough to include the

discrete version of the previously known solutions by Gel’fand and Levitan [7],

Gopinath and Sondhi [16], and Krein [17].

7



x5

L(x)

x

L1

L2

L3

L4

x1

L0 = 1

x2 x3 x4

Figure 1.6. Step profile for inductance

Although the problem is described in terms of transmission line, it is quite

general in the sense that it applies to examples where the energy propagation can

be described using wave equation. For example, acoustic PDE model for imaging

earth, acoustic PDE model for medical imaging etc.

To setup the problem in discrete domain, we first analyze the Chen-Rokhlin

problem (CRP) in chapter 2. In CRP, the authors consider the Helmholtz equa-

tion, which is frequency transformed version of the wave equation.

∂2Î(x, ω)

∂x2
− ω2

c2(x)
Î(x, ω) = 0 (1.2)

where Î(x, ω) is the Fourier transform of I(x, t), and is given by

Î(x, ω) =

∫ ∞

−∞
I(x, t)e−jωtdt

The Helmholtz equation is discretized, and a lumped parameter model, which is a

discrete approximation of the continuous transmission line (figure 1.7) is obtained.

Here each Lk is the unknown inductance value, C0 is the known capacitance, Ik(ω)

is the current in the k-th loop, V (ω) is the supply voltage, and Y (ω) = I1(ω)
V (ω)

is the

input admittance. The currents, voltage and the admittance are each functions of

frequency ω. The z in the first and the last loop corresponds to a component with

8



z

I1(ω) In(ω)
c0

LnL2L1

V (ω) I2(ω)

Y (ω)

c0 c0 z

Figure 1.7. LC ladder network

a known negative impedance. The presence of z is crucial in the development

of the discrete algorithm. All the approaches used before, did not consider such

component in their problem definition. Intuitively, the negative impedance can

be viewed as an amplifier, which pumps the energy back in the system, thereby

illuminating the scatterer. In chapter 3 it is proved that, the presence of this

negative impedance, guarantees that the poles of the scattered data are trapped

in the lower half plane. This observation paves the way for the discrete algorithm.

Thus the inverse problem in this discrete setting can be stated as:

Discrete Inverse Scattering Problem: Observe the admittance
Y (ω), at different frequencies, and obtain the values of Lk’s.

A physical problem that motivated the study of the discrete inverse scattering

problem was that of sensor networks. Sensors are devices which measure a certain

physical quantity (e.g. temperature) and convert them into an electrical signal

(e.g. voltage). The idea of a sensor network is to deploy many such sensors

in a field, and through local measurements from each sensor, decipher global

information about the whole field. Tiny size and limited capability makes it

possible to gather information in a cost effective way, from places where it was

9



not possible before. The measurements from each of the sensors are collected and

sent to a base station, where the local information is assimilated.

Consider a logically one dimensional, network of sensors as shown in figure

(1.8).

�
�
�
�

����

f(x2) f(xN)f(x3)f(x1)

Station
Base

I0(ω)

1 N3

IN−1(ω)I3(ω)I1(ω) I2(ω)

I4(ω)I3(ω)I2(ω)I1(ω) IN(ω)

2

Figure 1.8. Schematic diagram of the proposed sensor network model

Here rectangular box j represents a sensor, which takes in the physical pa-

rameter f(xj) and converts it into an appropriate electrical signal. Each sensor

in turn is capable of transmitting this electrical signal to its adjacent neighbors.

Also, it can receive signals from its two adjacent neighbors. Ik(ω) is the signal

transmitted by sensor k, and received by its neighbors k− 1 and k + 1. The k-th

sensor receives the signal Ik−1(ω), from sensor k − 1, and signal Ik+1(ω), from

sensor k+1. The base station, by sending some input signal I0(ω), communicates

with the first sensor at the boundary and makes some independent measurements

I1(ω). The goal of the base station is to figure out the unknowns f(xj)’s from

these measurements.

The remaining of the chapters now address the aforementioned problem.

Chapter 2 investigates Chen and Rokhlin’s inverse scattering algorithm for

the Helmholtz equation for the continuous transmission line [10]. The Helmholtz

equation is discretized to obtain a circuit equivalent of the sensor network prob-

lem. It is shown that for a specific approximation, the continuous algorithm

10



provides a viable solution, which is stable with respect to scaling of sensors and

resistive noise. Simulation results for the sensor network problem are provided.

In chapter 3, a discrete inverse scattering algorithm is proposed to allevi-

ate the limitations of CR algorithm in solving a discrete problem. Theorems

characterizing the nature of reflection data are proved, and the CR algorithm is

extended in discrete domain.

In chapter 4 alternative approaches are analyzed. An inverse scattering al-

gorithm by Sylvester et. al. is explored. Derivations along with intuitive expla-

nation is provided. A connection between circuit synthesis problem and inverse

spectral method is also demonstrated.

Results and open problems are discussed in chapter 5.

11



Chapter 2

LC ladder network and

Chen-Rokhlin algorithm

In this chapter, Chen-Rokhlin’s ([10]) inverse scattering algorithm for the

Helmholtz equation in one dimension is investigated. Detailed derivation and the

underlying physical intuition is provided. An equivalent discrete problem, which

provides insights into actual implementation of the continuous problem, is set up.

2.1 Problem Setup

We consider an infinite length transmission line (figure (2.1)) Due to the

magnetic field around the wires, there is an inductance L(x) at any point x. Also,

at any point x, there is a capacitive effect, C(x), between the two conductors.

We consider an ideal, lossless transmission line, with no resistance or conductance

and a constant capacitance, i.e. C(x) = C0 for all x. As shown in the figure (2.1),

the inductance is a constant for most part of the line i.e. L(x) = L0 for x /∈ [0, 1].

The voltage, V (x, t) and current, I(x, t), on such a line are functions of distance,

12



L(x) = L0 L(x)

C(x) = C0C(x) = C0

x = 0 x = 1

L(x) = L0

C(x) = C0

Figure 2.1. Transmission Line

x and time, t, and are given by Telegrapher’s equation [15].

∂V (x, t)

∂x
= −L(x)

∂I(x, t)

∂t
, (2.1)

∂I(x, t)

∂x
= −C0

∂V (x, t)

∂t
. (2.2)

Differentiating equation (2.1) with respect to t and equation (2.2) with respect

to x we obtain

∂2V (x, t)

∂x∂t
= −L(x)

∂2I(x, t)

∂t2
, (2.3)

∂2V (x, t)

∂x∂t
= − 1

C0

∂2I(x, t)

∂x2
. (2.4)

Comparing equations (2.3) and (2.4) we obtain the wave equation

L(x)
∂2I(x, t)

∂t2
=

1

C0

∂2I(x, t)

∂x2
. (2.5)

To obtain an equation similar to that used by Chen-Rokhlin, substitute L(x)C0 =

1+ q(x) in the above equation. Also, for x /∈ [0, 1], L(x) = L0 is chosen such that

L(x)C0 = 1, i.e. q(x) = 0 in this region.

∂2I(x, t)

∂x2
− (1 + q(x))

∂2I(x, t)

∂t2
= 0. (2.6)

Define Fourier Transform of a function as

f̂(ω) =

∫ ∞

−∞
f(t)e−iωtdt

f(t) =
1

2π

∫ ∞

−∞
f̂(ω)eiωtdω.

13



Applying Fourier transform to equation (2.6), we obtain the Helmholtz equation.

∂2Î(x, ω)

∂x2
+ ω2(1 + q(x))Î(x, ω) = 0, (2.7)

where, Î(x, ω) is the transform of I(x, t). The authors consider solutions of the

Helmholtz equation Î+(x, ω) and Î−(x, ω) which have the form

Î+(x, ω) = Îinc+(x, ω) + Îscat+(x, ω), (2.8)

Î−(x, ω) = Îinc−(x, ω) + Îscat−(x, ω), (2.9)

with

Îinc+(x, ω) = eiωx, (2.10)

Îinc−(x, ω) = e−iωx. (2.11)

Here Îinc+ and Îinc− are the right-going and left-going incident fields, respectively,

and Îscat+ and Îscat− are the scattered fields corresponding to the excitations Îinc+

and Îinc−. The sum of incident and the corresponding reflected field is called the

total field (2.8,2.9). Both Îscat+, Îscat− satisfy the outgoing radiation boundary

conditions

Î ′
scat(0, ω) + iωÎscat(0, ω) = 0, (2.12)

Î ′
scat(1, ω) − iωÎscat(1, ω) = 0, (2.13)

where prime denotes the derivative with respect to x. Equation (2.12) implies

that once the scattered field has reached x = 0 it simply keeps on moving to

the left without any further reflections. Similarly equation (2.13) implies the

scattered field moving to the right on reaching x = 1.

Hence Îscat is of the form

Îscat = µ+(ω)e−iωx for x ≤ 0, (2.14)

Îscat = µ−(ω)eiωx for x ≥ 1, (2.15)
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for some µ+(ω) and µ−(ω).

Using equations (2.8,2.10, and 2.12) and equations (2.9,2.11, and 2.13) we get

Î+ =







eiωx + µ+(ω)e−iωx if x ≤ 0 incident + scattered

αeiωx if x ≥ 1 transmitted
(2.16)

Equation (2.16) corresponds to the data collection experiment at x = 0. A right

going input signal is applied at x = 0. This wave is reflected and transmitted.

The reflected waves moves in the opposite direction (x < 0), while the transmitted

waves moves along and comes out at x = 1.

Î− =







e−iωx + µ−(ω)eiωx if x ≥ 1 incident + scattered

βe−iωx if x ≤ 0 transmitted
(2.17)

Equation (2.17) corresponds to the data collection experiment at x = 1. A left

going input signal is applied at x = 1. This wave is reflected and transmitted.

The reflected waves moves in the opposite direction (x > 1), while the transmitted

waves moves along and comes out at x = 0. Using equation (2.16) ,we have the

boundary conditions for the total field

Î ′
+(0, ω) + iωÎ+(0, ω) = i2ω (2.18)

Î ′
+(1, ω)− iωÎ+(1, ω) = 0 (2.19)

Let C+ is the complex upper half plane so that

C+ = {ω ∈ C|ℑ(ω) ≥ 0}.

For any ω ∈ C+, the reflection data p+(x, ω), and p−(x, ω) associated with

Î+(x, ω) and Î−(x, ω), respectively, are defined as

p+(x, ω) =
Î ′
+(x, ω)

iωÎ+(x, ω)
, (2.20)

p−(x, ω) =
Î ′
−(x, ω)

−iωÎ−(x, ω)
, (2.21)
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Using the telegrapher’s equation, equations (2.20) and (2.21) can be simplified to

p+(x, ω) =
C0V̂+(x, ω)

Î+(x, ω)
, , (2.22)

p−(x, ω) =
C0V̂−(x, ω)

Î−(x, ω)
, . (2.23)

Here p+(x, ω) corresponds to the scaled impedance of the line by looking from

the terminal at x = 0, and p−(x, ω) is the impedance of the line as seen from

x = 1 toward x = 0 (figure 2.2). The Chen-Rokhlin inverse scattering problem

p−(x, ω) = C0V
−

I
−

L(x)

C(x) = C0C(x) = C0

x = 0 x = 1

L(x) = L0

C(x) = C0

L(x) = L0

p+(x, ω) = C0V+

I+

Figure 2.2. Reflection data: impedance p+(x, ω) and p−(x, ω)

can now be defined as:

Inverse Scattering Problem for the Helmholtz equation in

one dimension: suppose that the impedance function p+(0, ω) is
given for finite frequencies ωk. Reconstruct the inductor profile L(x)
in the interval [0, 1].

2.2 Chen-Rokhlin Algorithm

The inverse algorithm consists of the following steps:

1. Measure the reflection data at x = 0 (figure (2.3)).

2. From the reflection data, recover the unknown L(x) for x ∈ [0, δ] (figure

(2.4)).
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x = 1x = 0

p+(0, ω)

Figure 2.3. Observe reflection data: impedance p+(0, ω)

width = δ

x = 1x = 0 x = δ

Figure 2.4. Recover L(x) for x ∈ [0, δ]

3. “Peel” the line, to obtain the reflection data at x = δ (figure (2.5)).

