
UNIVERSITY of CALIFORNIA

Santa Barbara

Fast Algorithms with Applications to PDEs

A Dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Mathematics

by

William Lyons

Committee in charge:

Professor Hector D. Ceniceros, Co-Chairman

Professor Shivkumar Chandrasekaran, Co-Chairman

Professor Bjorn Birnir

Professor Ming Gu

June 2005

The dissertation of William Lyons is approved

Hector D. Ceniceros, Committee Co-Chairman

Shivkumar Chandrasekaran, Committee Co-Chairman

Bjorn Birnir

Ming Gu

June 2005

Fast Algorithms with Applications to PDEs

Copyright c© 2005

by

William Lyons

iii

Acknowledgements

I would like to thank, first and foremost, my two co-chairs: Shiv Chandrasekaran

and Hector Ceniceros. I can safely say that none of this work would exist with-

out them. When Shiv first proposed to me that I determine an algorithm for

multiplying together two “matrices in hierarchically semiseparable form” and

stipulated that the algorithm should run in linear time, I refused to believe such

a thing was possible. Eventually he convinced me otherwise. A few months later

there was an algorithm, a proof and working code to carry it out. At every stage

my research has advanced in this manner: Shiv would pick a problem that was

difficult, but tractable. He would put in quite a bit of time explaining to me why

the problem was interesting and discussing approaches. And eventually, usually

much later, the work would get done. I can’t imagine what more a candidate can

ask from an advisor. Hector, as well as motivating the current applications to

PDEs, introduced me to the dark art of actually getting a manuscript published.

Without his consistent proofreading, editing and corrections (not to mention the

mathematical advice) the first “rebus” paper would never have seen the light of

day. Above all else, both Shiv and Hector were always a pleasure to work with:

both are brilliant minds in their respective fields and succeeded in communicating

their interests and enthusiasm to me.

There are also many people, at UCSB and elsewhere, who I would like to

thank for their help and support over the years. Xu-Dong Liu, Ming Gu and

Bjorn Birnir took an interest in this work and contributed to its current form.

And without the support of Austa, Gunnar, Medina and my parents Tom and

Arline, it is very unlikely I would have completed my doctorate at all.

iv

Vita of William Lyons

Education

Ph.D. Mathematics, emphasis in Computational Science and Engineering

University of California, Santa Barbara. 2005

M.A. Mathematics, University of California, Santa Barbara. 2002

B.A. (Hons) Theoretical Physics, Trinity College Dublin, Ireland. 1998

Professional Employment

Teaching Assistant, UCSB. 2000–2005

Analyst, Santa Barbara Market Neutral Fund. 2001–2002

Executive, Investment Banking Division, Deutsche Bank. 1998–1999

Publications

Fast LU decomposition for operators with hierarchically semiseparable structure,

(with S. Chandrasekaran and M. Gu), Preprint UCSB Math 2005-9.

Fast algorithms for spectral collocation with non-periodic boundary conditions,

(with H. D. Ceniceros, S. Chandrasekaran and M. Gu), Journal of Computational

Physics, Volume 207 (1), Pages 173-191, July 2005.

A fast and stable adaptive solver for hierarchically semi-separable representations,

(with S. Chandrasekaran and M. Gu), Preprint UCSB Math 2004-20.

Awards

UCSB Math Department Fee Fellowship 2002–2005

UC Regents Special Fellowship. 2001–2002

v

Abstract

Fast Algorithms with Applications to PDEs

by

William Lyons

In the first part of this thesis we describe the rebus representation of a linear

operator and present algorithms for working with linear systems in this form. The

main contributions in the area of algorithms are: a rebus-rebus multiplication,

an LU factorization and forward and back substitution algorithms. All of these

are described in detail. Implementations of the algorithms are tested and shown

to be accurate and stable. The algorithms scale linearly in the size of the rebus

and break even with high-performance dense routines for matrix sizes of O(100).

These are, to our knowledge, the first algorithms proposed for these operations

on a rebus representation.

In the second part of the thesis we apply rebus-based methods to a recurring

problem in the numerical solution of partial differential equations. Problems

discretized by collocation on the Chebyshev nodes give rise to large non-sparse

matrices. Conventionally, a transform to a spectral domain is used to make the

differential operator sparse. However, this imposes periodic boundary conditions

on the problem, which may not be desirable. The main contribution in the area

of numerical solution of PDEs is a procedure for using fast operations to solve

problems of this kind with nonperiodic boundary conditions. We implement a

fast solver for linearly implicit methods for stiff equations. We describe in detail

how different boundary conditions can be imposed and apply the techniques to

the Allen-Cahn equation and the diffusion equation.

vi

Contents

Contents vii

1 Introduction 1

1.1 Overview . 1

1.2 Low-Rank Blocks and Semiseparable Structure 3

1.3 Extensions of Semiseparability . 6

1.3.1 Semiseparable Plus Structure 6

1.3.2 Continuous and Block Matrix Analogues 6

1.4 Low-Rank Structure . 7

1.4.1 Examples of Low-Rank Structure 8

1.5 Connections to Earlier Work . 12

1.5.1 Tree Codes . 12

1.5.2 Fast Multipole Methods 13

1.6 Rebus Methods . 14

2 Hierarchically Semiseparable Structure and the Rebus Repre-
sentation 15

2.1 Introduction to HSS Structure . 15

2.2 Fundamentals of the Rebus Representation 16

2.2.1 Description of the Rebus 16

2.3 Lemmas Concerning Rebus Structure 20

2.3.1 Merging . 20

2.3.2 Splitting . 21

vii

2.4 Block Sparse Notation . 24

2.4.1 Fundamental Block Sparse Relationships 25

2.4.2 Splitting and Merging . 26

2.4.3 Projection and Interpolation 26

2.4.4 Recursive Representations of a Matrix 27

2.5 Tree-based Structure . 28

3 Algorithms for the Rebus Representation 31

3.1 Rebus-Vector Multiplication . 32

3.1.1 Algorithm . 32

3.1.2 Comments . 32

3.2 Rebus-Rebus Multiplication . 33

3.2.1 Algorithm . 33

3.2.2 Numerical Experiments . 38

3.3 LU Factorization . 40

3.3.1 Description of Algorithm 41

3.3.2 Numerical Examples . 42

3.4 Forward (and Back) Substitution 45

3.4.1 Forward Substitution . 45

3.4.2 Back Substitution . 46

3.4.3 Numerical Examples . 47

4 Applications to PDEs I 50

4.1 Introduction . 50

4.2 Approach to PDEs . 52

4.3 Description of the PDE . 52

4.4 Underlying Elliptic Problem . 54

4.4.1 Rebus Scaling . 55

4.4.2 Diagonal Updates . 55

4.5 Boundary Conditions by Boundary Bordering 56

4.5.1 Initialization . 57

4.5.2 Boundary Conditions in Matrix Form 58

viii

4.5.3 Formulation as a Low-Rank Product 59

4.5.4 Low-Rank Addition . 60

4.6 Numerical Examples . 61

4.6.1 Backward Euler Discretization of a Diffusion Equation with
Dirichlet Boundary Conditions 61

4.6.2 Crank-Nicolson Discretization of a Diffusion Equation with
Time-Varying Non-Homogenous Dirichlet Conditions . . . 63

4.6.3 Crank-Nicolson / Runge-Kutta IMEX Discretization of the
Allen-Cahn Equation with Homogenous Neumann Bound-
ary Conditions . 65

5 Applications to PDEs II 68

5.1 Introduction . 68

5.2 Conditioning of Chebyshev Derivative Operators 69

5.3 Strategies for Better Conditioning 70

5.3.1 Scaling of Boundary Conditions 70

5.3.2 Numerical Tricks and Basis Recombination 71

5.3.3 Extended Precision . 72

5.3.4 Alternate Basis Sets . 72

5.3.5 Iterative Refinement . 73

5.3.6 Exploiting Limited Precision 73

5.4 Higher Dimensional Problems . 74

5.4.1 Introduction . 74

5.4.2 Intrinsic One-Dimensionality of the Rebus 75

5.4.3 Nested Dissection Ordering 76

6 Further Research 79

6.1 LU Accelerated Timestepping . 79

6.2 Alternate Timestepping Schemes for Stiff Nonlinear PDEs 81

Bibliography 86

ix

Chapter 1

Introduction

1.1 Overview

In this thesis we will explore algorithms and applications relating to a novel

representation of linear operators: the rebus. The rebus structure originates with

Chandrasekaran and Gu [18] and is related to the fast multipole methods (FMM)

of Greengard and Rokhlin [26]. At the time of its introduction, the only algo-

rithms available for working with an operator or linear system in this form were a

“matrix-vector” product (to apply a rebus to a vector) and a direct solver, based

on the ULV decomposition.

In Chapter 3 we introduce new algorithms that add to the utility of this rep-

resentation. An algorithm to compose two operators in rebus form (analogous to

matrix-matrix multiplication) is described and proven to be correct. An imple-

mentation of the algorithms is also shown to be accurate, stable and fast. This

algorithm is described in Section 3.2.

This rebus-rebus multiplication, as well as providing a standard tool of linear

algebra, helps us avoid one of the dominant costs of rebus methods. The construc-

tion of the rebus from a description of the operator involves repeated singular

value decompositions (SVDs). These factorizations quickly become the dominant

1

cost for large problems of any kind involving rebus methods. Provided we can

compose operators, add and subtract and multiply by scalars we have enough

algebraic structure to generate most needed operators from a pre-computed set

of “building blocks”. For example, if we have the derivative operator available

in rebus form, all the operators needed for a Runge-Kutta timestep for a second

order differential equation may be generated using the fast algorithms without

any SVDs being used.

The second major algorithm described in this thesis is an LU decomposition.

Given a rebus R, we wish to generate upper and lower triangular rebuses such

that L · U = R. This is important as it greatly increases the speed for solving

against multiple right hand sides via fast forward and back substitution. The LU

decomposition is described in Section 3.3 and the forward and back substitutions

are described in Section 3.4.

All of these algorithms are fast, in the sense that the time taken to execute

them grows linearly with the size of the system. A conventional dense matrix LU

or matrix multiplication scales as N3, where N is the size of the discretization.

For large systems rebus methods are orders of magnitude faster than dense matrix

methods. The break-even point for the experiments performed was found to be for

discretizations where N is a few hundred. The overhead of rebus methods is not

worth paying for small or medium sized systems. However, the methods provide

a new approach for large problems that would previously have been intractable.

In the second part of the thesis, we apply these fast algorithms to construct

solvers for partial differential equations (PDEs). Unlike conventional fast solvers

which rely on transformation to a spectral domain, the fast solvers based on the

rebus structure keep the representation of the operator in the spatial domain.

Thus, unlike fast Fourier methods which force us to work with periodic boundary

conditions, these methods allow us to use Dirichlet, Neumann or mixed boundary

conditions.

In Chapter 4 we demonstrate the utility of such solvers in the context of

nonlinear stiff PDEs. For such problems, it is in our interest to use an implicit

scheme for timestepping, so as to avoid severe stability restrictions on the allowed

2

step size. However, the nonlinear term is very difficult and costly to invert, and in

general is better treated explicitly. A number of methods have resulted from these

observations and the most popular is the linearly implicit (also called implicit-

explicit [2] family of methods [11]. We demonstrate a fast solver for this kind of

scheme and demonstrate its effectiveness by solving the diffusion equation and the

Allen-Cahn equation with various nonperiodic boundary conditions. The solver

is shown to be accurate, stable and fast.

In Chapter 5 we consider some important auxiliary topics: the condition-

ing of the Chebyshev derivative operator, the ramifications of this for numerical

methods and the extension of the methods presented to higher-dimensional prob-

lems. Finally, in Chapter 6 we discuss some fruitful topics for further research.

In particular we are able to demonstrate applications to the calculation of ma-

trix exponentials. Amongst other applications, this can be used to construct

fourth-order accurate timestepping schemes using exponential time differencing

methods.

In the remainder of this chapter, we cover some preliminary topics. In Sec-

tion 1.2 we define semiseparable structure and consider the relationship between

matrices with low-rank blocks and their inverses. In Section 1.4 we demonstrate

that by block partitioning matrices we can reveal low-rank structure that is not

usually accessible. This motivates a representation for the operators where we

can take advantage of this by factoring certain blocks. This is one of the ideas

that will lead to the introduction of the rebus in Chapter 2. In Section 1.5, we

survey the history of the rebus, comparing it to ideas from which it has evolved.

1.2 Low-Rank Blocks and Semiseparable Struc-

ture

As noted by Golub and Van Loan [25], good matrix algorithms rely on exploit-

ing structure. The techniques employed in this thesis rely on the fact that there

3

may be exploitable structure in matrices even when none is apparent. Consider

the tridiagonal matrix

T =



a1 b1 0 · · · 0

c2 a2 b2
...

0
. 0

... cn−1 an−1 bn−1

0 · · · 0 cn an


. (1.1)

Such a matrix is specified by 3n − 2 parameters. Thus, if T is invertible, the

matrix T−1 is also completely determined by 3n − 2 parameters. However, the

matrix T−1 is not sparse and must have full rank (since it is invertible). Thus

a different kind of structure must be exploited to represent it in terms of these

parameters.

In fact, T−1 will have the following structure:

(T−1)i,j =

{
uivj if j ≥ i

sitj if j ≤ i
, (1.2)

where the factors must obey the constraints that uivi = siti and u1 = s1 = 1.

Thus we have n + 2 constraints on our 4n parameters u, v, s and t, leaving us

with 3n− 2 free parameters.

This kind of structure arises in many different fields, such as integral equations

and statistics. It is a specific case of “semiseparable” structure, which is more

generally defined as follows.

Definition A matrix S is called a lower (or upper) semiseparable matrix of

semiseparability rank r if all submatrices that can be taken out of the lower

(upper) triangular part of the matrix S have rank ≤ r and there exists at least

one submatrix having rank r.

Strang and Nguyen give good survey of the connections between low-rank

blocks of matrices and their inverses in [40]. They also prove the following ex-

tension of the result that the inverse of a tridiagonal matrix is semiseparable of

4

semiseparability rank 1. We state it here in terms of the submatrices above a

certain diagonal. We will refer to the pth band parallel to, and above, the diag-

onal as the pth superdiagonal. The analogous results for submatrices below the

diagonal, and subdiagonal bands also holds.

Theorem 1.2.1 (Strang and Nguyen) For invertible T , all submatrices B

above the pth superdiagonal of T have rank B < k if and only if all submatrices

C above the pth subdiagonal of T−1 have rank C < p + k.

The meaning of this theorem becomes more clear if we consider a few simple

examples. The case p = 0 and k = 1 gives: all submatrices above the diagonal of

T have rank zero if and only if all submatrices of T−1 above the diagonal have

rank zero. This is just the well known fact that the inverse of a lower triangular

matrix is itself lower triangular. The case p = 1 and k = 1 corresponds to our

earlier tridiagonal matrix (in the two-sided case). For this, the result is that

all submatrices of T above the first diagonal have rank zero if and only if all

submatrices of T−1 above the first subdiagonal have ranks strictly less than 2.

If we keep k = 1, we get the general result for banded matrices where all

entries after the pth off–diagonal are zero. The inverse of a banded matrix of

bandwidth p is a matrix such that all submatrices above the pth subdiagonal

(and also all submatrices below the pth superdiagonal) have rank less than or

equal to p. This connection was apparently first discovered by Asplund in 1959

[4].

The whole theorem may be understood as a combination of this banded case

with the Woodbury-Morrison formula for the effect of a low-rank update of a

matrix on its inverse [25].

5

1.3 Extensions of Semiseparability

1.3.1 Semiseparable Plus Structure

Theorem 1.2.1 relates the semiseparable structure of a matrix and of its in-

verse. The idea of semiseparable structure has been generalized in a number of

papers. Frequently the structures studied take the form of “semiseparable plus”

structure, where the matrix may be expressed as the sum of a semiseparable part

and a second part that might be banded, block-diagonal, Toeplitz or some other

structure. Example of this kind include treatments of banded plus semiseparable

matrices [15] and symmetric block-diagonal plus semiseparable matrices [16].

A more recent development was the introduction of “sequentially semisepa-

rable” structure, which is a direct precursor of the hierarchically semiseparable

structure explored in this thesis [14].

1.3.2 Continuous and Block Matrix Analogues

There are two important generalizations of these results that must be made

before they can be applied to most practical problems.

1. Extend scalar entries to block matrices.

2. Extend discrete matrices to continuous kernels.

Strang and Nguyen mention both of these points in their survey [40]. In fact,

the proof they present for Theorem 1.2.1 extends directly to the important block

matrix case.

The extension to (discretizations of) continuous kernels arises in equations

such as

u(x) =

∫
K(x, y)f(y) dy , (1.3)

where K(x, y) is the kernel corresponding to an underlying differential equation

(the Green’s function). For such kernels, we have the following correspondences:

6

• A kernel which decays rapidly away from the line x = y corresponds to a

matrix with low bandwidth.

• A kernel that is smooth (in the sense of not having high frequency oscilla-

tions) corresponds to a matrix with low-rank off-diagonals.

As these are approximate results, the interpretation needs a little more re-

finement. In fact, the discretization of a smooth kernel will in general not have

low-rank off-diagonal blocks. However, it will be accurately approximated by a

matrix that does. That is, it will have low numerical rank.

Recall that where the rank of a matrix is given by the number of non-zero

singular values, the numerical rank, to a given tolerance ε , is the number of

singular values strictly greater than ε . The magnitude of the singular values

scales with the norm of the matrix, so in order for the measure to be meaningful it

is usual to adopt a convention whereby the matrix is scaled so as to have a largest

singular value of order 1. We will use the term “low numerical rank” qualitatively

to mean that most of the singular values are many orders of magnitude smaller

than the norm of the matrix.

Similarly, a rapidly decaying kernel will generally not yield a discretization

that is banded. However, it will be well approximated by such a matrix. Clearly,

the lower the tolerance allowed in the approximation, the higher the resulting

bandwidth will be.

1.4 Low-Rank Structure

The above sections deal with special classes of matrices. However, the real

utility of the methods to be developed comes from the observation that exploitable

structure of a semiseparable kind occurs far more frequently than might be ex-

pected. In particular, most differential operators will demonstrate a high degree

of this structure.

This is not to say that the differential operators themselves are semiseparable.

7

They are not. However, large blocks of the matrices representing these operators

do have low numerical rank. As we will show in Section 2.2, this is one of the

properties which is exploited by the rebus structure, though it is not the whole

story.

To show the extent to which we may expect to realize savings in storage and

number of operations, we will look at the rank structure of various matrices. In

particular we will recursively block partition some matrices and look at the ranks

of submatrices of various sizes.

1.4.1 Examples of Low-Rank Structure

Extreme cases

To set the baseline for looking at rank structures we will first look at the two

extreme cases: a matrix where every block is full rank and a matrix where every

block has rank 1.

For an example of a matrix where every block is full-rank, we will use a matrix

where each matrix element is independently randomly generated. Such a matrix

is shown in Figure 1.1 where the level of grey represents the magnitude of the

matrix element. Every block of such a matrix should have full rank.

Figure 1.1. A matrix of random entries and a recursive partitioning.

8

Discretization of a 1/r kernel

An interesting example of the low-rank off-diagonal blocks we wish to exploit

is found in the context of particle interaction. Consider a matrix which is a

discretization of the kernel

f(x, y) =
1

‖x− y‖+ ε
.

Where ε is a small parameter added to ensure that we do not run into problems

with singularities.

A discretization of such a kernel in one dimension will lead to a matrix with

elements

ai,j =
1

‖xi − xj‖+ ε
.

Such a matrix will have entries that are smooth with respect to the indices i and

j. Additionally, away from the diagonal, the entries will fall quickly towards zero.

Figure 1.2 shows two different pictures of such a discretization. The picture

to the left shows the value of each matrix element (in a 100× 100 example). The

white diagonal corresponds to the maximal value the elements attain. The grey

which dominates the majority of the picture represents the near-zero elements

The right hand picture illustrates the data in Table 1.1. This shows the ranks

in successive off-diagonal blocks of a 1024×1024 discretization of the same kernel.

For each N which corresponds to a block size in our recursive partitioning, the

table lists the actual rank of the blocks of that size. Thus, the two blocks of size

512 × 512 each have rank 7 (to machine tolerance). These could be represented

and stored in a factored form to achieve large saving over storing all 218 matrix

elements. This is pictured by the shading of each block corresponding to the

relative rank of that block. That is, a full-rank block (of whatever size) is pictured

as black and a block that is 1% of full rank is pictured as 1% grey.

Table 1.1 clearly shows that the ranks grow much more slowly than the block

size.

9

Figure 1.2. A discretization of 1/r and a recursive partitioning with shading of

each block proportional to the rank of that block as a percentage of the size of

the block.

N Rank of N ×N block % of full rank
512 7 1.4
256 7 2.7
128 6 4.7
64 5 7.8
32 5 16
16 4 25
8 4 50
4 3 75

Table 1.1. Rank structure of the 1024× 1024 discretization of the 1/r kernel.

Chebyshev derivative matrix

Consider the hierarchical partitioning of a 1024 by 1024 Chebyshev derivative

matrix illustrated in Figure 1.3. It is a special case of the partitioning described

in Section 2.2. In this example each partition takes exactly half the rows or

columns.

In Figure 1.3 and Table 1.2 we demonstrate this by showing the ranks of

various off-diagonal blocks of the first derivative matrix for a Chebyshev pseu-

dospectral method. Note that the ranks increase very slowly as the block size

increases.