4. With the new data go back to step 2.

2.2.1 Algorithm Details

• As the first step [18] proves that the reflection data p+(x, ω) is analytic and

bounded (“well behaved”) for all x and ω ∈ C+. Also, the reflection data

17



x = 1

p+(0, ω)

width = δ

x = 0 x = δ

p+(δ, ω)

Figure 2.5. Obtain reflection data at x = δ.

is simplified by substituting the value of I+ from equation (2.16)

p+(x, ω) =
eiωx − µ+(ω)e−ωx

eiωx + µ+(ω)e−ωx

=
2eiωx − eiωx − µ+(ω)e−ωx

eiωx + µ+(ω)e−ωx

=
2eiωx

eiωx + µ+(ω)e−ωx
− 1

∴ p+(0, ω) =
2

1 + µ+(ω)
− 1

⇒ p+(0, ω) =
2

Î+(0, ω)
− 1

• The initial condition for p−(0, ω) can be obtained by calculating the impedance

of the semi-infinite transmission line (figure (2.6)).

x = 1x = 0

p−(0, ω)

Figure 2.6. Initial condition for p−(0, ω).
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From equation (2.17), for x ≤ 0,

p−(x, ω) =
−iωβe−iωx

−iωβe−iωx

∴ p−(0, ω) = 1

• The inversion formula is derived by first deriving the layer peeling Riccati

equation for the reflection data. This layer peeling equation is a differential

equation in x, which gives a way to find the reflection data inside the line,

given the data at the boundary.

p+(x, ω) = −C
V (x, ω)

I(x, ω)

p′+(x, ω) = −C
I(x, ω)V ′(x, ω) − I ′(x, ω)V (x, ω)

I2(x, ω)

using Telegrapher’s equation,

p′+(x, ω) = −C
I(x, ω)(−iωL(x)I(x, ω)) − (−iωCV (x, ω))V (x, ω)

I2(x, ω)

p′+(x, ω) = iω(1 + q(x)) +
(−iωC2V 2(x, ω))

I2(x, ω)

p′+(x, ω) = iω(1 + q(x)) − iωp2
+(x, ω)

p′+(x, ω) = −iω(p2
+(x, ω) − (1 + q(x)))

Similarly, for p−(x, ω) we have,

p′−(x, ω) = iω(p2
−(x, ω) − (1 + q(x)))

Note that no experiments are performed to obtain the data p(0, ω). It can

be considered as a thought experiment. The Riccati equation for p(x, ω)

gives the value of the impedance function for this dummy experiment, and

it performs a crucial role in recovering the scattering potential q(x).

• Asymptotic formula for the reflection data: find ak(x) such that the impedance

can be written as

p+(x, ω) = a0(x) +
a1(x)

iω
+ O(ω−2)
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We compare the Riccati equation with the evolution of the above approxi-

mation to find the unknown coefficients ak.

p′+(x, ω) = a′
0(x) +

a′
1(x)

iω
+ O(ω−2)

⇒ −iω

(

a2
0(x) +

a2
1(x) + 2a0(x)a2(x)

(iω)2
+

2a0(x)a1(x)

iω
− ((1 + q(x)) + O(ω−3))

)

= a′
0(x) +

a′
1(x)

iω
+ O(ω−2)

Comparing the coefficients of iω we have

a2
0 − (1 + q(x)) = 0

⇒ a0 =
√

(1 + q(x))

Comparing the coefficients for the terms independent of ω

−2a0(x)a1(x) = a′
0

⇒ a1(x) =
−a′

0

2a0
=

−q′(x)

4(1 + q(x))

∴ p+(x, ω) =
√

(1 + q(x)) − q′(x)

4(1 + q(x))iω
+ O(ω−2) (2.24)

Similarly for p− we have,

p−(x, , ω) =
√

(1 + q(x)) +
q′(x)

4(1 + q(x))iω
+ O(ω−2)

• Consider a closed contour in the upper half plane (figure(2.7)). Gamma is

the curve in the upper half plane with clockwise orientation. Since p+ − p−

is analytic in the upper half plane, Cauchy’s theorem guarantees that

∮

p+(x, ω) − p−(x, ω)dω = 0

∫ R

−R

p+(x, ω) − p−(x, ω)dω =

∫

Γ

p+(x, ω) − p−(x, ω)dω
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ℜ(ω)
−R 0

Γ

ℑ(ω)

R

Figure 2.7. Closed contour in the upper half plane

Substituting the asymptotic expansion in the right hand integral,

∫ R

−R

p+(x, ω) − p−(x, ω)dω =
−q′(x)

2(1 + q(x))

∫

Γ

1

iω
dω +

∫

Γ

O(ω−2)

Let Rejθ = ω

⇒ jRejθdθ = dω

⇒ jωdθ = dω

⇒ dθ =
dω

jω
∫ R

−R

p+(x, ω) − p−(x, ω)dω =
−q′(x)

2(1 + q(x))

∫ 0

π

dθ +

∫

Γ

O(ω−2

∴ q′(x) =
2

π
(1 + q(x))

∫ R

−R

p+(x, ω) − p−(x, ω)dω + O(ω−1)

⇒ q′(x) =
2

π
(1 + q(x))

∫ ∞

−∞
p+(x, ω) − p−(x, ω)dω

In practice the integral needs to be truncated at some finite frequency. If

ωmax is the maximum frequency, then

q′(x) =
2

π
(1 + q(x))

∫ ωmax

−ωmax

p+(x, ω) − p−(x, ω)dω + I(ωmax)

where I(ωmax) =
2

π
(1 + q(x))

(∫ −ωmax

−∞
+

∫ ∞

ωmax

)

(p+(x, ω) − p−(x, ω))dω.

From [18], if q(x) ∈ cm([0, 1]) for m ≥ 2, then there exists a constant α

such that

|I(ωmax)| ≤
α

|ω|(m−1)
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Thus, the “trace formula” to obtain the unknown q(x) is given as

q′(x) =
2

π
(1 + q(x))

∫ a

−a

(p+(x, ω) − p−(x, ω))dω + O(a−(m−1))

where m is the smoothness of the scatterer q(x).

Thus, to obtain q(x) from the scattered data, Chen and Rokhlin solve the

following non-linear system of differential equations

p′+(x, ω) = −iω(p2
+(x, ω) − (1 + q(x))), (2.25)

p′−(x, ω) = iω(p2
−(x, ω) − (1 + q(x))), (2.26)

q′(x) =
2

π
(1 + q(x))

∫ ωmax

−ωmax

(p+(x, ω) − p−(x, ω))dω, (2.27)

with the initial conditions

p+(0, ω) =
2

Î(0, ω)
− 1, (2.28)

p−(0, ω) = 1, (2.29)

q(0) = 0, (2.30)

2.3 Discrete Helmholtz Equation and Sensor Net-

works

Having explained the Chen Rokhlin problem, the first question that arises

is, how to physically setup the problem? How to simulate or connect an infinite

transmission line section? In transmission line theory, the semi-infinite transmis-

sion line is approximated by its characteristic impedance [19]. It turns out, that

the role performed by this characteristic impedance is not the same as that de-

manded by the outgoing boundary conditions. In order to develop the algorithm
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in discrete domain, the Helmholtz equation (2.7) is discretized using a finite dif-

ference scheme. In doing so, a LC ladder circuit- a discrete approximation of

the transmission line, is identified. This discrete LC circuit is used to model the

network of sensors.

Discretizing the Helmholtz equation (2.7) using the centered difference for-

mula

Î ′′(xi, ω) ≈ Î(xi − h, ω) − 2Î(xi, ω) + Î(xi + h, ω)

h2
,

we get

Î(xi − h, ω) − 2Î(xi, ω) + Î(xi + h, ω)

h2
+

ω2(1 + q(xi))Î(xi, ω) = 0. (2.31)

At the boundaries, we discretize the outgoing radiation conditions (2.18) and

combine it with the discrete Helmholtz equation at the boundary. At x = 0 we

get

Î(h, ω) − Î(−h, ω)

2h
+ iωÎ(0, ω) = 2iω,

Î(−h, ω) − 2Î(0, ω) + Î(h, ω)

h2
+

ω2(1 + q(0))Î(0, ω) = 0.

Eliminating Î(−h, ω) from the above two equations, we get

(−2 + i2hω + ω2h2(1 + q(0)))Î(0, ω) + 2Î(h, ω) = i4hω. (2.32)

Similarly at x = 1 we get,

Î(1 + h, ω) − Î(1 − h, ω)

2h
− iωÎ(1, ω) = 0,

Î(1 − h, ω) − 2Î(1, ω) + Î(1 + h, ω)

h2
+

ω2(1 + q(1))Î(1, ω) = 0.
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Eliminating Î(1 + h, ω) from the above two equations, we get

−2Î(1 − h, ω) + (2 − i2hω − ω2h2(1 + q(1)))Î(1, ω) = 0. (2.33)

After some algebraic manipulation, equations (2.31), (2.32) and (2.33) can be

rewritten as

(
2

iωh
− 2 + iωh(1 + q(0)))Î(0, ω) − 2

iωh
Î(h, ω) = −4, (2.34)

− 2

iωh
Î(xj − h, ω) + (

4

iωh
+ iω2h(1 + q(xj)))Î(xj , ω) −

2

iωh
Î(xj + h, ω) = 0 , (2.35)

− 2

iωh
Î(1 − h, ω) + (

2

iωh
− 2 + iωh(1 + q(1)))Î(1, ω) = 0. (2.36)

Equations (2.34), (2.35), (2.36) are the Kirchhoff’s Voltage law (KVL) equations

for the first, jth and the last loop respectively. LC ladder circuit obeying the

KVL can now be formed (figure (2.8)).

V (ω) = −4

Z = −2 L1 = h(1 + q(0))

I1(ω)
c0 = h

2

I2(ω) IN(ω)
Z = −2

LN = h(1 + q(1))L2 = 2h(1 + q(h))

c0 = h
2

c0 = h
2

Figure 2.8. Electrical Circuit Realization of the 1D sensor Network Model

We now adapt the circuit for our sensor network by identifying each inductor

with a sensor, and make the special requirement that the sensed field value de-

termines the inductor’s inductance. In particular, the jth inductor with a sensed

value of q(xj) has inductance 2h(1+ q(xj)). Such inductors can be realized using

active RC circuits ([20]). To operate the sensor network, we need to make cer-

tain measurements. We supply input signals Vs(ω) (constant voltage source in
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frequency domain) for different frequencies, and measure the current in the first

loop, I1(ω). Then the function p(ω) (“impedance”) is calculated as

p(ω) =
2

I1(ω)
− 1. (2.37)

To find the unknown field values q(xj), we need to find the unknown inductances

from the p(ω) obtained at different frequencies. For this we can follow Chen and

Rokhlin algorithm and solve equations (2.25)-(2.30).

Note the presence of negative impedances, z, at the two ends of the circuit.

These components come into play while discretizing the outgoing boundary con-

ditions. Thus, we can say that these components play the role of the semi-infinite

sections at the two ends. Physically they represent amplifiers, which pump the

energy into the system. More about this negative impedances will be discussed

in chapter 3.

2.4 Implementation Details

The circuit shown in figure (2.8) is simulated in MATLAB [21]. For the

forward problem, different profiles for q(x) are chose. An input voltage signal,

which is an impulse in time (and hence a constant in frequency), is applied to

the circuit, and the current (I1(ω)) in the first loop is measured. It is equivalent

to solving a linear system of equations obtained by writing the KVL equations.

To add noise, we simply put a resistor in each loop. The value of the resistor is a

uniform random number in [0, .1], which is of the order of (or greater than) the

product of LC(= h2). Once we have I1(ω), we form the “impedance” function,

and solve the system of ODE’s (2.25) - (2.30), to obtain q(x).

To implement the algorithm, we follow [10]’s approach, and approximate the
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integral using trapezoidal sum

∫ ωmax

−ωmax

(p+(x, ω) − p−(x, ω))dω = h

(
M−1∑

j=−M+1

p+(x, ωj) − p−(x, ωj)

)

+

h

2
((p+(x,−ωmax) − p−(x,−ωmax)) + (p+(x, ωmax) − p−(x, ωmax)))

with h = ωmax

M
, ωj = jh, j = −M,−M + 1, . . . , M . The system of equations now

become:

p′+(x, ωj) = −iωj(p
2
+(x, ωj) − (1 + q(x))), (2.38)

p′−(x, ωj) = iωj(p
2
−(x, ωj) − (1 + q(x))), (2.39)

q′(x) =
4h

π
(1 + q(x))

(
M−1∑

j=1

ℜ(p+(x, ωj) − p−(x, ωj))+

1

2
[ℜ(p+(x, 0) − p−(x, 0))+

ℜ(p+(x, ωmax) − p−(x, ωmax))]) , (2.40)

with the initial conditions

p+(0, ωj) =
2

Î1(ωj)
− 1, (2.41)

p−(0, ωj) = 1, (2.42)

q(0) = 0, (2.43)

We use MATLAB’s ode23s solver for solving the system of differential equations.

The solver is based on a modified Rosenbrock formula of order 2 [22].

Once we have the reconstructed profile q̂(x), we calculate the error as

e(x) = q(x) − q̂(x).

In the captions of each figure, we show two different norms of errors:

• ||e(x)||∞ = maxi e(xi), which is the maximum reconstruction error made

by a sensor.
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• ||e(x)||2 =
(

1√
N

)√

(
∑

i e(xi)2), which is the root mean squared reconstruc-

tion error.

Note: Vales of L, c0, Z, ω, V , I, ωmax, and resistance, R are scaled by some

constant. To obtain practical values they need to be rescaled by appropriate

amount [23].

2.5 Results

Our goal is to show that it is possible to recover the unknown sensed profile by

making measurements at the boundary. According to [10], the inverse algorithm

works the best when the unknown profile is smooth, and the error tends to zero as

one takes samples at higher frequencies. The following observations are verified

through plots:

• The reconstruction error decreases up to a point as we increase the maxi-

mum frequency (ωmax). Beyond that the error persists, which is due to the

fact that we have used different models for the forward and inverse problem.

• The algorithm scales quite well with the number of sensors, and the error

does not blow up with the increase in the number of sensors.

• The reconstruction algorithm is able to resolve two peaks separated by some

distance.

• Although [10] does not have proof for detecting non-smooth profiles, the

algorithm does a good job reconstructing it. We show this by using profiles,

which are piecewise smooth, and piecewise non-smooth.
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For all the plots shown below, the x-axis represents the spatial axis along which

the sensors are aligned, and the y-axis is the sensed field value, as well as the

absolute value of the reconstructed potential.

2.5.1 Smooth Profile
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Figure 2.9. Smooth q(x): 1,000 sensors, ωmax = 30. Noisy resistor is uniformly

chosen from the interval [0,0.1]. ||error||2 = 0.0295, ||error||∞ = 0.0552. The

solid line corresponds to the reconstructed profile and the area plot corresponds

to the original profile.

Here we show that if the Li’s (the spatially distributed sensed value) vary

smoothly then it is possible to recover them to a high degree of accuracy. We

show experimental results for different ωmax and show that the recovered profile

follows the original profile closely as we increase ωmax. We choose q(x) as

q(xi) = exp

(

−
(

xi − .5

σ

)2
)
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where σ = 1
8

√

log10(e) and L(xi) is obtained from q(xi) as shown in figure (2.8).

In most practical situation, one would expect high correlation between adjacent

sensed values and hence the smoothness requirement would be satisfied most of

the time. As can be seen in figure (2.9), the inverse algorithm is successful in
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Figure 2.10. Impedance profile for figure (2.9). 1,000 sensors, ωmax = 30.

reconstructing the q(x); i.e. it follows the original profile quite closely. Figure

(2.10) shows the plot of impedance (as a function of frequency), which is supplied

to inverse algorithm (equation (2.37)).

We don’t see significant improvement when the frequency is raised from 30 to

60 (figures (2.9) and (2.11)). This is due to the fact that, the forward problem (i.e.

collecting the data I1(ω)) is in discrete domain (i.e. obtained through a lumped

parameter model), whereas the reconstruction algorithm (the inverse problem -

equations (2.25), (2.26), and (2.27)) is in continuous domain.

On other hand figure (2.12) indicates that if we decrease the maximum fre-

quency of experiments, the performance of the inverse algorithm deteriorates.
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Figure 2.11. Smooth q(x): 1,000 sensors, ωmax = 60 . Noise is a uniform random

number between [0,0.1]. ||error||2 = 0.0291, ||error||∞ = .0543. The solid line

corresponds to the reconstructed profile and the area plot corresponds to the

original profile.
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Figure 2.12. Smooth q(x): 1,000 sensors, ωmax = 5 . Noise is a uniform random

number between [0,.1]. ||error||2 = 0.1695, ||error||∞ = .4242. The solid line

corresponds to the reconstructed profile and the area plot corresponds to the

original profile.
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2.5.2 Recovery using Noisy data

Here we add noise to the scattered data I1(ω). Noise here is a uniform random

number in [0, .0001]. Thus the scattered data is accurate for only three digits,

and still the CR algorithm manages to recover the profile (figure (2.13))
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Figure 2.13. Recovery using Noisy data: 1000 sensors, ωmax = 25 . Noise, n is

a uniform random number between [0, .0001], i.e. Î1(ω) = I1(ω) + n. The solid

line corresponds to the reconstructed profile and the area plot corresponds to the

original profile.

2.5.3 Step profile

In practice, step profile would correspond to a case, where the sensed value is

among a few quantized levels. Although Chen-Rokhlin algorithm requires smooth

potential, it is able to reconstruct a piecewise smooth profile to great accuracy.

Figure (2.14) corresponds to the case where the number of quantization level is

more than two, whereas figure (2.15) corresponds to the case where only one bit
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Figure 2.14. Step profile: 300 sensors, ωmax = 50 . Noise is a uniform random

number between [0,.1]. ||error||2 = 1.6127, ||error||∞ = 7.7227. The solid line

corresponds to the reconstructed profile and the area plot corresponds to the

original profile.
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of information (either 0 or 1) is transmitted. The reconstructed profile for both

the cases give a reasonable picture of the quantized field values. As shown in

figure (2.16), when the maximum frequency is increased to 75 , we see that the

error in reconstruction further decreases.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sensors

S
en

se
d 

F
ie

ld
 V

al
ue

Original Profile vs Reconstructed Profile

Figure 2.15. Step profile: 300 sensors, ωmax = 100 . Noise is a uniform random

number between [0,.1]. ||error||2 = .2118, ||error||∞ = 1.0033. The solid line

corresponds to the reconstructed profile and the area plot corresponds to the

original profile.

2.5.4 Resolution

To test the inverse algorithm for its resolution ability we considered two cases.

Figure (2.17) indicates successful resolution of two peaks separated by some dis-

tance, and the inverse algorithm works quite well even when the distance between

the two peaks is reduced (figure (2.18).
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Figure 2.16. Step profile: 300 sensors, ωmax = 75 . Noise is a uniform random

number between [0,.1]. ||error||2 = .6508, ||error||∞ = 3.9715. The solid line

corresponds to the reconstructed profile and the area plot corresponds to the

original profile.
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Figure 2.17. Resolution: 1,000 sensors, ωmax = 50 . Noise is a uniform random

number between [0,.1], ||error||2 = 0.0487, ||error||∞ = 0.1913. The solid line

corresponds to the reconstructed profile and the area plot corresponds to the

original profile.
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Figure 2.18. Resolution: 1,000 sensors, ωmax = 50 . Noise is a uniform random

number between [0,.1], ||error||2 = 0.0426, ||error||∞ = 0.1393. The solid line

corresponds to the reconstructed profile and the area plot corresponds to the

original profile.

37



Figure (2.19) indicates successful resolution of a highly localized peak.
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Figure 2.19. Resolution: 1,000 sensors, ωmax = 100 . Noise is a uniform random

number between [0,.1]. ||error||2 = 0.0481, ||error||∞ = 0.32. The solid line

corresponds to the reconstructed profile and the area plot corresponds to the

original profile.

2.5.5 Scalability

The number of sensors is increased to 10,000 now. As shown in figures (2.20)

and (2.21), the inverse algorithm was able to detect the profile successfully,

thereby indicating the scalability of the algorithm. Also, the noise level for figure

(2.21) is reduced by an order of magnitude resulting in a better reconstruction.
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Figure 2.20. Scalability: 10,000 sensors, ωmax = 50 . Noise is a uniform random

number between [0,.1]. ||error||2 = 0.0395, ||error||∞ = 0.178. The solid line

corresponds to the reconstructed profile and the area plot corresponds to the

original profile.
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Figure 2.21. Scalability: 10,000 sensors, ωmax = 50 . Noise is a uniform random

number between [0,.01], ||error||2 = 0.0101, ||error||∞ = 0.0497. The solid line

corresponds to the reconstructed profile and the area plot corresponds to the

original profile.
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2.5.6 Non-smooth profiles

Although for most practical cases, the sensed profile will be smooth, we would

like to see if the inverse algorithm is able to reconstruct non-smooth profiles. We

used the function

q(xi) = |0.5(sin(2kπxi))
.25|

which has infinite derivative (and hence not piecewise smooth) for finite values

of x. The parameter k controls the number of lobes. As shown in figure (2.22),
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Figure 2.22. Piecewise non-smooth: q(xi) = |0.5(sin(4πxi))
.25|, 1,000 Sensors,

ωmax = 100 . Noise is a uniform random number between [0,.1]. ||error||2 =

.1643, ||error||∞ = .3629. The solid line corresponds to the reconstructed profile

and the area plot corresponds to the original profile.

Chen-Rokhlin algorithm is able to detect the shape of the potential along with

number of lobes.
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2.6 Comments on the Results

Using a continuous inverse scattering algorithm, it was possible to recover

the unknown field values at discrete locations. The simulation results indicate a

stable recovery of different profiles and a high degree of scalability. The algorithm

is stable in the sense that the error does not blow up either due to increasing the

number of sensors or due to noise in the network.

There are certain issues with this approach, which are listed below:

• The finite difference scheme is not a good approximation at higher fre-

quencies. Equation (2.24) suggests that the p+(0, ω) − p−(0, ω), which is

proportional to the inverse of the current, I1(ω), apart from the dc term,

decays like 1
ω
. But in chapter 3 it will be shown that I1(ω) decays like 1

ω
,

implying that the p+ is not bounded. Figure (2.23) shows the unbounded

nature of the scattered data for high frequencies.

0 50 100 150 200
0

4

8

12

14

Frequency, ω

|p
+
(0

,ω
)|

Figure 2.23. Absolute value of the scattered data vs frequency.

• The plots for the case of smooth field values show a presence of a finite

error between the actual field values and the recovered field values. The
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error does not decrease by taking samples of impedance at higher frequen-

cies as predicted by the inverse scattering algorithm [10]. It is due to the

discrepancy in the two (forward and inverse) models, i.e. (in the forward

model) impedance is calculated using a discrete circuit, while (in the inverse

model) the impedance data is supplied to a continuous inverse scattering

algorithm.

• Since the circuit has been obtained through discretizing the continuous

equations, the values of V , C, and Z cannot be chosen arbitrarily.

• Again, the finite difference discretization puts a lower bound on the number

of sensors. The continuous equations won’t give good results if the number

of sensors are less than this bound. For example, the continuous algorithm

won’t be able to recover the values if there are only hundred sensors on the

field (figure (2.24). The reflection data for the scattering profile shown in
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Figure 2.24. Failure of Chen-Rokhlin algorithm due to small number of sensors.

Blue curve is the actual q(x) and the red curve is the recovered q(x).

figure (2.24) is shown in figure (2.25). Note the highly oscillatory behavior,

which was absent for the cases shown before.

To address the above mentioned issues, in the next chapter, we extend the
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Figure 2.25. Real part of the scattered data for the q(x) shown in figure (2.24).

Chen-Rokhlin algorithm for a discrete setting. We present discrete analogs of the

Riccati equation and the trace formula, along with some simulation results.
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Chapter 3

Discrete Inverse Scattering

Algorithm

In the last chapter, we noted the disconnect between the discrete forward

model and the continuous inverse algorithm. In this chapter, we extend the

Chen-Rokhlin algorithm to discrete domain. We develop analogs of differential

equations to peel the network, and to recover the unknown inductances.

3.1 Problem Setup

The discrete inverse scattering problem is now described for an LC ladder

network shown in the figure (3.1). In the circuit, the inductors Li’s are the

unknowns. Each capacitor takes the known value c0. Negative impedance z, is

also known. The input voltage V (ω) is applied to the circuit, and current I1(ω)

is measured. The problem can be defined as:

Inverse Scattering for the discrete LC ladder network: Given
the admittacne, Y (ω) = I1(ω)

V (ω)
for different ω, obtain L1, L2, ..., LN .
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I1(ω) In(ω)
c0 c0 c0

z

LnL2L1

V (ω) I2(ω)

Figure 3.1. LC Ladder Network

Writing Kirchhoff’s voltage loop (KVL) equations for the first, j-th, and the

last loop, we have

(
1

iωc0
+ iωL1)I1(ω) − 1

iωc0
I2(ω) = V (ω), (3.1)

− 1

iωc0
Ij−1(ω) + (

2

iωc0
+ iωLj)Ij(ω) − 1

iωc0
Ij+1(ω) = 0, (3.2)

− 1

iωc0
IN−1(ω) + (

1

iωc0
− z + iωLN )IN(ω) = 0. (3.3)

Writing the above equations in matrix-vector form

(
1

jωc0

T + jωL + zeneT
n )I(ω) = V (ω)e1, (3.4)
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where,

T =
















1 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 1
















L = diag(L1, L2, · · · , LN)

en =

(

0 0 · · · 0 1

)T

the nth basis vector

Similarly e1 is the first basis vector

I =

(

I1(ω) I2(ω) · · · IN (ω)

)T

V =

(

Vs(ω) 0 · · · 0 0

)T

z < 0

Comparing the above circuit with discrete approximation of the helmholtz

equation, we note the following differences.