10

Figure 1.3. Rank structure of the Chebyshev derivative matrix with shading

proportional to rank.

N Rank of N ×N block % of full rank
512 11 2.1
256 10 3.9
128 10 7.8
64 9 14
32 8 25
16 7 44
8 6 75
4 4 100

Table 1.2. Rank structure of the 1024× 1024 Chebyshev derivative matrix.

In Chapter 5, we will demonstrate that this same structure persists not just in

the derivative operator itself, but in all of the operators required to numerically

solve PDEs.

11

1.5 Connections to Earlier Work

Although the rebus methods we will develop in this thesis are new, the struc-

ture they exploit has been noted before. A number of representations and algo-

rithms have arisen to take advantage of the same properties.

We will briefly compare and contrast the current approach with others which

rely on the same principles. We will try to emphasize the differences between

each approach and the one advocated here.

1.5.1 Tree Codes

For N -body problems of the type encountered in astrophysics, computational

chemistry, plasma physics and other fields relying on particle simulations, the

cost of evaluating the mutual interactions grows as N2 and realistic problems are

frequently intractable.

In response to this, a number of procedures were created to reduce the bur-

den of these calculations. Notable amongst these were the Barnes-Hut tree

code [6], Appel’s method [1] and particle-in-cell methods and their descendants,

the particle-particle, particle-mesh methods [29].

The underpinning of these methods was the observation that although short

range interactions can be arbitrarily complex, the long range effect of a cluster of

particles will be relatively smooth. An alternative viewpoint is that the matrix

of the interaction will have low-rank away from the diagonal or will contain off-

diagonal blocks that can be accurately approximated by low-rank matrices.

Structured low-rank representations lie behind the tree codes and are redis-

covered periodically. They are methods for fast summation and all of the appli-

cations rely on the fast evaluation of matrix-vector products. In N -body particle

interaction, we are summing the contributions to the potential from N sources

and the application is direct.

An extension of fast summation is the solution of linear systems. By using

12

conjugate gradient or other iterative methods, the rate-determining step in the

solution of a linear system becomes the rapid evaluation of matrix-vector prod-

ucts. Thus tree codes may be used to solve linear systems, notably those arising

from partial differential equations.

1.5.2 Fast Multipole Methods

The fast multipole method (FMM) was originally introduced to solve integral

equations [36]. A different formulation was used as a fast summation method [26]

and it is this algorithm that had the most impact and is generally known as the

FMM.

The work of Rokhlin and collaborators on FMM structure resulted in a rich

complex of ideas dealing with much more than fast summation. After the initial

application to integral equations, it was applied to evaluating conformal map-

pings [35], two-point boundary value problems [39], ordinary differential equa-

tions [38], 2-dimensional integral equations in scattering theory [37], the wave

equation [19] and Laplace’s equation [30].

Of particular interest to us here is Rokhlin and Starr’s work presented in [38]

and [39]. Here the authors use a recursive partitioning to solve an integral equa-

tion. The apparatus developed is analytic in nature and specific to integral

equations. The development demonstrates that integral equations can be solved

efficiently using a recursive partitioning. The off-diagonal blocks in this parti-

tioning are shown to have low rank. However, unlike the partitioned low-rank

representations in Section 1.5.1, the representations in each block are not inde-

pendent, but are related in a multilevel framework, where information may be

projected or interpolated between fine and coarse scales.

The twin ideas of a partitioned SVD representation and a full FMM interac-

tion tree arise again in Rokhlin and Yarvin’s work [43].

These ideas are further developed by Beylkin, Coult and Mohlenkamp in [9],

where the authors use a recursive block decomposition to enable them to work

13

efficiently with spectral projection operators. This is the same block decompo-

sition used in Rokhlin’s work that also arises in rebus methods. They prove

spectral projection operators to have a compact representation in terms of low-

rank blocks. Further, they develop an efficient algorithm to multiply together

two matrices stored in this form. The algorithm used is similar to that employed

for multiplying in non-standard wavelet form [24].

1.6 Rebus Methods

Our motivation in developing rebus-based methods was that all of these ap-

plications of the FMM were exploiting the same underlying structure. Although

the expansions and representations used in the FMM papers cited above were

problem specific, the underlying ideas were consistent. By confining ourselves to

a specific recursive block partitioning we further develop the ideas of the FMM to

allow an efficient representation of differential and integral operators in general,

as opposed to treating specific operators.

By this restriction to a specific FMM tree (which is what a rebus is), we lose

the flexibility of the full FMM but it becomes possible to develop a full algebra.

Thus we can implement a fast rebus-vector multiplication, rebus-rebus multipli-

cation, perform LU factorization and code direct solvers. The rebus structure is a

hybrid, retaining enough FMM structure to design fast algorithms but simplifying

matters enough to make algorithms algebraically tractable.

All the algorithms developed to operate on this structure share some desir-

able features. They are intrinsically parallel since calculations happen locally

and are propagated in discrete stages through the tree. The algorithms are also

intrinsically multiresolution. All have recognizable “upsweep” and “downsweep”

recursions corresponding to interpolating or projecting information to a different

scale. All are easily formulated as adaptive algorithms, where refinement is per-

formed only locally and as needed. An example of this in the case of the solution

of linear systems is found in Chandrasekaran [17].

14

Chapter 2

Hierarchically Semiseparable

Structure and the Rebus

Representation

2.1 Introduction to HSS Structure

In this chapter we will outline the fundamental operations on the represen-

tation of dense, structured matrices with what is known as hierarchically semi-

separable (HSS) structure [18]. Matrices which have low numerical rank off-

diagonal blocks may be efficiently represented by a binary tree of low-rank matri-

ces, related by translation operators. This idea in its current form was introduced

in [18], where the algorithms for matrix-vector multiplication and solving a linear

system using an implicit ULV factorization were also described.

The data structure used to exploit the HSS structure of a matrix is also

known as a rebus. The terms are used somewhat interchangeably, but we will

try to refer to “HSS structure” when referring to the underlying property of the

operator that allows efficient representation and use “HSS representation”, “rebus

15

representation” or simply “rebus” to mean the representation of the operator in

terms of low-rank products and translation operators. Thus we can talk about the

rebus-rebus product corresponding to the composition of two operators having

HSS structure. The same composition could be represented by a matrix-matrix

product.

Using the rebus representation of an operator, we are able to use tree-based

algorithms to exploit structure that is not accessible to us under ordinary circum-

stances. By designing algorithms with reference to the underlying tree structure,

large speed improvements are realized for all standard matrix operations.

It should be noted that although a general matrix will not possess the low-

rank off-diagonal blocks that these algorithms exploit, dense matrices arising from

physical or statistical problems in general will. In particular, discretizations of

integral and differential equations will exhibit HSS structure. All sparse matrices

also have a simple HSS representation.

2.2 Fundamentals of the Rebus Representation

2.2.1 Description of the Rebus

A rebus representation is based on a hierarchical block structure and may be

described in terms of block partitioning. Given any dense matrix we consider it

as a block 2 × 2 matrix where the blocks are of arbitrary size and in particular

need not all be the same size.

We use the notational device of preceding the usual positional subscripts with

the “level” of splitting, so the original dense matrix A can be thought of as A0;11.

That is, the (1, 1) block of the matrix partitioned zero times. Using this notation

and block partitioning we get

A0;11 =

(
A1;11 A1;12

A1;21 A1;22

)
.

16

The off-diagonal blocks are factored and stored as

A1;ij = U1;iB1;ijV
H
1;j for (i, j) = (1, 2), (2, 1),

where V H denotes the Hermitian conjugate of V .

The notation here should be reminiscent of that conventionally used for the

singular value decomposition (SVD), A = UΣV H . The purpose of the factoriza-

tion is to allow us to take advantage of rank deficient blocks. However, it is in

fact not a simple SVD, as the global structure places constraints on which factors

are allowable.

We repeat the above process for each of the diagonal blocks. That is, we

subdivide A1;11 and A1;22 to get

A1;11 =

(
A2;11 A2;12

A2;21 A2;22

)
and

A1;22 =

(
A2;33 A2;34

A2;43 A2;44

)
.

The off-diagonal blocks of these matrices are again factored in the form

A2;ij = U2;iB2;ijV
H
2;j for (i, j) = (1, 2), (2, 1), (3, 4), (4, 3).

The new diagonal blocks are again split, and this process continues down to some

lowest level where they are simply stored as dense matrices.

For an appropriate factorization, this will enable us to use a low-rank repre-

sentation of the off-diagonal blocks. The resulting block structure is illustrated

in Figure 2.1. The benefit of this structure for representing differential operators

is demonstrated in Section 1.4.

Together with the (low-rank) representations of the off-diagonal blocks, there

is a tree structure as follows: we do not store the factors Uk;i and Vk;i at every level.

Instead, we store them at some lowest level only, and then store intermediate

quantities Rk,i and Wk,i which satisfy the relationships

Uk−1;i =

(
Uk;mRk;m

Uk;nRk;n

)
, V H

k−1;i =
(

WH
k;mV H

k;m WH
k;nV

H
k;n

)
, (2.1)

17

Figure 2.1. Block structure used to generate rebus representation.

where level k− 1 is the parent of level k. This allows us to store only the “lowest

level” factorizations and small transformations which relate them to the factors

at the next highest level.

To ensure that this is possible, we must relate the factorizations at each level

of the rebus. It is for this reason that we cannot simply take a singular value

decomposition of each block at each level. The Uk;n at the lowest level must not

only provide a basis for the column space of Ak;nm, it must provide a basis for

the column space of the whole row n of Ak (excluding the diagonal block).

Once we have performed this recursive splitting and factorization we obtain

the components of the rebus: the diagonal blocks Dk, the lowest level factors Uk

and Vk and a binary tree of low-rank factors R, W and B. This representation

allows us to efficiently recover the original matrix, while exposing any low-rank

structure.

18

D7

U1;1B1;1,2V
H
1;2

U2;2B2;2,1V
H
2;1

U1;2B1;2,1V
H
1;1

U2;3B2;3,4V
H
2;4

U2;1B2;1,2V
H
2;2

D3

D6

U2;4B2;4,3V
H
2;3

D8

D1

D2

D4

D5

Figure 2.2. How the factors of the rebus correspond to matrix blocks. The

matrices Uk;i and Vk;i are not explicitly stored as part of the rebus. They are

related to UK;i and VK;i via Equation 2.1.

19

2.3 Lemmas Concerning Rebus Structure

Given a rebus, it may be desirable to find a different rebus for the same

underlying operator. In particular, given a block 2k × 2k rebus we would like

formulas for block 2k−1× 2k−1 and block 2k+1× 2k+1 representations. It is worth

bearing in mind that these have a natural interpretation in terms of the tree:

the block 2k−1× 2k−1 corresponds to merging the lowest level of the tree into the

second lowest and the block 2k+1 × 2k+1 corresponding to splitting the leaves of

the tree and so adding another level to our binary tree.