• The values of L’s, c0, and z are no longer constrained to be some specific

values.

• In the discrete approximation (chapter 2), z appears at both ends of the

circuit. The outgoing boundary condition implied the presence of this neg-

ative impedance. For the finite LC ladder network, the negative impedance

implies an amplifier, which pumps the energy synchronously, into the sys-

tem from the other end of the network. In the next few sections, we show

that the presence of z, makes the scattered data well behaved for real ω,

and its presence makes the recovery of L’s possible.
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3.2 Characterize forward data

For our experiment, admittance Y1(ω) or the current I1(ω) (with input voltage

constant) constitute forward data. We determine the behaviour of Y1(ω) as a

function of ω and as a function of the inductor values.

3.2.1 Poles of the admittance Y1(ω) of the network

In this section we show that in the domain of operation (ω ∈ R), the admit-

tance is bounded and well defined, i.e. we find some constraints on the poles of

Y1(ω).

Theorem 1. Y1(ω) = I1(ω)
Vs(ω)

has no real poles if z 6= 0.

Proof. Using equation (3.4), the admittance is given as

Y1(ω) = jωc0(T − ω2Lc0 + jωzc0ene
T
n )−1

11 = jωc0
det( ˆT − ω2Lc0 + jωzc0eneT

n )

det(T − ω2Lc0 + jωzc0eneT
n )

where the hat implies the matrix with first row and column removed. Thus, ω

constitute a pole of Y1(ω) if

det(T − ω2Lc0 + jωzc0eneT
n ) = 0

The pole at ω = 0 is canceled by the zero. Let x + jy be in the null space of the

matrix.

(T − ω2Lc0 + jωzc0ene
T
n )(x + jy) = 0 (3.5)

⇒






T − ω2Lc0 −ωzc0ene
T
n

ωzc0eneT
n T − ω2Lc0











x

y




 =






0

0





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Case 1: ω2 6= λi(T )Lc0 From the first block equation we have

x = (T − ω2Lc0)
−1(−ωc0zene

T
ny)

x = (−ωc0ze
T
ny)(T − ω2Lc0)

−1en)

⇒ x = α last column of (T − ω2Lc0)
−1

⇒ x ≈ y ≈ last column of (T − ω2Lc0)
−1

⇒ x + jy ≈ x
︸︷︷︸

real

(α + jβ)

Substituting the above value in equation (3.5),

(T − ω2Lc0 + jωzc0eneT
n )x = 0

⇒ (T − ω2Lc0)x = −jωzc0ene
T
nx

Let ω (the pole frequency) be real.

⇒ (T − ω2Lc0)x ∈ Rn

but − jωzc0ene
T
n )x /∈ Rn

⇒ ω /∈ R

⇒ No real poles.
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Case 2: ω2 = λi(T )Lc0

⇒ (T − ω2Lc0)x = (ωzc0e
T
ny)en

⇒ en ∈ R(T − ω2Lc0)

∴ (T − ω2Lc0)x = 0 ⇒ xT en = 0

⇒ xn = 0

(T − ω2Lc0)
















x1

x2

...

xn−1

0
















= 0

⇒ xn−1 = 0

...

x1 = 0

⇒ x = 0

Thus the only null space possible is the trivial null space, which is not true. Hence

ω2 6= λi(T )Lc0. Thus the poles of the admittance are not real.

Next we prove that the poles are trapped in one of the half planes (lower or

upper) depending on the value of z.

Theorem 2. If z < 0, the poles are trapped in the lower half plane.

Proof. Consider the case where all Ls are the same, i.e. L = lI. As mentioned

earlier, the poles of I1(ω) or the admittance ( I1(ω)
V (ω)

) are given by the zeros of the
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det(T − ω2lc0I + jωc0zeneT
n ), i.e. ω such that

det(T − ω2lc0I + jωc0zeneT
n ) = 0

⇒ det(T − ω2lc0I) det(I + (T − ω2lc0I)−1jωzc0ene
T
n ) = 0

⇒ det(I + (T − ω2lc0I)−1jωzc0ene
T
n ) = 0

(the first determinant is not zero because we consider ω /∈ R and T is a symmetric

matrix with real eigenvalues.)

⇒ (1 + jωzc0e
T
n (T − ω2lc0I)−1en) = 0

⇒ 1 + jωzc0e
T
nQ(Λ − ω2lc0I)−1QHen = 0

⇒ 1 + jωzc0

∑

i

|vni|2
λi − ω2lc0

= 0

For ω = ωR + jωI
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0 = 1 + (jωR − ωI)zc0

∑

i

|vni|2
λi − (ω2

R − ω2
I + j2ωRωI)lc0

0 = 1 + (jωR − ωI)zc0

∑

i

|vni|2(λi − (ω2
R − ω2

I )lc0 + j2ωRωI lc0)

(λi − (ω2
R − ω2

I )lc0)2 + 4ω2
Rω2

I l
2c2

0

(3.6)

Taking real parts

0 = 1 − ωIzc0

∑

i

|vni|2(λi − (ω2
R − ω2

I )lc0)

(λi − (ω2
R − ω2

I )lc0)2 + 4ω2
Rω2

I l
2c2

0

−

ωRzc0

∑

i

|vni|2(2ωRωI lc0)

(λi − (ω2
R − ω2

I)lc0)2 + 4ω2
Rω2

I l
2c2

0

0 = 1 + zc0

∑

i

|vni|2(−ωIλi + ωI(ω
2
R − ω2

I)lc0)

(λi − (ω2
R − ω2

I )lc0)2 + 4ω2
Rω2

I l
2c2

0

+

zc0

∑

i

|vni|2(−2ω2
RωI lc0)

(λi − (ω2
R − ω2

I )lc0)2 + 4ω2
Rω2

I l
2c2

0

0 = 1 + zc0

∑

i

|vni|2(−ωIλi + ωI(ω
2
R − ω2

I )lc0 − 2ω2
RωIlc0)

(λi − (ω2
R − ω2

I )lc0)2 + 4ω2
Rω2

I l
2c2

0

0 = 1 + zc0

∑

i

|vni|2(−ωIλi − ω3
I lc0 − ω2

RωIlc0)

(λi − (ω2
R − ω2

I )lc0)2 + 4ω2
Rω2

I l
2c2

0

0 = 1 + ωIzc0

∑

i

|vni|2(−λi − (ω2
R + ω2

I)lc0)

(λi − (ω2
R − ω2

I )lc0)2 + 4l2c2
0ω

2
Rω2

I

(3.7)

From equation(3.7), zωI > 0 (because each term inside the summation is nega-

tive). Thus

• If z < 0, poles are in the lower half plane

• If z > 0, poles are in the upper half plane

Thus, for L = lI, and z < 0, poles are trapped in the lower half plane. The

previous theorem guarantees non-real poles if z is present. Now, if we vary L

continuously, the poles have to cross the real line to move to the upper half

plane. And since real poles are not allowed, the poles for the network are all

trapped in the lower half plane.
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3.2.2 Sensitivity of Y1(ω) with respect to k’th inductor Lk

Rewriting the expression for Y1(ω), we have

Y1(ω) = jωc0
det( ̂T − ω2Lc0 + jωzc0eneT

n )

det(T − ω2Lc0 + jωzc0eneT
n )

,

which can be simplified and written using continued fractions:

Y1(ω) =
jωc0

1 − ω2c0L1 − 1
2−ω2c0L2− 1

...2−ω2c0Lk−

1

...
−

1

1−ω2c0Ln+jωc0z

Y1(ω) =
jωc0

D1

where D1 = 1 − ω2c0L1 −
1

D2

where D2 = 2 − ω2c0L2 −
1

D3

...

where Dk = 2 − ω2c0Lk −
1

Dk+1
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Now if we denote derivative w.r.t Lk using prime, then ∂Y
∂Lk

is given as

Y ′ = −jωc0
D′

1

D2
1

D′
1 =

D′
2

D2
2

D′
2 =

D′
3

D2
3

...

D′
k−1 =

D′
k

D2
k

D′
k = −ω2c0

∴ D′
k−1 =

−ω2c0

D2
k

∴ D′
k−2 =

−ω2c0

D2
kD

2
k−1

...

∂Y

∂Lk

=
ω3c2

0
∏k

m=1 D2
m

(3.8)

where
k∏

m=1

D2
m is O(ω2k)

Result (3.8) can be interpreted as

• If Lk = l for all k’s and if one of the l is changed, then the change can be

“observed” in the low frequency region of the admittance.

Alternately for sensititvity we can ask the following question: Given that I am

solving Ax = αe1, and now I modify the (k, k) entry of the coefficient matrix

by δ i.e. solve (A + δeke
T
k )y = αe1. How different is y1 from x1? Here A =
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(T − ω2lc0I + jωzc0eneT
n ), x is the current vector, α = jωc0V (ω), and δ = ω2l̂c0.

(A + δeke
T
k )y = αe1

⇒ (I + δA−1eke
T
k )y = x

⇒ y + (δyk)(A
−1)∗k = x

⇒ y1 + (δyk)(A
−1)1k = x1 (3.9)

and yk + (δyk)(A
−1)kk = xk

⇒ yk =
xk

1 + δ(A−1)kk

Substituting the above equation in (3.9)

⇒ y1 +
δxk

1 + δ(A−1)kk

(A−1)1k = x1

⇒ x1 − y1 =
δxk(A

−1)1k

1 + δ(A−1)kk

(3.10)

Substituting the value of δ in equation (3.10), we have

x1 − y1 =
ω2l̂c0xk(A

−1)1k

1 + ω2l̂c0(A−1)kk

(3.11)

Equation (3.11) suggests that slight change in one of the inductance, will cause the

current to change, implying that the new value of the inductor can be recovered

from the observed data. Figure(3.2) shows the ℜ(I1(ω)) as a function of frequency.

All inductors took the value one. Now L5 was changed to 2 and the current plotted

in figure (3.3). Note the change in the values of the two currents.

3.3 Explicit expression for current

Rewriting equation (3.4) we have

(T − ω2c0L
︸ ︷︷ ︸

A

+j ωc0zeneT
n

︸ ︷︷ ︸

B

)I(ω) = j ωc0V (ω)e1
︸ ︷︷ ︸

b

(3.12)
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Figure 3.2. ℜ(I1(ω)) vs frequency: N = 21, Lk = 1, ∀k.
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Figure 3.3. ℜ(I1(ω)) vs frequency: N = 21, Lk = 1, ∀k 6= 5, L5 = 2
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Let the complex current be given as I(ω) = x + jy. Then the current can be

obtained by solving






A −B

B A











x

y




 =






0

b






The first block equation gives

Ax = By = ωc0zynen

Assuming A−1 exist, we have

x = (ωc0z)yn(A−1)∗n

The second block equation gives

Bx + Ay = b

⇒ Ay = (ωc0)e1 − (ωc0z)2yn(A
−1)nnen

⇒ y = (ωc0)(A
−1)∗1 − (ωc0z)2yn(A−1)nn(A−1)∗n

⇒ yn = (ωc0)(A
−1)n1 − (ωc0z)2yn(A

−1)2
nn

⇒ yn =
(ωc0)(A

−1)n1

1 + (ωc0z)2(A−1)2
nn

⇒ y1 = ωc0(A
−1)nn − (ωc0z)2ωc0(A

−1)n1(A
−1)1n(A−1)nn

1 + (ωc0z)2(A−1)2
nn

and

x1 =
(ωc0z)ωc0(A

−1)n1(A
−1)1n

1 + (ωc0z)2(A−1)2
nn

(3.13)

Some observations:

• The real part of current, x1 (if A−1 exist) cannot have real poles, since the

denominator is always greater than 1. Also, (A−1)n1 (= (A−1)1n) have the
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asymptotics of O(ω−2N). Thus the real part of the current, which is used

to recover L1, decays rapidly.

• Figure (3.4) shows the real part of the current in the first loop. The pole

like behavior that we observe is due to “large” values of (A−1)n1 e.g. in one

particular class of L (continuous and slowly varying), (A−1)n1 ≈ 40 while

(A−1)nn < 1 and making the real part of current in the vicinity of 1000.