These transformations of the tree are also useful in deriving rebus algorithms,

as we have a family of transformations of the tree that are known to represent

the same operator.

2.3.1 Merging

Lemma 2.3.1 If a rebus is block partitioned as a 2K × 2K we can generate the

block 2K−1 × 2K−1 rebus as follows.

DK−1;i =

 DK;m UK;mBK;m,nV
H
K;n

UK;nBK;n,mV H
K;m DK;n

 ,

UK−1;i =

 UK;mRK;m

UK;nRK;n

 ,

V H
K−1;i =

(
WH

K;mV H
K;m WH

K;nV
H
K;n

)
,

and Bk;i,j, Rk;i and Wk,i remain unchanged for k 6= K and are no longer explicitly

needed for k = K.

20

Proof Viewed in terms of the quantities

Uk−1;i =

(
Uk;mRk;m

Uk;nRk;n

)
,

V H
k−1;i =

(
WH

k;mV H
k;m WH

k;nV
H
k;n

)
,

for k = 1 . . . K, the only change to the matrix is that the diagonal blocks absorb

the first off-diagonal, leaving the rest of the matrix unchanged. By inspection

of the original HSS structure, as shown in Figure 2.2, the new diagonals are as

claimed. However, the matrices Uk;i and Vk;i are not stored as part of the HSS

structure, except at the lowest level, UK,i, VK;i for i = 1 . . . 2K . As such we need

to use this stored lowest level to generate the matrices at the next level and store

these instead. By construction of the rebus, these neighboring levels are related

by Equation 2.1, which immediately gives us the result.

2.3.2 Splitting

We have determined how to merge the lowest two levels of our rebus to get

a more coarsely blocked rebus. We now turn to the question of obtaining a finer

rebus structure. That is, splitting our diagonal and our lowest level leaves in a

2K−1 × 2K−1 rebus to give a block 2K × 2K representation.

Lemma 2.3.2 If a rebus is block partitioned as a 2K−1 × 2K−1 we can generate

the block 2K × 2K rebus as follows. Let

DK−1;i =

 D1,1
K−1;i D1,2

K−1;i

D2,1
K−1;i D2,2

K−1;i

 ,

UK−1;i =

 U1
K−1;i

U2
K−1;i

 ,

VK−1;i =

 V 1
K−1;i

V 2
K−1;i

 . (2.2)

21

Then the rebus structure at the Kth level is:

DK;m = D1,1
K−1;i, DK;n = D2,2

K−1;i,

with the remaining components being given by the factorizations: U1
K−1;i D1,2

K−1;i

0 V 2H
K−1;i

 =

 UK;m 0

0 I


 RK;m BK;m,n

0 WH
K;n


 I 0

0 V H
K;n


 V 1H

K−1;i 0

D2,1
K−1;i U2

K−1;i

 =

 I 0

0 UK;n


 WH

K;m 0

BK;n,m RK;n


 V H

K;m 0

0 I

 .

Proof Having determined the merging formulas in Lemma 2.3.1 we will solve the

merging formulas to give Kth level in terms of the larger blocks. We do not expect

there to be a unique way to split the blocks, but we will obtain the relationships

that any splitting must satisfy and thus identify appropriate factorizations. In

order to do this we write the lowest level D, U and V matrices as in Equation 2.2.

Combining these formulas with the merge formulas from Lemma 2.3.1 we obtain

the relations:

DK−1;i =

(
D1,1

K−1;i D1,2
K−1;i

D2,1
K−1;i D2,2

K−1;i

)
=

(
DK;m UK;mBK;m,nVK;n

UK;nBK;n,mVK;m DK;n

)
,

UK−1;i =

(
U1

K−1;i

U2
K−1;i

)
=

(
UK;mRK;m

UK;nRK;n

)
,

VK−1;i =

(
V 1

K−1;i

V 2
K−1;i

)
=

(
VK;mWK;m

VK;nWK;n

)
.

Where the extreme right hand expressions consist of unknowns and the other

terms are known. The first equation allows us to read off

DK;m = D1,1
K−1;i, DK;n = D2,2

K−1;i.

22

and we are left with six equations in 10 unknowns. This six equations can be

compactly written in the form:(
U1

K−1;i D1,2
K−1;i

0 V 2H
K−1;i

)
=

(
UK;m 0

0 I

)(
RK;m BK;m,n

0 WH
K;n

)(
I 0

0 V H
K;n

)
(

V 1H
K−1;i 0

D2,1
K−1;i U2

K−1;i

)
=

(
I 0

0 UK;n

)(
WH

K;m 0

BK;n,m RK;n

)(
V H

K;m 0

0 I

)
.

where again the terms on the right are unknown and those on the left are known.

Thus, a matrix factorization of the form shown allows us to calculate the 2K×2K

rebus, given the 2K−1 × 2K−1 rebus.

Lemma 2.3.3 It is possible to (nontrivially) factor a block upper triangular ma-

trix into the form a1,1 a1,2

0 a2,2

 =

 Q1 0

0 I


 b1,1 b1,2

0 b2,2


 I 0

0 Q2

 .

Proof First consider a QR factorization of the top row:(
a1,1 a1,2

)
= Q1

(
R1,1 R1,2

)
followed by an LQ factorization of(

R1,2

a2,2

)
=

(
L1,2

L2,2

)
Q2.

Then it follows that(
a1,1 a1,2

0 a2,2

)
=

(
Q1 0

0 I

)(
R1,1 L1,2

0 L2,2

)(
I 0

0 Q2

)

and our result follows with b1,1 = R1,1, bi,2 = Li,2.

The factorization for the block lower triangular case follows in the same man-

ner. By using the rank reducing SVD to carry out the component factorizations

we can assure that the low-rank blocks will be suitably compressed.

23

2.4 Block Sparse Notation

A convenient and useful alternative to the triple-indexed notation above can

also be employed while working with rebuses. This involves embedding each

group of factors of the rebus in a block sparse matrix. In this way, we refer to

the entire set of diagonal entries at the kth level, Dk;1, Dk;2, . . . , Dk;2k , by defining

the single-index quantity

Dk = diag(Dk;1, Dk;2, . . . , Dk;2k) ,

as a block sparse matrix. Similarly we define

Uk = diag(Uk;1, Uk;2, . . . , Uk;2k) and Vk = diag(V H
k;1, V

H
k;2, . . . , V

H
k;2k)

giving us all of the “leaf” variable in this form. Note that we have absorbed the

Hermitian conjugate into the block sparse embedding.

A K-level rebus contains the factors Bk;ij for pairs of indices

(i, j) = (1, 2), (2, 1), (3, 4), (4, 3), . . . , (2k, 2k − 1)

for each level k = 1 . . . K. We embed each level k separately, so that the (i, j)

block of Bk contains Bk;i,j if that matrix is defined and is empty otherwise. This

is equivalent to defining

Bk = diag(Bk;1,2, Bk;2,1, . . . , Bk;2k,2k−1) · P ,

where P is the permutation which is empty except for identity matrices in the

first off-diagonal blocks at the kth level. Figure 2.3 illustrates the block pattern.

To complete our new representation of the rebus, we also have block sparse

representations of the R and WH matrices at each level. These are the vertices if

the partition tree that connect each level to the levels one higher and one lower.

The block structure reflects this. In a full tree, Rk would have 2k block-rows

and 2k−1 block-columns. The rows contained in these blocks are determined by

the partition tree. The extra partition between rows marks the change between

indices which belong to the right child and indices which belong to the left child.

24

Figure 2.3. The block structures of B1, B2 and B3, all of which are components

of a 3-level rebus.

Figure 2.4 illustrates this for a perfectly uniform partitioning. The R3 matrices

shown connect the 23 nodes of the third level with the 22 nodes of the second

level.

Figure 2.4. The block structure of R3 and W3. The shaded areas contain R3;1

through R3;8 and WH
3;1 through WH

3;8.

2.4.1 Fundamental Block Sparse Relationships

The advantage of the block sparse notation is that the fundamental operations

of merging and splitting and relating the higher-level U and V matrices to those

stored on the leaves may be expressed much more succinctly. In addition, the

separation of scales it affords gives better insight into the role played by the

upsweep and downsweep operations.

Recall from Section 2.2 that the fundamental operations we consider in dealing

with the recursive structure of the rebus are:

1. splitting and merging, and

2. relating the off-diagonal factors U and V to the leaf values.

25

2.4.2 Splitting and Merging

In our new notation, the splitting formula 2.3.2 is expressed as

Dk = Dk+1 + Uk+1Bk+1Vk+1 .

This may be used recursively, starting with D0 (the original matrix representation

of an operator), to obtain the representation

D0 = DK + UKBKVK + UK−1BK−1VK−1 + . . . + U2B2V2 + U1B1V1

for an operator as a K-level rebus. Figure 2.5 shows the block patterns of these

terms. Note that the term UiBiVi has the same block structure as Bi itself, as U

and V are block-diagonal.

+ += +

Figure 2.5. The equation D0 = D3 + U3B3V3 + U2B2V2 + U1B1V1 in pictures.

2.4.3 Projection and Interpolation

The second relationship we rely on expresses Ui in terms of UK and {Rj : j =

K, K − 1, . . . , i − 1}. This is the connection between the different levels of the

rebus and allows us to store only the lowest-level UK .

Using the definition of Rk and Wk above, we see that the factors obey the

relationships

Uk = Uk−1Rk−1

and

Vk = Wk−1Vk−1.

26

2.4.4 Recursive Representations of a Matrix

Using the equations above, we can derive the following rebus representation

for a matrix D0.

D0 = DK + UKBKVK + UK−1BK−1VK−1 + . . . + U1B1V1 (2.3)

= DK + UKBKVK + UKRKBK−1WKVK

+ UKRKRK−1BK−2WK−1WKVK

+ . . . + UKRKRK−1RK−2 · · ·R2B1W2 · · ·WK−1WKVK (2.4)

= DK + UK(BK + RK(BK−1 + RK−1(BK−2

+ RK−2(· · · (B2 + R2B1W2) · · ·)WK−2)WK−1)WK)VK (2.5)

= DK + UK(BKVK + RK(BK−1WKVK

+ RK−1(BK−2WK−1WKVK + · · ·+ R2(B1W2W3 · · ·WK−1WKVK))))

(2.6)

Now, if we recursively define the quantities

GK = VK

and

Gk−1 = WkGk for 1 ≤ k < K,

we obtain

D0 = DK +UK(BKGK +RK(BK−1GK−1 +RK−1(BK−2GK−2 + · · ·+R2(B1G1)))).

These are the “upsweep” recursions, taking information from the leaves, up the

tree. Note that, because of the way the low-rank factors are generated, each Gk

is low-rank.

We next define the “downsweep” recursion by:

Fk = BkGk + RkFk−1

and

F1 = B1G1 ,

27

giving

D0 = DK + UKFK (2.7)

as an expression of our original matrix, in terms of a low-rank upsweep and

downsweep.