0 1 2 3 4 5 6 7 8
−3000

−2500
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−1500
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−500
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1(ω
))

Figure 3.4. ℜ(I1(ω)) vs frequency.

• It seems that making z large in magnitude might mitigate the effect of small

(A−1)nn, but what it does is suppress the pole location by some amount,

but increases the magnitude of current at other frequency locations.

• Looking at the complete expression, we have that the imaginary part of the

current has the asymptotics of O(ω−1), which is used to recover L.

• For the case when A−1 doesn’t exist, we don’t have an explicit expression

for the current. But the asymptotics still hold true.
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3.4 Discrete algorithm

The inverse algorithm consists of the following steps:

1. Measure data Y1(ω) and obtain the inductor in the first loop, L1, figure

(3.5).

I1(ω) In(ω)
c0 c0 c0

z

LnL2L1

V (ω) I2(ω)

Y1(ω)

Figure 3.5. Obtain scattered data, Y1(ω)

2. Using L1 and Y1(ω), “peel” the network, i.e. obtain Y2(ω) for the circuit

consisting of n-1 inductors L2 to Ln.

Y2(ω)

In(ω)
c0 c0

z

LnL2

I2(ω)I1(ω)

L1

c0

Y1(ω)

V (ω)

Figure 3.6. Peel the network to obtain Y2(ω)

3. Repeat step 1 with the new admittance Y2(ω).

59



3.4.1 Obtain L1 from Y1(ω)

Rewriting the admittance,

Y1(ω) =
jωc0

2 − ω2c0L1 − 1
2−ω2c0L2− 1

...2−ω2c0Lk−

1

...
−

1

1−ω2c0Ln+jωc0z

(3.14)

Next we find Ai’s such that

Y1(ω) = A0 +
A1

jω
+ O(ω−2)

where A0 and A1 are the unknowns independent of ω and are to be determined

from equation (3.14). The Ai’s are found using high frequency approximation:

A0 = lim
ω→∞

Y1(ω) = 0

A1 = lim
ω→∞

jωY1(ω) =
1

L1

Y1(ω) =
1

jωL1

+ O(ω−2) (3.15)

Since there are no poles on the upper half plane, integration of Y1(ω) along a

closed contour indicated in the figure (3.7) yields 0.

ℜ(ω)
−R 0

Γ

ℑ(ω)

R

Figure 3.7. contour integration
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∮

Y1(ω)dω = 0

Let Γ denote the curve (with clockwise orientation) in the upper half plane. Then

the contour integral yields
∫ R

−R

Y1(ω)dω =

∫

Γ

Y1(ω)dω (3.16)

Integrating equation(3.15) along the curve

∫

Γ

Y1(ω)dω =

∫

Γ

1

jωL1
dω

Let Rejθ = ω

⇒ jRejθdθ = dω

⇒ jωdθ = dω

⇒ dθ =
dω

jω

ω = −R ⇒ θ = π

ω = R ⇒ θ = 0

∴

∫

Γ

Y1(ω)dω =

∫ 0

π

1

L1

dθ

=
−π

L1
(3.17)

Hence using equations (3.16) and (3.17) we have

L1 =
−π

∫ R

−R
Y1(ω)dω

(3.18)

3.4.2 Layer Peeling

There are different ways to “peel” the layer i.e. given I1, L1, and Vs, we need

to find, I2 and V2 which shall be used to find L2 and so on.

1. Peel for I’s and V ’s separately and then form admittance.

2. Peel directly for admittance Y .
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Peeling using I’s and V ’s

c0

V2V1

I1
I2

L1 L2

Figure 3.8. Layer Peeling using I’s and V ’s

The figure (3.8) shows two immediate layers. V1 is the supplied voltage (hence

known), I1 is the measured current, and L1 is recovered from (3.18). As a next

step, I2 and V2 need to be determined, so that the procedure can be repeated.

Using KVL

V2 = V1 − jωL1I1, (3.19)

and since the right hand side is completely known, V2 is now known. To get I2,

we rewrite V2 as the voltage accross the capacitor.

V2 = (I2 − I1)
1

jωc0

⇒ I2 = I1 + jωC0V2. (3.20)

Equations (3.18), (3.19), and (3.20) with Y2(ω) = I2(ω)
V2(ω)

constitute a recursive

procedure to determine the L’s. Note that V2 can now be treated as the new

known source voltage, I2 as the new measured current and the new network is

now the old network with the first section removed. Hence the proof for poles

carry on for the new system.
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Layer peeling using Y

Y2

L1 L2

c0

Y1

Figure 3.9. Layer Peeling using Y

Suppose instead of measuring the current separately, we measure the admit-

tance of the network Y1 (old admittance of the network shown in figure (3.9)).

Again L1 can be calculated using equation (3.18). Using standard circuit theory

concepts, the old admittance can be written as

Y1 =
1

jωL1

||(Y2 + jωc0)

where || means a parallel combination

Y1 =
Y2 + jωc0

jωL1

1
1

jωL1
+ (Y2 + jωc0)

=
Y2 + jωc0

1 − ω2L1c0 + jωL1Y2

⇒ Y2 + jωc0 = Y1(1 − ω2L1c0) + jωL1Y1Y2

⇒ Y2(jωL1Y1 − 1) = jωc0 + Y1(ω
2L1c0 − 1)

⇒ Y2 =
jωc0 + Y1(ω

2L1c0 − 1)

jωL1Y1 − 1
(3.21)

The right hand side of equation (3.21) is known and hence the admittance of

the new network is now known. Equation (3.21) coupled with equation (3.18)

constitute the inverse algorithm.
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3.4.3 Stability of the Algorithm

Here it is shown how errors in measurement of current, and errors in recon-

struction, are amplified and propagated due to layer peeling. This is also provides

a range of frequency for which the data is usable.

Stability and experimental errors

Instead of measuring the true current I1(ω), we measure Î1(ω) = I1(ω) + δe
I .

∴ V̂2(ω) = V1 − jωL1Î1(ω)

= V1 − jωL1(I1(ω) + δe
I)

= V1 − jωL1I1(ω) − jωL1δ
e
I

= V2 − jωL1δ
e
I

︸ ︷︷ ︸

δV

(3.22)

Similarly

Î2 = Î1 − jωc0V̂2

= I1 + δe
I − jωc0V̂2 − ω2L1c0δ

e
I

= I2 + (1 − ω2L1c0)δ
e
I

︸ ︷︷ ︸

δI2

(3.23)

Equations (3.22) and (3.23) suggest that the errors blow up as O(ω2) for high

frequencies and data for those frequencies are unusable.
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Stability and reconstruction error

An error δL is made in reconstructing the inductor value so that L̂1 = L1 +δL.

∴ V̂2 = V1 − jωL̂1I1

= V1 − jω(L1 + δL)I1

= V2 − jωδLI1
︸ ︷︷ ︸

δr
V

(3.24)

Similarly

Î2 = I1 − jωc0V̂2

= I1 − jωc0V2 − ω2c0δLI1

= I2 − ω2c0δLI1
︸ ︷︷ ︸

δr
I2

. (3.25)

Since I1(ω) is of O(ω−1), the error in the voltage grows as O(1) (equation(3.24)),

whereas the error in the current blows up as O(ω) (equation(3.25)).

Stability and reconstruction error with Y1(ω)

Rewriting equation (3.21)

Ŷ2 =
jωc0 + Y1(ω

2L̂1c0 − 1)

jωL̂1Y1 − 1

where L̂1 = L1 + ∆L1 reprents error in reconstructing L1.

∴ Ŷ2 =
jωc0 + Y1(ω

2L1c0 + ω2∆L1c0 − 1)

jωL1Y1 − 1 + jω∆L1Y1

=
jωc0 + Y1(ω

2L1c0 − 1) + Y1ω
2∆L1c0

(jωL1Y1 − 1) + jω∆L1Y1

=
jωc0 + Y1(ω

2L1c0 − 1)

(jωL1Y1 − 1) + jω∆L1Y1
+

Y1ω
2∆L1c0

(jωL1Y1 − 1) + jω∆L1Y1
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Substituting the expression for Y1 from equation (3.14) we have

Ŷ2 =
jωc0 +

(
jωc0

1−ω2L1c0−D−1

2

)

(ω2(L1 + ∆L1)c0 − 1)

jω(L1 + ∆L1)
(

jωc0

1−ω2L1c0−D−1

2

)

− 1

=
jωc0(1 − ω2L1c0) − jωc0D

−1
2 + jωc0(ω

2(L1 + ∆L1)c0 − 1)

−ω2(L1 + ∆L1)c0 − (1 − ω2L1c0 − D−1
2 )

=
−jωc0D

−1
2 + jωc0(ω

2(∆L1)c0)

−ω2(∆L1)c0 − 1 + D−1
2

=
−jωc0D

−1
2

−ω2(∆L1)c0 − 1 + D−1
2

︸ ︷︷ ︸

A

+
jωc0(ω

2(∆L1)c0)

−ω2(∆L1)c0 − 1 + D−1
2

︸ ︷︷ ︸

B

where D2 = 2 − ω2L2c0 − 1
D3

.

A =
−jωc0D

−1
2

−ω2(∆L1)c0 − 1 + D−1
2

=
jωc0

(2 − ω2L2c0 − D−1
3 ) + ω2∆L1c0D2 − 1

=
jωc0

(1 − ω2L2c0 − D−1
3 )(1 + ω2∆L1c0D2

(1−ω2L2c0−D−1

3
)
)

=
Y2

1 + ω2∆L1c0D2

(1−ω2L2c0−D−1

3
)

=
Y2

1 − ∆L1jωc0D2Y2

Hence for small ω, A becomes

A ≈ Y2 (1 + jω∆L1Y2D2)

For large ω

A ≈ −1

jωD2∆L1

Similarly B is given by

B =
jωc0(ω

2∆L1c0)

−ω2(∆L1)c0 − 1 + D−1
2

Hence for large ω, we have

B ≈ −jωc0(ω
2∆L1c0)

1 + ω2(∆L1)c0

≈ −jωc0
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While for small ω, we have

B =
−jωc0(ω

2∆L1c0D2)

ω2(∆L1)c0D2 + D2 − 1

=
−jωc0(ω

2∆L1c0D2)

1 − ω2L2c0 − D−1
3 + ω2(∆L1)c0D2

=
−jωc0(ω

2∆L1c0D2)

(1 − ω2L2c0 − D−1
3 )
(

1 + ω2(∆L1)c0D2

(1−ω2L2c0−D−1

3
)

)

=
−ω2c0D2Y2∆L1

1 − jωY2D2∆L1

≈ −ω2∆L1c0D2Y2

for large ω

∴ Ŷ2 =
−1

jωD2∆L1
− jωc0 (3.26)

for small ω

Ŷ2 = Y2 + jω∆L1Y
2
2 D2 − ω2c0D2Y2∆L1 (3.27)

This seems to suggest that the error in imaginary part of Y grows like O(ω).

3.5 Signal to Noise Ratio

To model noise, a resistor is connected in series with the inductor. Here we

define some notion of Signal to Noise ratio (SNR) as a function of resistor value.

In the case of one section, we define the admittance without resistance as

Y (ω) =
1

jωL + 1
jωc0

,
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and that with resistance as

Ŷ (ω) =
1

jωL + R + 1
jωc0

=
1

(

jωL + 1
jωc0

)(

1 + R 1
“

jωL+ 1

jωc0

”

)

=
Y

1 + RY

= Y (1 − RY + R2Y 2 − · · · )

= Y − RY 2 + R2Y 3 − · · ·

= Y + N
︸︷︷︸

noise

N = −RY 2 + R2Y 3 − · · ·

= −RY 2(1 − RY + R2Y 2 − · · · )

N(ω) =
−RY 2

1 + RY
(3.28)

Hence the SNR can be defined as

SNR =
Y (ω)

N(ω)

= −1 + RY

RY

SNR = −
(

1 +
1

RY

)

(3.29)

Thus with no noise, R → 0 and hence the SNR → ∞, while with large noise i.e.

R → ∞, SNR → 1, meaning the signal cannot be distinguished from noise.

Similarly we define the SNR for the case when there is a ladder network with
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more than one inductor.