It is also useful to introduce another recursive representation. In this version,

the quantities on the tree are not generated in such a way as to preserve low-

rank. thus, it is not a representation we use in performing actual calculations.

However, it is useful in deriving such algorithms.

We start from Equation 2.5:

D0 = DK + UK(BK + RK(BK−1 + RK−1(BK−2

+ RK−2(· · · (B2 + R2B1W2) · · ·)WK−2)WK−1)WK)VK (2.8)

= DK + UKXKVK (2.9)

where

Xk = Bk + RkXk−1Wk and X1 = B1. (2.10)

We will use this form in Section 3.1 to compactly derive the rebus-vector

multiplication originally presented in [18].

2.5 Tree-based Structure

In understanding rebus algorithms, it is frequently better to think in terms of

the binary tree of factors than to think of the recursive block structure. The tree

structure of rebuses is well explained in [18]. In this picture, the rebus is a binary

tree of low rank operators, with their position in the tree reflecting whether they

influence the operator on a finer or coarser scale. For example, the leaves of the

binary tree contain the Di which are the diagonal, short-range, contributions to

the operator.

28

Figure 2.6 shows the role of a leaf in a rebus algorithm. The leaf’s parent

passes it an intermediate variable f . The leaf then performs a calculation depend-

ing only on f and the leaf’s own contents: a single D, u and v from the rebus.

The leaf may then produce some output and it also returns its own intermediate

variable g back to its parent.

u D v

f
g

Figure 2.6. Schematic of data flow in a leaf of the rebus.

At a node of the rebus, the process is similar. As before, the node receives an

intermediate f and returns its own variable g to its parent. In general, however,

this g will depend on the gs of its children. So, using its own internal variables

and the f , the node constructs appropriate values f to pass down to its children

who will then do likewise until a leaf is reached. When all the calculations

“beneath” the node have terminated it can use the returned values of g and its

own internal structure to calculate its own g to return to its parent. This is

illustrated schematically in Figure 2.7.

The upward propagating gs are what we have been referring to as the “up-

sweep recursion”. Similarly, the downward propagating fs constitute the “down-

sweep recursion”.

These recursions are fundamental to exploiting the tree structure of the rebus

in all of the algorithms. Each of these recursions produces a tree of values having

29

the same number K of levels as the rebuses being considered.

r
g

f
g

f
g

w
B

w
B

r

f

Figure 2.7. Schematic of data flow at a node of the rebus.

The speed and memory efficiency of these rebus algorithms is due to the data

locality of the structure. No knowledge of the rest of the computation is needed

at any stage other than the f from the parent and the g’s of the child nodes.

The order in which these operations happen on the tree depends on the specific

algorithm. If the calculation of g does not depend of the parent’s f (as is the case

in rebus-vector and rebus-rebus multiplication) then the computation can start at

the leaves of the tree. In these multiplication algorithms the recursions take the

form of one recursion starting at the leaves and propagating information towards

the root (the upsweep) and a second which starts at the root and propagates

information in the direction of the leaves (the downsweep).

In the LU factorization and forward and back substitution algorithms, how-

ever, the computation must start with the root of the tree and travel through the

tree in either a left-to-right or right-to-left preorder depth first traversal.

30

Chapter 3

Algorithms for the Rebus

Representation

In this chapter we will describe the fundamental operations in the rebus alge-

bra. These will constitute the foundation for the more complicated applications in

Chapter 4. The operations that we will describe here are rebus-vector multiplica-

tion (originally described in [18]), rebus-rebus multiplication, LU decomposition

and forward and back substitution.

Along with some smaller and more specialized algorithms, the rebus-rebus

multiplication allows us to quickly construct complicated rebuses from some basic

“building blocks” that can be calculated in advance. Once the linear system is

constructed in this form our LU factorization allows its solution.

31

3.1 Rebus-Vector Multiplication

3.1.1 Algorithm

We wish to evaluate D0 · b, the product of a dense matrix with a vector.

Expressing the matrix as a K-level rebus, using Equation 2.10, we obtain the

following equations:

D0 · b = DK · b + UKXKVK · b (3.1)

= DK · b + UK(BK + RK(BK−1 + RK−1(BK−2

+RK−2(· · · (B2 + R2B1W2) · · ·)WK−2)WK−1)WK)VK · b (3.2)

= DK · b + UKFK . (3.3)

Where F is defined via the upsweep and downsweep recursions:

Fk = BkGk + RkFk−1 and F1 = B1G1 (3.4)

where

GK = VK · b and Gk−1 = WkGk. (3.5)

3.1.2 Comments

The simplest operation that we can implement using the rebus is the appli-

cation of a linear transformation to a vector. This is a fundamental operation

and has more applications than the immediately obvious. For example, in an

iterative solve of conjugate-gradient type, the actual calculation of the solution

consists of a sequence of linear transformations of vectors. Thus, even with this

first algorithm, we have the necessary equipment to tackle an iterative solver of

linear systems.

32

3.2 Rebus-Rebus Multiplication

In practical implementations of rebus-based methods, the first issue that will

arise is how to get the operator you want to work with into rebus form. One

option is to form the dense matrix representation of the operator and then use a

construction algorithm (such as in the paper [18]) to generate the corresponding

rebus. For very large matrices that may not fit in memory, we can generate the

dense representation of various sub-blocks sequentially, and build the rebus from

these.

The construction algorithms are based on singular value decompositions and

are costly to execute. For many problems, the construction of the rebus repre-

sentation will be the dominant cost in the entire solution. It is therefore in our

interest to precompute a number of useful rebuses to use as building blocks for

generating a much larger set of rebuses using fast operations. In this context,

being able to compose operators in rebus form is critical to the overall usefulness

of the rebus in practical computations.

In this section we will describe the rebus multiplication algorithm, provide a

proof of the formulae presented, and report on numerical experiments for rebuses

of different sizes and rank structures.

3.2.1 Algorithm

We begin by defining the recursions for the intermediate variables used in

the computation. We then proceed to describe an algorithm for computing the

product and prove that the rebus so generated corresponds to the product we

seek.

Definition For a 2K × 2K rebus multiplication, we define the upsweep recursion

as:

gK;i = V H
K;i(A)UK;i(B)

33

for i = 1, . . . , 2K and

gk−1;i = WH
k;n(A)gk;nRk;n(B) + WH

k;n+1(A)gk;n+1Rk;n+1(B) (3.6)

for i = 1, . . . , 2k and k = K, . . . , 1.

It is worth noting that in terms of the matrices Uk,i and Vk;i this definition may

be written as:

gk;i = V H
k;i(A)Uk;i(B).

However since the matrices Uk,i and Vk;i are not stored as part of the rebus, this

does not represent what is actually calculated as accurately as Equations 3.6.

Definition For a 2K × 2K rebus multiplication, we define the downsweep recur-

sion as:

f1;i = B1;i,j(A)g1;jB1;j,i(B)

for (i, j) = (1, 2), (2, 1) and

fk;i = Bk;i,j(A)gk;jBk;j,i(B) + Rk;i(A)fk−1; i
2
WH

k;i(B)

for i = 1, . . . , 2k, j = i + 1 (for i odd) or i− 1 (for i even) and k = 2, . . . , K.

Theorem 3.2.1 The product C = A · B, where A and B are rebuses, can be

computed through the following relations:

Di(C) = Di(A)Di(B) + Ui(A)fK;iV
H
i (B),

Ui(C) =

(
Ui(A) Di(A)Ui(B)

)
,

Vi(C) =

(
DH

i (B)Vi(A) Vi(B)

)
,

34

for i = 1, . . . , 2K and

Bk;i,j(C) =

 Bk;i,j(A) Rk;i(A)fk−1; i
2
WH

k;j(B)

0 Bk;i,j(B)

 ,

Rk;i(C) =

 Rk;i(A) Bk;i,j(A)gk;jRk;j(B)

0 Rk;i(B)

 ,

WH
k;i(C) =

 WH
k;i(A) WH

k;j(A)gk;jBk;j,i(B)

0 WH
k;i(B)

 ,

for k = 1, . . . , K and i = 1, . . . , 2k.

Proof Let us proceed by induction. We will assume that the formulas given

give a rebus for the product for all block 2k−1 × 2k−1 rebuses. Then we will use

the block merging and splitting formulas to deduce that the relations will also

hold for the block 2k × 2k rebuses. The base case will be established by direct

computation.

Let A · B = C where A, B and C are matrices and assume that the above

formulas give the block 2k−1 × 2k−1 rebus of C in terms of the block 2k−1 × 2k−1

representations of A and B.

By this induction assumption, we know that the diagonals of the 2k−1 × 2k−1

product are given by

Dk−1;i(C) = Dk−1;i(A)Dk−1;i(B) + Uk−1;i(A)fk−1;iV
H
k−1;i(B).

which we can expand out in terms of the kth level to give(
Dk;m Uk;mBk;m,nVk;n

Uk;nBk;n,mVk;m Dk;n

)
A

(
Dk;m Uk;mBk;m,nVk;n

Uk;nBk;n,mVk;m Dk;n

)
B

+

(
Uk;mRk;m

Uk;nRk;n

)
A

fk−1;i

(
WH

k;mV H
k;m WH

k;nV
H
k;n

)
B

(3.7)

By splitting the blocks in product matrix C we get

Dk−1;i(C) =

(
Dk;m Uk;mBk;m,nVk;n

Uk;nBk;n,mVk;m Dk;n

)
C

(3.8)

35

Now, by equating Equation 3.7 and Equation 3.8 and reading off the diagonal

for i = 1, . . . , 2k (letting n→ i) we have

Dk;n(C) = Dk;n(A)Dk;n(B)

+ Uk;n(A)Bk;nm(A)V H
k;m(A)Uk;m(B)Bk;mn(B)V H

k;n(B)

+ Uk;n(A)Rk;n(A)fk−1;iW
H
k;n(B)V H

k;n(B)

= Dk;n(A)Dk;n(B)

+ Uk;n(A)(Bk;nm(A)gk;mBk;mn(B)

+ Rk;n(A)fk−1;iW
H
k;n(B))V H

k;n(B)

= Dk;n(A)Dk;n(B) + Uk;n(A)fk;nV
H
k;n(B).

(3.9)

Our base case is a 2 × 2 block matrix multiplication. where we immediately have

D1;i = D1;i(A)D1;i(B) + U1;i(A)B1;ij(A)V H
1;j(A)U1;j(B)B1;ji(B)V H

1;i(B)

= D1;i(A)D1;i(B) + U1;i(A)B1;ij(A)g1;jB1;ji(B)V H
1;i(B)

= D1;i(A)D1;i(B) + U1;i(A)f1,iV
H
1;i(B)

for (i, j) = (1, 2) and (2, 1).

For the other relations, consider the off-diagonal block at the (k − 1) level:

Uk−1;iBk−1;i,jV
H
k−1;j. (3.10)

As before we prove the formulas are valid by induction. Assuming that the

multiplication rules hold for a 2k−1×2k−1 matrix, we can expand Expression 3.10

in two ways and then equate these two equivalent terms. Using the splitting

formulas (Equation 2.3.2) we see that

(Uk−1;iBk−1;i,jV
H
k−1;j)C =

(
Uk;mRk;m

Uk;nRk;n

)
C

Bk−1;i,j

(
V H

k;µW
H
k;µ V H

k;νW
H
k;ν

)
C

(3.11)

and by our induction hypothesis at the (k − 1) level we know that if C = A · B,

36

the expression in Equation 3.10 also equals the product ÛB̂V̂ where

Û =
(

Uk−1;i(A) Dk−1;i(A)Uk−1;i(B)
)

B̂ =

 Bk−1;i,j(A) Rk−1;i(A)fk−2; i
2
WH

k−1;j(B)

0 Bk−1;i,j(B)


V̂ =

(
V H

k−1;j(A)Dk−1;j(B)

V H
k−1;j(B)

) (3.12)

It follows from the equality of Equation 3.11 and the product of the three terms

of Equation 3.12 that(
Uk;mRk;m

Uk;nRk;n

)
C

=
(

Uk−1;i(A) Dk−1;i(A)Uk−1;i(B)
)

=

(
Uk;m(A)Rk;m(A) Xm

Uk;n(A)Rk;n(A) Xn

) (3.13)

where

Xn = Dk;n(A)Uk;n(B)Rk;n(B) + Uk;n(A)Bk;n,m(A)gk;mRk;m(B)

where we have now applied Equation 2.3.2 to the right hand side. Looking at the

formulas for node i we see that at level k we can factorize as:

Uk;iRk;i =
(

Uk;i(A) Dk;i(A)Uk;i(B)
)(Rk;i(A) Bk;i,n(A)gk;nRk;n(B)

Rk;i(B)

)
(3.14)

Corresponding results hold at node n and analogous calculations go through for

V and W . Thus the validity of the expression at level k is established from that

at level k − 1. The base case, again, is a 2× 2 block matrix multiplication.

It remains to show the formula given for B is valid.

We have expressions for U and V and we return to the equality of Equation 3.7

and Equation 3.8 and equate the off-diagonal blocks. This gives the equation

(Uk;mBk;m,nV
H
k;n)C = Dk;m(A)Uk;m(B)Bk;m,n(B)V H

k;n(B)

+ Uk;m(A)Bk;m,n(A)V H
k;n(A)Dk;n(B)

+ Uk;m(A)Rk;m(A)fk−1;iW
H
k;n(B)V H

k;n(B) (3.15)

37

and factorizing this in terms of the U and V we have already determined gives

us

Bk;m,n(C) =

(
Bk;m,n(A) Rk;m(A)fk−1;iW

H
k;n(B)

0 Bk;m,n(B)

)
(3.16)

3.2.2 Numerical Experiments

The cost of computing the rebus-rebus product depends primarily on two

factors. One is the size of the equivalent matrix representation. Everything else

being equal, if one rebus represents a matrix twice as large as another rebus, we

would expect multiplication by the smaller one to be faster. This follows since

either each node contains larger matrices, or we have more nodes in the tree. In

either case extra computations will be required.

As shown in Section 1.4, there is a typical rank structure for a rebus which

represents a differential or integral operator. This consists of full rank blocks up

to some point, followed by larger and larger blocks of approximately constant

rank.

For these numerical experiments we generated random rebuses with known

rank structure. Table 3.1 lists the size of the rebus N , the maximal rank of the

off-diagonal blocks p, and time for a rebus-rebus multiplication. For comparison,

the time taken for the same multiplication by the BLAS routine dgemm.

Size of rebus or matrix
p 128 256 512 1024 2048 4096 8192 16384 32768 65536
4 0.01 0.05 0.03 0.07 0.14 0.3 0.61 1.38 2.59 5.41
8 0.02 0.03 0.06 0.13 0.26 0.56 1.21 1.72 3.46 7.36
16 0.02 0.05 0.1 0.2 0.41 0.84 1.82 2.70 5.44 11.8
32 0.03 0.07 0.17 0.36 0.76 1.63 3.74 5.48 11.6 25.3
64 0.08 0.23 0.52 1.16 2.47 4.05 7.08 15.3 37.6 106
128 0.17 0.74 1.92 4.26 3.85 8.11 17.0 36.0 86.7

dgemm 0 0.04 0.28 2.01 15.8 123 1070

Table 3.1. Timings for N ×N rebus-rebus multiplication.

38

For differential operators in one dimension, our off-diagonal ranks will be order

of 10. thus we will break even with the dense matrix multiply at matrix sizes of

about 500. We also see that for problems of size about 10,000, the dense matrix

multiply was no longer possible in the 1.5 GB of memory the testing computer

had available. Again, the memory efficiency of the rebus methods allows these

much larger systems to be tackled.

Figure 3.1 shows the scaling of the multiplication algorithm for different values

of p. In each case the scaling is approximately linear as expected. For cases when

the ratio of p to N is large, the rebus is approaching a full matrix, and so the

timings for larger p are seen to depart from linearity for small matrix sizes. The

dgemm times are too large to be usefully shown on the same graph.

We can estimate the scaling behavior of the algorithm by considering the

log-log plot of the time taken against N , the system size. If we assume that the

cost scales as Nα, for some α, a simple linear regression can be used to estimate

the scaling exponent α. For p = 128, the highest-rank case tested, the linear

regression estimate of α was found to be 1.00, with R2 = 0.97. For the p = 8

case, where we expect more benefit from the rebus structure, a linear regression

gives us the estimate α = 0.95 with R2 = 0.99. Thus, in practice the algorithm

scales linearly in the system size.

p = 16, 8, 4

p = 32

p = 64

p = 128

0 2×104 4×104 6×104

0

20

40

60

80

100

Size of rebus

CPU
time (s)

Figure 3.1. Scaling of rebus-rebus multiplication at different values of p.

39

3.3 LU Factorization

The LU factorization is a fundamental tool in matrix algebra. It is invaluable

in applications, where we frequently encounter the problem of solving a matrix

system

Ax = b

for multiple right hand sides b.

If we wish to represent a linear operator by anything other than its matrix,

we would clearly benefit from having access to an LU decomposition for our

representation. For example, in order to perform certain calculations efficiently

in a wavelet basis, it is convenient to represent the operator in “nonstandard

form” [8]. This representation of the linear operator requires new algorithms in

order to achieve the composition of operators or the solution of linear systems.

In order to extend the applicability of this nonstandard form, Gines, Beylkin and

Dunn have derived an LU factorization and used it to directly solve systems of

linear equations [24].

We are interested in using rebus algorithms for the solution of partial differen-

tial equations discretized by collocation on the Chebyshev nodes (see Chapter 4).

In this case the solution is arrived at by stepping the initial condition forward

in time by repeatedly solving against a time evolution operator. The availabil-

ity of a rebus LU factorization makes it possible to further reduce the overall

computation by simply factorizing the evolution operator.

As part of a larger algebra of operations that we can quickly execute on

rebuses, we hope to realize a linear-time LU factorization. In Section 3.3.1 we

describe such an algorithm. Then, in Section 3.3.2 we present numerical results

for the algorithm.

40

3.3.1 Description of Algorithm

Let A be a k-level rebus, consisting of the factors

D, B, u, v, r, w

Let f and g be local quantities calculated at each node and leaf. Each node

and leaf is able to return a g when provided with its parent’s f . At each node,

the calculations of f and g are as described below, with the subscripts r and l

referring to the right and left child node, respectively. At a leaf, we calculate

g = vH(D − u f vH)−1u

and at a node, in terms of the quantities B′
ij = Bij − rifwH

j , we define

g =
(

wl wr

)(gl + gl B
′
lr gr B′

rl gl −gl B
′
lr gr

−gr B′
rl gl gr

)(
rl

rr

)
.

Each of these calculations depends on an f from the parent node. At the root

f = φ and at a node, the f sent to the left is

fl = rl f wH
l .

When the left branch has returned gl we calculate

fr =
(

rr Brl

)(f + f wH
l gl rl f −f wl gl

−gl rl f gl

)(
wH

r

Blr

)
,

and this is sent to the right branch.

Once the calculation of the above quantities has terminated, we have all the

information needed for L and U . The diagonal blocks of L and U are given by

the LU-factors of the D − ufvH , which we will denote L and U .

The components of L are:(
D ← L r ← r wl ← wl wr ← wr − wl gl B

′
lr

Brl ← B′
rl Blr ← 0 u← u vH ← vH U−1

)
,

41

and the factors of U are:(
D ← U rl ← rl rr ← rr −B′

rl gl Rl w ← w

Brl ← 0 Blr ← B′
lr u← L−1 u v ← v

)
.

We note that as L shares the row space of the original matrix A, we can set

u and r of L to be those of A, and similarly with the column space and U .

3.3.2 Numerical Examples

The purpose of the above algorithm is to allow us to produce LU-factorizations

much more rapidly than via conventional methods. Using dense matrices, the

operation count for LU decomposition is 1
3
N3 for an N ×N matrix.

Our operation count is expected to be linear in the size of the discretization.

We provide two sets of experimental times to demonstrate the effectiveness of the

algorithm. First we will look at the LU factorization of a standard kernel on the

Chebyshev nodes. Second we will look at the LU factorization of random rebuses

of varying size and off-diagonal rank.

LU of kernel discretized on Chebyshev nodes

The first set of experimental runtimes come from the discretization of the

kernel

k(x, y) = |x− y| sin(|x− y|)

which demonstrates rank structure typical of operators that have HSS structure.

We discretize this kernel on the n zeros of the nth Chebyshev polynomial Tn(x) =

cos(n cos−1 x). These points cluster quadratically at −1 and 1. We partition these

points by recursively dividing the interval [−1, 1] into equal halves and halting

this process when the number of nodes in the interval reaches a preset limit.

Thus, in the case recorded here, the partition tree will be highly non-uniform,

with a much deeply nested structure near the endpoints of the interval.

42

N Rebus LU dgetrf

200 0.01 0.12
400 0.02 0.45
800 0.04 2.03
1600 0.11 9.11
3200 0.22 46.2
6400 0.42 263
12800 0.84 -
25600 1.52 -
51200 2.99 -
102400 5.84 -

Table 3.2. CPU time (s) for LU factorization of an N ×N rebus or matrix.

• • • • • •rebus LU

LAPACK

0 2000 4000 6000

0

50

100

150

200

250

Size of matrix or rebus

CPU time for LU
factorization (s)

Figure 3.2. Timings for LU factorization of N ×N matrix and rebus.