(T − ω2c0L + jωzc0eneT
n + jωc0R)Î(ω) = V (ω)e1

(I + (T − ω2c0L + jωzc0eneT
n )−1jωc0R)Î(ω) = I(ω)

⇒ (I + (T − ω2c0L + jωzc0ene
T
n )−1jωc0R)−1I(ω) = Î(ω)

⇒ (I − (T − ω2c0L + jωzc0eneT
n )−1jωc0R)I(ω) ≈ Î(ω)

⇒ I(ω) − (T − ω2c0L + jωzc0eneT
n )−1jωc0RI(ω)

︸ ︷︷ ︸

noise

= Î(ω)

∴ N(ω) = (T − ω2c0L + jωzc0eneT
n )−1jωc0RI(ω) (3.30)

Note that all the currents come into play

∴ ||N(ω)|| = ||(T − ω2c0L + jωzc0eneT
n )−1jωc0RI(ω)||

≤ ||(T − ω2c0L + jωzc0eneT
n )−1jωc0R||||I(ω)||

⇒ ||N(ω)||
||I(ω)|| ≤ |ωc0|||(T − ω2c0L + jωzc0eneT

n )−1R||

≤ |ωc0|||(T − ω2c0L + jωzc0eneT
n )−1||||R||

⇒ ||I(ω)||
||N(ω)|| ≥ 1

|ωc0|||(T − ω2c0L + jωzc0eneT
n )−1||Rmax

=
σmin

|ωc0|Rmax

where σmin = min σ(T − ω2c0L + jωzc0ene
T
n )

The above equation gives a feel for the SNR, whenever there are resistance present

in the circuit.

3.6 Implementation Details

All the simulations are carried out in MATLAB [21]. The whole process can

be broken down into two parts:
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1. Forward problem: Given the parameters inductance vector, L, capacitance,

c0, negative impedance, z, we solve the linear system of equations (3.4), to

obtain the admittance Y1(ω), for different frequencies, ωk.

2. Inverse problem: The inverse problem can be divided into two parts:

• Numerical integration to evaluate L1 (equation (3.18)).

• Evaluate Y2(ω) using the layer peeling equation (3.21).

The layer peeling equation is straight forward to implement. For the nu-

merical integration, we use an adaptive quadrature rule. Say we wish to

integrate from [a, b].

• First we evaluate the integral, Q, using Nmax points in the interval

[a, b].

• Next we evaluate the integral Ql in the region [a, c], and Qr in the

region [c, b], where c is the midpoint of [a, b]. Nmax points are used in

each of the intervals.

• If |Q− (Ql + Qr)| is less than some prescribed tolerance, we stop, else

we go back to the first step with two intervals now, i.e. we repeat the

procedure for [a, c] and [c, b].

The integral for each region is evaluated using trapezoidal rule. A thing

to note is that due to the nature of the admittacne function, MATLAB’s

adaptive Gauss-Lobatto quadrature rule [24] didn’t converge to the right

answer.
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3.7 Results

In this section the performance of the inverse algorithm is demonstrated for

different profiles for L. The scattered data, Y1(ω) is shown for each different

profile. The admittance shows N peaks, where N is the number of inductors.

And as pointed in equation (3.13), the current tends to become rough, as a result

the quadrature rules for the integration don’t perform well. This is one of the

reasons for the poor performance of the algorithm.

3.7.1 Quantized L’s

Here we consider the profile such that

Lk =







5 ∀k 6= N0

6 for some k = N0

The admittance is shown in figure (3.10). In this case, after each integration, a

hard decoding decision is made. If the value of the integral suggest Lk less than

5.5, then Lk is set to 5, else it is set to 6. All the values of L were recovered

successfully.

Now instead of only one inductor of different value, a bunch of inductors take

the value 6. The inductor profile is shown in figure(3.11), and the corresponding

admittance profile is shown in figure(3.12). Again, all the L’s were recovered

successfully

Next we take a continuous function and quantize it to two levels. The inductor

profile is shown in figure (3.13). Except for the last inductor, all the inductors

were recovered correctly. For this case, adaptive quadrature rule was used.
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Figure 3.10. ℜ(Y1(ω)) vs frequency: N = 100, Lk = 5, ∀k 6= 70,L70 = 6
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Figure 3.11. Inductor profile
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Figure 3.12. ℜ(Y1(ω)) vs frequency for inductor profile shown in figure(3.11)
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Figure 3.13. Inductor profile
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3.7.2 Continuous L

Here we sample a continuous function to obtain the values of L.

Lk = 1 + q(xk)

where q(xk) = .01 sin3(πxk)

and xk are equidistant samples in [0, 1]

The admittance profile is shown in figure (3.14). The recovered profile is shown
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−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6
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Figure 3.14. ℜ(Y1(ω)) vs frequency: N = 100,Lk = .01 sin3(πxk)

in figure (3.15). Although the errors towards the later part are huge, there is

no exponential blow-up as in the existing algorithms in the literature [8]. The

zoomed version of the recovered profile is shown in figure (3.16).
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Figure 3.15. Recovered q(x) (in red): ||q − q̂||2 = .2448, ||q − q̂||∞ = .2440
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Figure 3.16. Recovered q(x) (in red) is zoomed for the first 50 sensors:||q− q̂||2 =

8.7225e − 004 , ||q − q̂||∞ = 2.9103e − 004
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3.7.3 Error in Recovering the last inductor, Ln

In most of the experiments, the last inductor Ln, is never recovered faithfully.

This happens because the admittance for just one loop does not decay as fast as

it does for the other admittances. Figure (3.17) shows the circuit when the last

loop has been reached.

Yn(ω)

z=-10

Ln = 1

In(ω)

Figure 3.17. Circuit corresponding to the last loop.

Figure (3.18) shows the actual admittance profile, Y (ω), for the circuit shown

in figure (3.17). Note that even for the bandwidth as high as 50, the admittance
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−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

Frequency, ω

ℜ
(Y

n(ω
))

Figure 3.18. Admittance Y (ω) for the last loop.

has not decayed completely, resulting in a finite error in computing the integral.

There are a couple of ways to remedy the situation:
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1. Since Ln corresponds to the boundary inductor at the other end, we can

assume it is known as a part of the boundary condition.

2. We can conduct a similar set of experiments from the other side, and recover

Ln faithfully.

3.7.4 Three section analysis

In this section we analyze the LC ladder circuit with three sections. The

inductance vector is given as

L = [1, 0.9990, 1]

• Let Y1 represent the admittance function of the three section network.

• Let Y2 represent the admittance function of the two section network, with

L = [0.9990, 1].

• A rational function expression for Y2 is evaluated, and poles found using

MATLAB’s root function. The poles are

p1 = 0.0000 − 9.0121i

p2 = 3.2959 − 0.4939i

p3 = −3.2959 − 0.4939i

• Let Ŷ2 represent the admittance function for two section LC ladder net-

works, obtained after peeling Y1 using inexact values L1. Here the erro-

neous L1 is given by L̂1 = L1 + δ, where δ = 10−7. A rational function for
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Ŷ2 is found and the poles calculated.

p1 = −3.6380e − 012 − 1.0000e + 004i

p2 = −3.2401e − 012 + 1.0000e + 004i

p3 = 0.0000 − 9.0121i

p4 = 3.2960 − 0.4939i

p5 = −3.2960 − 0.4939i

A pole, p2 thus moves to the upper half plane, which makes the integration

formula erroneous. The recovered L’s are

L̂ = [1.0000, 0.9992, 1.6560]

Figures (3.19), and (3.20) represents the errors (due to peeling formula) in

real and imaginary part of Y 2, respectively. This is the case when peeling is done

using exact values of L’s.

Figures (3.21), and (3.22) represents the errors (due to peeling formula) in

real and imaginary part of Y 2, respectively. This is the case when peeling is done

using inexact values of L’s.

Thus the sources of errors are:

1. The movement of poles in the upper half plane.

2. The O(ω) error in the imaginary part, for each stage of layer peeling (equa-

tion 3.27). To begin with, the real part of Y (ω) is of O(ω−(4n−2)), but as

the peeling progresses, it gets multiplied by the error in the imaginary part.

This seems to affect the recovery formula around the half way mark. The

error in peeling around the half way mark is apparent for the ten section

network.
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Figure 3.19. Error in ℜ(Y (ω)), when exact peeling formula is used. This error is

calculated for Y2, i.e. when we have peeled the first section.
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Figure 3.20. Error in ℑ(Y (ω)), when exact peeling formula is used. This error is

calculated for Y2, i.e. when we have peeled the first section.
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Figure 3.21. Error in ℜ(Y (ω)), when inexact peeling formula is used. This error

is calculated for Y2, i.e. when we have peeled the first section.
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Figure 3.22. Error in ℑ(Y (ω)), when inexact peeling formula is used. This error

is calculated for Y2, i.e. when we have peeled the first section.
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3.7.5 Ten section results

In this section, results for an LC ladder network with 10 L’s is shown. The

L’s are chosen using a random walk, with step size of .001, i.e.

Lk = Lk−1 ± .001

L1 = 1

The inverse algorithm does not know about the specific nature of L’s. Figure

(3.23) shows a plot of the logarithm of the error. The error is calculated by first

calculating vector q as

qk = Lk − Lk−1, and q0 = 0

and similarly q̂ is calculated using recovered values of L.

q̂k = L̂k − L̂k−1, and q0 = L̂0

and the error is

e = log10|q − q̂|

Figures (3.24), and (3.25) represents the errors (due to peeling formula) in

real and imaginary part of Y 4, respectively. This is the case when peeling is done

using exact values of L’s.

Figures (3.26), and (3.27) represents the errors (due to peeling formula) in

real and imaginary part of Y 4, respectively. This is the case when peeling is done

using inexact values of L’s.

Figures (3.28), and (3.29) represents the errors (due to peeling formula) in

real and imaginary part of Y 5, respectively. This is the case when peeling is done

using exact values of L’s.
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Figure 3.23. log10|q − q̂| vs k: N = 10 , and L’s are given by random walk
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Figure 3.24. Error in ℜ(Y (ω)), when exact peeling formula is used. This error is

calculated for Y4, i.e. when we have peeled three sections off.
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Figure 3.25. Error in ℑ(Y (ω)), when exact peeling formula is used. This error is

calculated for Y4, i.e. when we have peeled three sections off.

Figures (3.30), and (3.31) represents the errors (due to peeling formula) in

real and imaginary part of Y 5, respectively. This is the case when peeling is done

using inexact values of L’s.

Figures (3.32), and (3.33) represents the errors (due to peeling formula) in

real and imaginary part of Y 6, respectively. This is the case when peeling is done

using exact values of L’s.

Figures (3.34), and (3.35) represents the errors (due to peeling formula) in

real and imaginary part of Y 6, respectively. This is the case when peeling is done

using inexact values of L’s.

We can see from the above plots that the error at the half way mark is a

result of the peeling formula.
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Figure 3.26. Error in ℜ(Y (ω)), when inexact peeling formula is used. This error

is calculated for Y4, i.e. when we have peeled three sections off.
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Figure 3.27. Error in ℑ(Y (ω)), when inexact peeling formula is used. This error

is calculated for Y4, i.e. when we have peeled three sections off.
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Figure 3.28. Error in ℜ(Y (ω)), when exact peeling formula is used. This error is

calculated for Y5, i.e. when we have peeled four sections off.
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Figure 3.29. Error in ℑ(Y (ω)), when exact peeling formula is used. This error is

calculated for Y5, i.e. when we have peeled four sections off.
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Figure 3.30. Error in ℜ(Y (ω)), when inexact peeling formula is used. This error

is calculated for Y5, i.e. when we have peeled four sections off.
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Figure 3.31. Error in ℑ(Y (ω)), when inexact peeling formula is used. This error

is calculated for Y5, i.e. when we have peeled four sections off.
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Figure 3.32. Error in ℜ(Y (ω)), when exact peeling formula is used. This error is

calculated for Y6, i.e. when we have peeled five sections off.
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Figure 3.33. Error in ℑ(Y (ω)), when exact peeling formula is used. This error is

calculated for Y6, i.e. when we have peeled five sections off.
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Figure 3.34. Error in ℜ(Y (ω)), when inexact peeling formula is used. This error

is calculated for Y6, i.e. when we have peeled five sections off.
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Figure 3.35. Error in ℑ(Y (ω)), when inexact peeling formula is used. This error

is calculated for Y6, i.e. when we have peeled five sections off.
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3.8 Comments

• An extension of Chen-Rokhlin algorithm in the discrete domain is provided.

This analysis helps in actual implementation of the stable inverse scattering

algorithm.

• Of all the results, the one with quantized values of L seem to work the best.

In part this is because we use the extra information while decoding. This

suggests a need for an extra piece of information to control the error.

• Recovery after the half way mark is always in error. One way to remedy

the situation would be to conduct experiments from the other end, and peel

the network from the right.

• Although, the poles are proven to be non-real, the impedance profile is

rough for non-constant L’s. This causes problems with the integration

using quadrature formula. Also, errors in reconstruction, causes the poles

to move in the upper half plane.
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Chapter 4

Other Approaches

In this chapter, we consider two different approaches:

• It is shown that the LC ladder network synthesis using admittance function,

is equivalent to generating a symmetric tridiagonal matrix with non-zero

upper diagonal, from its eigenvalues and the eigenvalues of the matrix with

first row and column removed.

• Inverse Scattering algorithm developed by Sylvester et. al.. The problem

setup is different from the Chen-Rokhlin (CR) algorithm. The problem is

defined on a semi infinite line, i.e. unlike CR algorithm, they don’t need

infinite sections at both ends. Also, the authors have a single nonlinear

differential equation, which they use to both recover the unknown, and

“peel” the network.
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4.1 LC ladder network and inverse spectral prob-

lem

We redefine the circuit synthesis problem. Figure 4.1 shows an LC ladder

network. Here L’s are the unknown inductance value to be determined. c0 is

the known capacitance, V (ω) is a known source voltage, Ik(ω) is the current in

the k-th loop, and Y1(ω) is the input admittance. Once again the problem is to

I1(ω) In(ω)
c0 c0 c0

z

LnL2L1

V (ω) I2(ω)

Figure 4.1. LC Ladder Network

observe Y1(ω) at different frequencies ω and determine the unknown L’s. The

only difference between this problem and the circuit synthesis problem considered

in the previous chapter, is the absence of the negative impedance, z. Writing the

Kirchhoff’s voltage equation for each loop (as done in chapter 3), we get the

matrix vector equation:

(T − ω2Lc0)I(ω) = jωc0V̂ (ω)e1 (4.1)

where T is the known symmetric tridiagonal matrix, I(ω) is the loop current

vector, V is the source voltage, c0 is the known capacitance and L is the diag-

onal matrix with the unknown inductance values (Refer chapter 3 for the exact

structure of the matrix). The goal of this section is to covert the above problem

to a spectral problem:

(A − sI)x(s) = y(s)e1 (4.2)
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where A is the symmetric tridiagonal matrix with unknown entries. Given

the equation for currents in loops,

(T − ω2Lc0)Î(ω) = jωc0V̂ (ω)e1

(
1

c0
L

1

2 TL
1

2 − ω2I)(L
1

2 Î(ω)) = jωc0V̂ (ω)L
1

2 e1

(A − ω2I)x = ye1

The matrix A containing the unknowns is given by

A =
















L1 −
√

L1L2

−
√

L1L2 2L2 −
√

L2L3

. . .
. . .

. . .

−√
LN−1LN

−√
LN−1LN LN
















(4.3)

And the admittance function is given by

(A − ω2I)−1
11 =

x1

y
=

L
1

2

1 Î1(ω)

jωc0V̂ (ω)L
1

2

1

∴
Î1(ω)

V̂ (ω)
= jωc0(A − ω2I)−1

11

⇒ Î1(ω)

V̂ (ω)
= jωc0

det ̂(A − ω2I)

det(A − ω2I)

where ̂(A − ω2I) is the matrix (A−ω2I) with first row and column removed. The

poles and zeros of the admittance function are basically the eigenvalues of A and

Â respectively. Hence, the inverse spectral problem can be stated as:

Inverse Spectral Problem: Observe the poles and zeros of the ad-
mittance profile, and obtain the values of Lk’s from these observations.
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4.1.1 Existence of unique poles and zeros of the admit-

tance function

If a pole or zero is repeated, one cannot recover that information by simply

measuring them, and hence cannot generate the matrix. In this section we prove

that poles and zeros of the admittance function arising due to matrix A in (4.3),

are indeed unique [9].

Since eigenvalues of A correspond to the poles of the admittance function, we

show that the matrix A has unique eigenvalues. Symmetric tridiagonal matrix

with non-zero sub diagonals is also known as Jacobi matrix. Given A

A =
















a1 b1

b1 a2 b2

. . .
. . .

. . .

bn−2 an−1 bn−1

bn−1 an
















,

we can find a sequence of polynomials {φi(λ)}n
i=1 such that
















a1 − λ b1

b1 a2 − λ b2

. . .
. . .

. . .

bn−2 an−1 − λ bn−1

bn−1 an − λ































φ1(λ)

φ2(λ)

...

φn−1(λ)

φn(λ)
















=
















0

0

...

0

p(λ)
















such that φ(λ) = 1. The φi(λ)’s satisfy a recurrence relation

bj−1φj−1(λ) + (aj − λ)φj(λ) + bjφj(λ) = 0 for j = 2, . . . , n − 1

φ0(λ) = 0 and φ1(λ) = 1

99



The characteristic polynomial p(λ) is then given by

bn−1φn−1(λ) + (an − λ)φn(λ) = p(λ) (4.4)

and the roots of p(λ) = 0 form the eigenvalues of the matrix A. Now if A

has a repeated eigenvalue λ, then A − λI has rank deficiency of more than one.

This implies that all (n − 1) principal minors of the matrix are zeros making

φn(λ) = 0. From equation (4.4), φn−1(λ) = 0 and from the recurrence relation

each phij(λ) = 0, leading to a contradiction. Hence, A cannot have a repeated

eigenvalue which means the network has unique poles and zeros.

4.1.2 Circuit Synthesis from poles and zeros of the ad-

mittance

In this section, we show a way to generate the matrix A from its eigenvalues

(poles of admittance), and the eigenvalues of A, with first row and column re-

moved (zeros of admittance). Although the method described here is unstable,

there are stable algorithms for such synthesis [25], [9].

Let An be the Jacobi matrix of order n, and Ai be the left principal sub

matrix of order i, that is a sub matrix obtained by removing first n− i rows and

columns from An. Let

pi(t) = det(t − Ai) for i = 1, . . . , n

then pi(t) is a monic polynomial of degree i. Writing the recurrence relation for

the determinants

pi(t) = (t − ai)pi−1(t) − b2
i−1pi−2(t) for i = 1, . . . n

p1(t) = 0 p0(t) = 1
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Given {λi}n
i=1 and {µi}n

i=1, such that λi < µi < λi+1 for all i, we wish to construct

An such that the recurrence relation holds, and λi and µi correspond to the poles

and zeros of the admittance function, i.e.

det(t − An) = pn =

n∏

j=1

(t − λj) (4.5)

det(t − An−1) = pn−1 =
n−1∏

j=1

(t − µj) (4.6)

1. Given pi and pi−1, find ai so that

q(t) = pi(t) − (t − ai)pi−1(t)

is a polynomial of degree (i − 2).

2. coefficient of ti−2 is −b2
i−2.

3. q(t)

−b2i−2

= pi−2

4. Take pi−1 and pi−2 and go to step 1.

Although the algorithm of generating the matrix from the poles and zeros of

the admittance function, is stable, the method of obtaining poles and zeros is

highly unstable [23]. Hence we tried a method of generating the matrix without

measuring the poles or zeros. The method is described next.

4.2 Matrix synthesis using scattered data

One of the methods we tried was to sample the admittance function at dif-

ferent frequencies (need not be the pole frequencies) and then reconstruct the

admittance function through rational function interpolation. The instabilities
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are inherent in the rational function interpolation algorithm and the “peeling”

formula. To obtain the algorithm, we start with equation (4.2)

(An + sI)x(s) = y(s) (4.7)

where, An =
















an bn

bn an−1 bn−1

. . .
. . .

. . .

b3 a2 b2

b2 a1
















, x(s) =












Xn(s)

Xn−1(s)

...

X1(s)












,

y(s) =












Yn(s)

0

...

0












f(s) =
Yn(s)

Xn(s)
=

1

(A−1)11

=
det(An)

det(An−1)
(4.8)

Objective: Given samples of f(s) at different frequencies, determine the

matrix A.

Rewriting the recursive expression for det(An), we have,

det(An) = (s + an) det(An−1) − (bn)2 det(An−2) (4.9)

where An−1 is the matrix obtained after deleting first row and column of An.

Also, det(A0) = 1 and det(A−1) = 0.

Theorem 3. The determinant of An is given by the following polynomial expres-

sion

det(An) = sn + (

n∑

i=1

ai)s
n−1 + (

n∑

i=2

ai

i−1∑

j=1

aj −
n∑

i=2

b2
i )s

n−2 + · · · (4.10)

102



Proof. We prove the theorem using mathematical induction. For n = 1,

A1 = (s + a1)

det(A1) = s + a1

∴ equation 4.10 is true for n = 1. For n = 2,

A2 =






s + a2 b2

b2 s + a1






det(A2) = (s + a2)(s + a1) − b2
2

= s2 + (a1 + a2)s + a2a1 − b2
2

∴ equation (4.10) is true for n = 2.

Now suppose that the expression is true for n = k and n = k − 1 i.e.

det(Ak) = sk + (

k∑

i=1

ai)s
k−1 + (

k∑

i=2

ai

i−1∑

j=1

aj −
k∑

i=2

b2
i )s

k−2 + · · ·

and

det(Ak−1) = sk−1 + (
k−1∑

i=1

ai)s
k−2 + (

k−1∑

i=2

ai

i−1∑

j=1

aj −
k−1∑

i=2

b2
i )s

n−3 + · · ·
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using equation (4.9) we have

det(Ak+1) = (s + ak+1)

(

sk + (
k∑

i=1

ai)s
k−1 + (

k∑

i=2

ai

i−1∑

j=1

aj −
k∑

i=2

b2
i )s

k−2 + · · ·
)

−

b2
k+1

(

sk−1 + (
k−1∑

i=1

ai)s
k−2 + (

k−1∑

i=2

ai

i−1∑

j=1

aj −
k−1∑

i=2

b2
i )s

n−3 + · · ·
)

= sk+1 +

1
︷ ︸︸ ︷
(

k∑

i=1

ai

)

sk +









2
︷ ︸︸ ︷

k∑

i=2

ai

i−1∑

j=1

aj −

3
︷ ︸︸ ︷

k∑

i=2

b2
i









sk−1 + · · ·+

1
︷ ︸︸ ︷

ak+1s
k +

2
︷ ︸︸ ︷

ak+1

(
k∑

i=1

ai

)

sk−1 + · · · −
3
︷︸︸︷

b2
k+1 sk−1 − · · ·

combining the coefficients of sk in the above equation, we get

det(Ak+1) = sk+1 + (
k+1∑

i=1

ai)s
k + (

k+1∑

i=2

ai

i−1∑

j=1

aj −
k+1∑

i=2

b2
i )s

k−1 + · · ·

So the algorithm can be described as:

1. Given the sampled function f(sk) for different values of k, use rational

function interpolation technique, to generate a rational function such that

f(sk) =
p(sk)

q(sk)
=

p0 + p1sk + p2s
2
k + · · · + pns

n
k

q0 + q1sk + q2s2
k + · · · + qn−1s

n−1
k

=
det(An)

det(An−1)
(4.11)

2. From equations 4.10, and 4.11 we can see that

pn−1 − qn−2 =

n∑

i=1

ai −
n−1∑

i=1

ai = an (4.12)

and

anqn−2 + qn−3 − pn−3 = b2
n (4.13)
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3. Once an and bn are determined we need to update the data f(sk) to remove

their influence and then calculate the other terms. The update formula can

be determined in the following way: Divide equation (4.10) by det(An−1)

to obtain

det(An)

det(An−1)
= (s + an) − b2

n

det(An−2)

det(An−1)

f(s) = (s + an) − b2
n

1

ˆf(s)
(4.14)

where ˆf(s) is the updated function that needs to be determined

From (4.14),

ˆf(s) =
b2
n

s + an − f(s)
(4.15)

4. Go back to step 1, with f(s) = f̂(s).

It turns out that even this method is highly unstable, and only first two entries

were recovered, after which the error exponentially blows up.

Next, we describe an alternative approach to one dimensional inverse scat-

tering problem. Sylvester et. al. proposed this algorithm [11] in 1996, and their

problem setup is different from that considered by Chen-Rokhlin.

4.3 Layer stripping by Sylvester, Winebrenner,

and Gylys-Colwell

Consider the Helmholtz equation on the half line L2(−∞, 0)

d2v

dy2
+ ω2n2(y)v = 0
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with the boundary condition

v ∼ e−iω
R y

0
n(s)ds as y → −∞

Here n(y) is the unknown scatterer to be determined. The authors consider a

class of n(y), where d
dy

1√
n(y)

∈ L2(−∞, 0). Also, n(y) is a constant in the region

y > 0, i.e. n(y) = n0 for y ∈ (0,∞). Therefore, for y > 0, v(y) may be written as

v(y) =
1

T (ω)

(
e−ωn0y + R(ω)e−ωn0y

)

The above equation defines the reflection coefficient R(ω).