Table 3.2 and Figures 3.2 and 3.3 show the timings for the rebus LU, and

compare them to LAPACK’s LU factorization routine, dgetrf. From the log-log

plot in Figure 3.3, we can estimate the complexity of the algorithm. Assume that

the algorithm scales as Nα. Then a linear regression on the log times estimates

43

•

•

•

•

•

•rebus LU

LAPACK

200 500 1000 2000 5000

0.1

1

10

100

Size of matrix or rebus

CPU time for LU
factorization (s)

Figure 3.3. Timings for LU factorization of N ×N matrix and rebus (log scale).

α = 1.03, with R2 = 1.00. Thus, the algorithm presented is of linear complexity:

it runs in time proportional to the size of the system.

LU of random rebuses

For these numerical experiments we generated random rebuses with known

rank structure. Table 3.3 lists the size of the rebus N , the maximal rank of the

off-diagonal blocks p, and time for a rebus LU factorization. For comparison, the

time taken for the same multiplication by the BLAS routine dgetrf.

It is also worth noting the benefit of being more efficient in terms of memory,

as well as time. In some cases time is not critical, but we would want to solve the

problem at hand on a machine we have available. These tests were carried out

on an Apple dual 1GHz PowerPC G4 machine with 1.5GB of RAM. For matrix

sizes of greater than about 10,000 the dense matrix computations could no longer

44

Size of rebus or matrix
p 128 256 512 1024 2048 4096 8192 16384 32768 65536
4 0.02 0.03 0.09 0.11 0.23 0.49 0.99 2.08 4.15 8.65
8 0.02 0.05 0.10 0.25 0.54 1.07 2.70 3.01 6.33 13.1
16 0.03 0.07 0.15 0.42 0.83 1.96 2.44 4.90 10.2 21.0
32 0.09 0.20 0.34 0.73 1.74 2.93 4.93 10.2 20.5 42.1
64 0.10 0.27 0.51 1.31 2.74 5.65 11.8 24.7 52.8 137
128 0.10 0.47 1.34 3.11 6.82 14.2 29.3 61.1 136 331

getrf 0.01 0.02 0.19 0.98 6.52 46.7 393

Table 3.3. Time (s) for N ×N rebus LU factorization.

be completed at all. Due to the compressed nature of the rebus representation,

much larger rebuses may be manipulated.

3.4 Forward (and Back) Substitution

Given a lower (or upper) triangular rebus, we would like to be able to solve

systems by forward (and back) substitutions. In this section we describe algo-

rithms to accomplish this. Similar to the LU factorization, these take the form of

a depth-first sweep through the tree, with the intermediate upsweep and down-

sweep variables being created as needed. Corresponding to the dense form of the

algorithm, the forward substitutions hit the nodes in left-to-right order and the

back substitutions hit them in reverse order.

3.4.1 Forward Substitution

Let us consider solving the system

L x = b,

where L is a lower triangular rebus and x and b are taken to be dense vectors,

block-partitioned conformally with L. We will use the same notation as in Sec-

tion 3.3.1.

45

The upsweep variable g is calculated at each leaf as:

g = vH D−1(b− u f).

Each of the variables in this expression is associated with the leaf at which we are

performing the calculation, except f , which is passed to the leaf by its parent.

Note that if our operator L is truly lower triangular, then in particular all of

its diagonal blocks will be lower triangular. Thus the calculation at the leaves of

D−1(b− u f) can itself be accomplished via conventional, dense matrix, forward

substitution.

At a node, once the children’s g are known, we calculate

g = (w g)l + (w g)r

and the downsweep variable f is defined to be an empty matrix at the root, and

at a node

f = R fp + B gs,

where the sibling subscript refers to the left sibling (if present).

Given the lower triangular rebus L, we may solve the system Lx = b by

partitioning x and b conformally with L and solving

Lx = b− u f

at each node. The influence of all the non-diagonal blocks is mediated by the

presence of the f .

3.4.2 Back Substitution

The complementary problem of solving the system

U x = b

where U is an upper triangular rebus is equivalent to forward substitution with

left and right reversed. Thus the calculation at each leaf depend on the calcula-

tions at every leaf to the right.

46

At a node, the variable sent down to the child to the left is

f = R fp + B gs

where the sibling subscript now refers to the right sibling (if present). To the

right, we simply send

f = R fp.

The calculation is initiated with an empty matrix being sent to the root node

as its f . This is then propagated to the right hand branch successively until a

leaf is reached, the first g is calculated and returned up to that leaf’s parent node.

Once a left subtree has returned, the calculation then proceeds through the right

subtree. This is a preorder depth-first traversal of the tree.

3.4.3 Numerical Examples

We consider a family of matrices A of the form

Ai,j =
√
|xi − xj|,

where for an n×n matrix A the points xi are chosen to be the n zeros of the nth

Chebyshev polynomial Tn(x) = cos(n cos−1 x). These points cluster quadratically

at −1 and 1. We partition these points by recursively dividing the interval [−1, 1]

into equal halves. We stop partitioning an interval as soon as the number of points

in that interval decreases below a pre-set threshold p. This partitioning is then

used as the HSS partitioning of A. We did a series of experiments with such

matrices A ranging in size from 256 to 131072. In each case we report the values

of p, the cpu run-time in seconds, and the approximate backward error,

‖Ax̂− b‖1
n‖x̂‖1 + ‖b‖1

,

where n is an approximation of the 1-norm of A. The results can be found in

Table 3.4.

For comparison we also provide the timings for the LAPACK solver dgels

using the same BLAS on the same machine in Table 3.4. In some cases there was

insufficient memory to do the timings. Those entries are left blank.

47

N p Factor (s) Solve (s) Total time (s) Error dgels (s)
256 13 0.04 0 0.04 9.7e-18 0.06
512 14 0.08 0.02 0.10 1.2e-17 0.28
1024 15 0.19 0.03 0.22 2.1e-18 1.89
2048 16 0.36 0.07 0.43 6.3e-18 13.7
4096 17 0.81 0.13 0.94 8.4e-18 107
8192 18 1.63 0.26 1.89 1.8e-18 1429
16384 19 3.05 0.50 3.55 7.6e-18
32768 20 5.77 0.98 6.75 2.7e-18
65536 21 11.9 2.14 14.0 3.1e-18
131072 22 23.1 4.24 27.3 2.6e-18

Table 3.4. Time takes to factor and solve an N ×N rebus system

The algorithms described in this section provide a practical LU factorization

and forward and back substitution for use in solving systems of linear equations

in rebus form.

In standard linear algebra, having the LU factorization available reduces the

complexity of solving a linear system from O(N3) to O(N2). The rebus algorithms

presented here are designed to scale linearly with the number of unknowns. In

the rebus case, once the LU factorization has been computed, the solution of

the linear system by forward and back substitution accounts for only 15% of the

overall solution time.

In any application where the solution for many right hand sides is needed

these algorithms should provide significant improvements over current methods.

In particular, for the solution of PDEs by the methods described in [32] where a

rebus system had to be solved sequentially against 100 distinct right hand sides,

we would expect to see large increases in speed. We discuss the impact of such

LU accelerated solvers in Section 6.1.

Assuming the complexity to be proportional to Nα, we can estimate the

exponent α using a linear regression of the timing data in a log-log plot. For the

data in Table 3.4, doing this tells us that for the LU factorization, α = 1.02 with

R2 = 1.00. Similarly, for the solution via forward and back substitution we find

that α = 0.98 with R2 = 1.00. Thus, both the factorization and the solution of

48

the system can be performed in an amount of CPU time proportional to the size

of the system.

49

Chapter 4

Numerical Implementations of

PDE Solvers

4.1 Introduction

An important factor in the rise in popularity of spectral methods is the avail-

ability of fast transform methods. Due to the global nature of the basis functions

employed, matrix representations of differential operators in the spatial domain

are not sparse and are costly to work with. Working in a transformed domain

returns us to a sparse representation.

In a number of situations, staying in the spatial domain may be highly de-

sirable. The most common reason for favoring a transform-free method is to

facilitate enforcing boundary conditions. If we wish to work on a non-periodic

problem and specify Dirichlet or Neumann boundary conditions, it is natural to

work in physical space. However, if we do so our Chebyshev derivative opera-

tor will be a full matrix and the size of problem we can tackle will be severely

reduced.

Using the rebus algorithms introduced in Chapter 3, we may construct meth-

50

ods for efficiently solving spectral discretizations of partial differential equations

while staying in the spatial domain. We will develop our ideas in the context

of linearly implicit (LI) methods. This approach is currently the most popular

choice for PDEs with low order nonlinear terms and higher order linear terms.

A recent paper by Kassam and Trefethen [11] includes a survey of methods

being applied to treat problems of this kind and indicates that LI methods may

not always be the best choice. As such, we also consider how the ideas we propose

here can be used to similar advantage in integrating factor (IF) and exponential

time differencing (ETD) methods. These methods are of recent vintage but show

great promise.

Linearly implicit methods, also known as implicit-explicit (IMEX) methods,

are widely used and have a history going back at least to 1980. In these early

papers we find a full description of the method [20] and some results on stabil-

ity [42]. More recent treatments include [3] and [2]. The defining feature of LI

methods is that they employ an implicit discretization of leading order linear

terms and an explicit discretization of the remaining, typically nonlinear terms.

Thus, if the inversion of the resulting linear system can be accomplished at a low

cost then one obtains an efficient method in which the leading order timestepping

stability constraint has been eliminated. Unfortunately, the solution to such lin-

ear systems is costly for Chebyshev collocation and quite generally for spectral

discretizations when remaining in the spatial domain.

Here, by employing a rebus representation of the differential operator on the

spatial domain, we can use an implicit time discretization of the leading order

linear operators and apply direct, fast, non-iterative methods to solve the result-

ing linear system at each timestep. This allows us to remove the highest order

timestepping constraint while retaining nearly linear scaling in the number of

collocation points.

We illustrate this strategy in the particular case of functions on a finite inter-

val, discretized by collocation on the Gauss-Lobatto points.

51

4.2 Approach to PDEs

The basis of our approach is the rebus representation of differential operators.

In transform methods no explicit representation of the derivative operator is

needed, as the coefficients of the derivative are generated through recursion. In

the spatial domain, the derivative has a matrix representation and classically this

is what is used in physical space numerical methods.

However, the matrix representation of the derivative is not sparse, symmetric

or even normal (see [22]). Thus it is computationally expensive to work with. It

is also ill-conditioned, so even a brute force solution of a discretized differential

equation using iterative methods will be very expensive.

Our approach to solving the PDEs is as follows. Starting from the governing

equations, we discretize the time dependence using an implicit discretization of

the leading order linear terms. This avoids high stability restrictions on the

allowable time step. Then we introduce the rebus representation of the spectral

derivative operator and use fast algorithms to generate the needed higher order

linear operator for a timestep. After this, the linear system that results from the

implicit or semi-implicit time discretization and the application of the boundary

conditions is solved in rebus form.

The goal of the rebus representation is to keep the derivative operator, the

timestepping operator and all related quantities in rebus form at all stages of

the numerical method. This allows us to use the fast algorithms of Chapter 3 to

achieve large computational savings.