Since 1
n(y)

has the units of velocity, perform a change of variables to obtain a

PDE in terms of travel time coordinate

x(y) ,

∫ y

0

n(s)ds

⇒ dx

dy
= n(y)

u(x) = v(y(x))

γ(x) = n(y(x))

α(x) = (γ(x))−1 dγ

dx

= (n)−1dn

dy

dy

dx
= (n)−2dn

dy

Now
dv

dy
=

du

dx

dx

dy

= u′n = u′γ

where prime is derivative w.r.t. x. The Helmholtz equation is now transformed

to

(γu′)′γ + ω2γ2u = 0

⇒ 1

γ
(γu′)′ + ω2u = 0

with u ∼ e−iωx as x → −∞
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Define a reflection coefficient r(x, ω) for any x < 0

r(x, ω) , f

(
u′(x, ω)

−iωu(x, ω)

)

, (4.16)

where f(z) = 1−z
1+z

is the bilinear transform. To obtain the differential equation,

which describes the evolution of reflection data r(x, ω), with “depth” x, differen-

tiate equation (4.16) with respect to x

r′ =
df

dz

dz

dx
df

dz
=

−2

(1 + z)2

dz

dx
=

d

dx

(
u′

−iωu

)

=
u(u′′) − (u′)2

−iω(u)2

=
u(−αu′ − ω2u) − (u′)2

−iω(u)2

=
−αu′

−iωu
− iω +

(u′)2

−iω(u)2

= −αz − iω + iωz2

= iω(z − 1)(z + 1) − αz

∴ r′ = −2iω
z − 1

z + 1
+ 2α

z

(1 + z)2

= 2iωr +
α

2

4z

(1 + z)2

= 2iωr +
α

2

(1 + z)2 − (1 − z)2

(1 + z)2

= 2iωr +
α

2
(1 − r2) (4.17)
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The boundary conditions, for x ≥ 0 can be obtained as:

u(x, ω) =
1

T (ω)

(
e−iωx + R(ω)eiωx

)

u′(x, ω) =
iω

T (ω)

(
−e−iωx + R(ω)eiωx

)

∴
u′(0, ω)

−iωu(0, ω)
=

1 − R(ω)

1 + R(ω)

∴ r(0, ω) = f(
u′(0, ω)

−iωu(0, ω)
)

= R(ω)

For x → −∞

u(x, ω) ∼ e−iωx

u′(x, ω) ∼ −iωe−iωx

⇒ u′(x, ω)

−iωu(x, ω)
= 1

⇒ r(−∞, ω) = 0

The authors now have a non linear ODE which states

• For the inverse problem, observe the scattering data r(0, ω) = R(ω)

• Determine the unknown α(x) by running the ODE

r′ = 2iωr +
α

2
(1 − r2)

backwards such that r(−∞, ω) = 0.

The difference between the Chen-Rokhlin algorithm and this approach is that the

authors here use a single ODE (4.17) to both “peel” the network, and to recover

the unknown.
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4.3.1 SWG algorithm

Before describing the complete algorithm, the authors describe a simpler case

when the unknown α(x) is almost close to zero. This corresponds to the case

when the velocity profile is almost constant which in the LC ladder network would

imply that the L’s are almost the same. This is the so called Born approximation.

Next I describe the approximate algorithm, with ample explanation and a circuit

analogy wherever possible.

• Let S be the scattering transform, i.e. a non linear operator such that given

α(x), the operator gives the reflection coefficient

R(ω) = S(α(x))

• Let B be the Born approximation operator such that instead of α(x) we

have an almost zero unknown ǫa and the reflection coefficient ρ0(ω)

ρ0(ω) = B(a)

where

ρ0(ω) ,
d

dǫ
S(0 + ǫa) |ǫ=0

This approximation gives an approximate linear version of the nonlinear
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ODE (4.17)

ρ(x, ω) ,
dr

dǫ

⇒ dρ(x, ω)

dx
=

d

dx

dr

dǫ

=
d

dǫ

dr

dx

=
d

dǫ

(

2iωr +
ǫa

2
(1 − r2)

)

= 2iωρ +
a

2
(1 − r2) +

ǫa

2
(1 − 2rρ)

∴ ǫ = 0

⇒ ρ′ = 2iωρ +
a

2
(1 − r2)

For the approximate case, the original nonlinear ODE (4.17) now becomes

r′(x, ω, ǫ) = 2iωr +
ǫa

2
(1 − r2)

∴ ǫ = 0 ⇒ r′ = 2iωr

and the boundary condition r(−∞, ω) = 0

⇒ r(x, ω, 0) = 0

which gives ρ′ = 2iωρ +
a

2

• Thus the approximate system is

ρ′ = 2iωρ +
a

2
(4.18)

ρ(−∞, ω) = 0 (4.19)

ρ(0, ω) = ρ0(ω) (4.20)

and the inverse problem is: given the measurements (4.20), and the evo-

lution equation (4.18), determine the unknown a. Note that under this

approximation, the evolution equation (4.18) is a linear differential equa-

tion with a closed form solution.
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• Solution to equation(4.18):

d

dx

(
ρ(x, ω)e−2iωx

)
= e−2iωx a(x)

2

⇒ ρ(x, ω) =

∫ x

−∞
e2iω(x−y) a(y)

2
dy (4.21)

⇒ ρ0(ω) =

∫ 0

−∞
e−2iωy a(y)

2
dy (4.22)

=

(

Hy<0
a(y)

2

)∧

where Hy<0 ,







1 if y < 0

0 else
is the unit step function

and (f(ω))∧ = Fourier transform of f(t)

,

∫ ∞

−∞
f(t)e−2iωtdt

Thus the inverse problem is equivalent to inverting the Fourier transform

in equation (4.22).

• Using equation 4.18, the authors prove an identity called Plancherel equal-

ity, which says that the reflection data is of finite energy.

∫ +∞

−∞
|ρ(x, ω)|2dω =

1

4π

∫ x

−∞
a2(y)dy (4.23)

• Mathematical Aside - Hardy Spaces: The integral (4.22) may not exist if

a(y) /∈ L1. To address this situation we let ω be complex so that ω = α+iβ.

Now the integral (4.22) transforms to

ρ0(α + iβ) =

∫ 0

−∞
e−2i(α+iβ)y a(y)

2
dy

=

∫ 0

−∞
e2βye−2iαy a(y)

2
dy (4.24)

For β > 0 the integrand in equation (4.24) is an exponentially decaying and

hence in L2. Such functions, which are analytic in one of the half planes
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with finite norm are called the Hardy functions. (For detailed discussion on

Hardy functions refer [26].) Hardy space, H2(C+), is the space of analytic

functions in the upper half plane with

||ρ||H2 = sup
β>0

(∫

|ρ(α + iβ)|2dα

) 1

2

< ∞

Similarly defining H2(C−), we have

L2(R) = H2(C+) ⊕ H2(C−)

Thus, finite energy functions on the real line can be obtained from the two

Hardy spaces.

• Let P+ and P− denote orthogonal projection operators, which project a

function onto H2(C+) and H2(C−), respectively. P+ρ∧(x, ω) is obtained

by:

1. Obtain the inverse transform of ρ∧(x, ω), i.e. ρ∨(x, y)

2. Make the signal ρ∨(x, y) zero for y > 0, i.e. obtain H(−∞,0)ρ
∨(x, y).

3. Finally, take the Fourier transform of the truncated signal, i.e.

P+ρ∧(x, ω) =
(
H(−∞,0)ρ

∨(x, y)
)∧

• Rewriting the solution to the differential equation (4.18)

ρ(x, ω) = e2iωxρ0(ω) +

∫ x

0

e2iω(x−y) a(y)

2
dy

Since y > x, the integral in the above equation lies in H2(C−, while ρ(x, ω)

lies in H2(C+) (equation (4.24)). So applying the projection operators, we

have

ρ(x, ω) = P+ρ(x, ω)

= P+

(

e2iωxρ0(ω) +

∫ x

0

e2iω(x−y) a(y)

2
dy

)

= P+
(
e2iωxρ0(ω)

)
(4.25)
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Equation (4.25) is equivalent to the layer peeling formula, i.e. given the

data at the boundary, ρ0(ω), one can obtain the data at a depth x, ρ(x, ω)

by applying the projection operator to the boundary data.

Similarly applying P−, we have

P−ρ(x, ω) = 0

⇒ P−
(
e2iωxρ0(ω)

)
= −P−

(∫ x

0

e2iω(x−y) a(y)

2
dy

)

= −
∫ x

0

e2iω(x−y) a(y)

2
dy

⇒ P−
(
e2iωxρ0(ω)

)
=

(

H(x<y<0)
a(y + x)

2

)∧

(4.26)

Equation (4.26), gives a way to recover the value of unknown a(y) for small

depths, i.e when 0 < y < x, by projecting the data onto H2(C−).

Thus the equations (4.25) and (4.26) constitute the inverse scattering algo-

rithm to recover the unknown a(y).

• Similar ideas are applied to solve the nonlinear problem (4.17) [11].

4.3.2 SWG algorithm and LC ladder networks

Although we don’t have discrete equivalent of equations (4.25) and (4.26),

we know that for LC ladder networks, the reflection data Y1(ω), lies in H2(C+).

This is because all the poles of Y1(ω) lie in the lower half plane. In the discrete

algorithm we nowhere verify this condition. In chapter 3, it was shown that for

three section LC ladder network , the layer peeling equations cause the poles to

move in the upper half plane, which causes errors in the recovery. We tried using

the projection operator to enforce this condition after each stage of peeling. But

this did not help improve the accuracy of the recovered data.
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Understanding of SWG approach with respect to LC ladder network is not

complete, and forms a part of the future work.

In the next chapter we summarize the contributions of the dissertation along

with a list of open problems.
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Chapter 5

Conclusions and Future Work

We summarize the main contributions of the dissertation:

1. An LC ladder circuit, whose L’s can be recovered using Chen-Rokhlin al-

gorithm, is identified. This circuit realization reveals the presence of a

negative impedance component, which is believed to be the reason behind

the stability of the inverse scattering algorithm. Faithful reconstruction

of L’s from noisy data, using Chen-Rokhlin algorithm, is experimentally

verified.

The circuit realization is important for two reasons:

• It provides a new way to set up the discrete inverse scattering problem.

• It provides with a way to model a wired network of sensors.

2. Discrete model for the one dimensional inverse scattering problem is pro-

posed, along with some simulation results, and associated theorems:

• The presence of negative impedance guarantees non-real poles, all

trapped in the lower half plane.
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• A discrete extension of the Chen-Rokhlin algorithm, which recovers

the L’s faithfully, is provided.

3. Another stable, continuous inverse scattering algorithm by Sylvester et. al.

is explored, discrete extension of which, might provide a different way to

recover the values of L’s.

The discrete problem setup and the associated algorithm leads to a host of

open problems, which are listed below:

1. Different Discrete Model: The discrete model proposed in the dissertation,

identifies the unknowns as point wise discontinuity in the region. Alter-

nately one can set up a problem so that the unknowns are modeled as

piecewise constant (figure (5.1)). The model will now be governed by dif-

xn

L(x)

x

L1

x1

L0 = 1

x2 x3

L2

xn−1

Figure 5.1. Discrete model with piecewise constant inductance

ferential equations [8], rather than algebraic equation. Also, the modeling

of negative impedance in this setting needs to be figured out.

2. Identify the sources of instability and factors that mitigate it. A possible

source of instability could be the layer peeling formula. One way to rem-

edy the situation is to consider a different “trace” formula, i.e. instead of
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using Y (ω) to recover L, one might want to try a function of Y (ω). This

might lead to stable peeling formula. A couple of approaches that are not

mentioned here were tried:

• (A−1)n1 entry, which corresponds to the current in the last loop, was

used as measured data, along with Y (ω). Asymptotically, this entry

has the products of all L’s into it.

3. Analyze the operation in time domain, specifically need to address the

following two issues:

• Come up with a stable operation of the LC ladder circuit.

• Determine the settling time of the circuit, or in other words how long

will it take to make the measurements.

4. Setup a problem in higher dimensions: Figure (5.2) shows a pictorial way

to setup the problem in two dimensions. Here the bold circle in the center

(blue) represents termination using negative impedance.

Scattered Field
z

Incident Field

X

Figure 5.2. Inverse scattering model in two dimensional space
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X is the unknown inhomogeneity, the field on the left represents the inci-

dent energy, and the one in right represents the scattered energy, which is

measured along the entire periphery.
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