4.3 Description of the PDE

We consider a general PDE that can be written in the form

ut = L(x, t,u) + N(x, t,u), t > 0, x ∈ Ω, (4.1)

where L and N represent a linear and a nonlinear differential operator, respec-

tively. Inhomogeneous terms, if present, are also included in N. The domain Ω is

52

bounded and the equation is supplemented with appropriate initial and bound-

ary conditions. We also assume that the leading order terms at small scales (e.g.

terms with the highest order derivatives) are linear and thus contained in L.

With a collocation method the computational cost of incorporating boundary

conditions of Dirichlet, Neumann or mixed type is low. It is most convenient, in

this approach, to use boundary bordering as described by Boyd in [13].

To illustrate ideas let us consider the particular case where the right hand side

of the differential equation can be written as the sum of a linear elliptic operator

and a nonlinear operator, possibly including an inhomogeneous forcing term:

ut = ∇ · (a∇u) + N(x, t,u), (4.2)

where a > 0. This type of equation arises routinely as diffusion-convection equa-

tions in computational fluid dynamics or reaction-diffusion problems in chemistry.

As explained in Section 4.1, a popular approach in this situation is to treat the

elliptic part implicitly and the other terms explicitly. The reason for this lin-

early implicit approach is that the elliptic term is the stiffest and gives rise to

severe timestep constraints if treated explicitly. The remaining nonlinear terms

are treated explicitly as their implicit discretization would result in a nonlinear

system which would be difficult and costly to invert.

Terms that we are treating explicitly need to be evaluated before we proceed

to solve the system. Since the rebus representation of the derivative is already

being computed, it may be applied cheaply to a vector by using a rebus-vector

multiply as described in Section 3.1 to efficiently calculate any derivatives in

the explicit term. This would be needed for example in the common case of an

advective term. Here we focus on the problem of integrating implicitly the stiff

elliptic term without leaving the physical space.

53

4.4 Underlying Elliptic Problem

The timestepping solution of PDEs of this type reduces to solving an elliptic

equation at each timestep. Since we are in the spatial domain, imposing the

boundary conditions at each timestep introduces no extra complications.

In most spectral methods, a finite difference discretization is used in time. As

the most simple example, consider a first-order (backward Euler) discretization.

Higher order schemes in time can be easily implemented with exactly the same

approach. The time discretization is

1

∆t
(u(x, t + ∆t)− u(x, t)) = L(x, t + ∆t,u) + N(x, t,u).

To step our solution forward in time with given, time-dependent Dirichlet

boundary conditions we solve

L∆tu(x, t + ∆t) = u(x, t) + ∆tN(x, t,u), (4.3)

where L∆t = I −∆t · L.

The solution at each timestep consists of the following steps.

1. Generate the rebus representation of D, the Chebyshev derivative operator.

2. Use the fast rebus-rebus multiplication algorithm of Section 3.2 to generate

the relevant Dn operator.

3. Use scaling and diagonal updates to generate L∆t. Algorithms for this are

presented in Sections 4.4.1 and 4.4.2.

4. Evaluate the nonlinear term N(x, t,u) using u and possibly the rebus rep-

resentation of D.

5. Add the right hand side terms to obtain a single, vector-valued, right hand

side.

6. Apply boundary conditions via an efficient leaf-update of L∆t, described in

Section 4.5.

54

7. Solve the system using the algorithm presented in [17].

Step 1 may of course be done only once for a given set of nodes and may

then be stored. In nearly all problems of interest, step 2 may be done as a

preprocessing step and need not be repeated. For a constant coefficient equation

with uniform timesteps, step 3 may also be taken out of the loop. In this special

case we need only evaluate the nonlinear term, update boundary conditions and

solve.

4.4.1 Rebus Scaling

Consider the operation A→ c ·A. For a matrix representation of A we clearly

update the matrix elements ai,j → c · ai,j. Now consider the equivalent rebus

operation. We will use the notation of Section 2.2.

The interaction of each subdomain with each other subdomain is represented

either by DK;i or the product Uk;iBk;i,jV
H
k;j, for some k. U and V themselves

satisfy Equation 2.1.

Thus, the structure can correctly be scaled by

DK;i → c ·DK;i for i = 1 . . . 2K

and

Bk;i,j → c ·Bk;i,j for k = 1 . . . K and (i, j) = (1, 2), (2, 1), . . . , (2k − 1, 2k).

All other factors of the rebus remain unchanged.

4.4.2 Diagonal Updates

The backward Euler timestepping discretization of the PDE is given by

(I −∆t · L)u(x, t + ∆t) = u(x, t) + ∆tN(x, t,u)

55

and in this case the operator we must represent as a rebus is

L = I −∆t · L.

Given the rebus representation of L, forming this operator requires a scaling by

−∆t, followed by a diagonal update.

Every off-diagonal block of I −∆t · L is equal to the corresponding block of

−∆t · L. Thus the update need operate only on the blocks DK;i. But these are

exactly the blocks which are stored explicitly as normal matrices in our rebus

representation.

Thus, the structure can be correctly updated by

DK;i → I −DK;i for i = 1 . . . 2K ,

where DK;i are the diagonal blocks of our scaled rebus.

4.5 Boundary Conditions by Boundary Border-

ing

The main reason for pursuing these methods is to efficiently treat PDEs with

nonperiodic boundary condition. It is appropriate then, to consider how to en-

force various boundary conditions in the rebus formulation.

As discussed by Boyd in [13], the most robust and flexible method of imposing

physical boundary conditions for a matrix formulation of Chebyshev collocation

is boundary bordering. The principle of this method is to allocate m rows of

the matrix to explicitly imposing the m boundary conditions, of whatever type.

Thus, to impose Dirichlet boundary conditions on a discretization of a second

order equation in one dimension we collocate at N − 2 interior points of the

interval and use two rows of the matrix to impose boundary conditions.

The equivalent process for a rebus proceeds as follows. Instead of using the

first two rows of the matrix we need to respect the spatial structure and operate

56

on the first and last rows, corresponding to the boundary positions. We can

then accomplish the bordering. However, the rows that need to be replaced are

not readily available, as they are split between a number of blocks, which are

themselves factored.

The process is less straightforward than bordering a matrix, but is not diffi-

cult. The process may be broken down as follows.

• Initialize by setting the m required rows to zero within the rebus.

• Form the required boundary conditions as dense matrix rows.

• Construct a low-rank product expressing the desired boundary conditions

in matrix form.

• Use Algorithm 4.5.4 to add this low-rank product to the rebus.

Thus the procedure amounts to zeroing out m rows of the rebus and performing

one rank-m addition.

4.5.1 Initialization

We may modify the first and last diagonal block, DK;1 and DK;N directly, as

we would the corresponding matrix. However, the remaining factors contributing

to the border rows still need to be set to zero. (We tacitly assume here that

all the border rows can be contained in the rows covered by these blocks. The

procedure below extends to the more general case).

We use the fact that each other element of the first row is the first row of a

block Uk;iBk;i,jV
H
k;j, for some k, and that all of the Uk;i are generated from the

lowest level UK;i via the relation

Uk−1;i =

(
Uk;mRk;m

Uk;nRk;n

)
. (4.4)

57

Our requirement is that

p∑
µ=1

q∑
ν=1

(Uk;i)1,µ(Bk;i,j)µ,ν(V
H
k;j)ν,κ = 0

for all κ for each block. Thus it is sufficient to require that

(Uk;1)1,µ = 0 for all µ for all k.

And from the recursion relation 4.4 it is sufficient to enforce

(UK;1)1,µ = 0 for all µ

to achieve boundary bordering of the first row.

Similarly, we impose analogous conditions on all other rows that are to be

used for boundary conditions. For example, we would use

(UK;N)NK ,µ = 0 for all µ

for boundary bordering on the final row.

4.5.2 Boundary Conditions in Matrix Form

We now generate the boundary rows that we would border with in a matrix

method.

For Dirichlet boundary conditions or conditions on any linear combination of

endpoint or interior values in the form

N∑
j=1

ωju(xj) = α,

where xj are our Chebyshev nodes, we simply border with the vector of weights

ω. In the Dirichlet case this amounts to a single 1 in the first or last position.

Alternatively, we may be presented with Neumann conditions or conditions

on some linear combination of derivatives at the endpoints or interior points. Our

boundary condition then would have the form

N∑
i=1

ωiu
′(xi) = α.

58

Let D be the Pseudospectral derivative operator. Using the matrix representation

of the derivative, our condition is equivalent to

N∑
j=1

(
N∑

i=1

ωiDij

)
u(xj) = α. (4.5)

Thus, we border our matrix with a linear combination of rows from the derivative

matrix D as determined by the weights ω. In the case of a simple Neumann

condition at x = −1, we would border with the first row of D.

For more exotic boundary conditions or constraints the treatment is equally

straightforward. An integral condition may be represented by any suitable Cheby-

shev quadrature scheme, for example the Gaussian or Clenshaw-Curtis scheme.

Since quadratures are expressed in terms of weights as

N∑
j=1

wju(xj) = α,

the correct boundary row is again simply the vector of weights w.

4.5.3 Formulation as a Low-Rank Product

Given our m boundary conditions, we now need to position them appropri-

ately in our rebus. For Dirichlet conditions in one dimension, for example, we

should respect the geometry of the problem and border on the first and last rows.

Similarly for Neumann conditions. The treatment of more exotic conditions is

less obvious but should be guided by attempts to preserve locality in the rebus

structure.

Putting our m boundary conditions together into an m by n matrix B, we then

write a simple n by m permutation matrix Π so that the product ΠB contains

the rows in their chosen position relative to the rows in the rebus.

These are the same rows whose initialization we described in Section 4.5.1

and we should also have the corresponding value of the condition α on this row

on the right hand side of our rebus equation.

59

4.5.4 Low-Rank Addition

It remains to combine the initialized rebus with the boundary conditions. We

can do this using an efficient algorithm for a low-rank update of a rebus.

Consider the problem of adding the product ACT to a rebus. As in Section 2.2

we will name the components of the rebus as follows: diagonal blocks Dk, the

lowest level factors Uk and Vk and a binary tree of low-rank factors R, W and B.

We first partition the columns of A and C commensurately with the rebus.

A = A0 =

(
A1;1

A1;2

)
=


A2;1

A2;2

A2;3

A2;4

 = · · · =


Ak;1

...

Ak;2k

 ,

and similarly for C.

At the kth level we need to represent Dk;i + Ak;iC
T
k;i for j = 1 . . . 2k and

Uk;iBk;i,jV
T
k;j + Ak;iC

T
k;j for (i, j) = (2l, 2l − 1), (2l − 1, 2l), for l = 1 . . . 2k−1.

The off-diagonal blocks can be updated by assigning

Uk;i ←
(

Uk;i Ak;i

)
, Vk;j ←

(
Vk;j Ck;j

)
, Bk;ij ←

(
Bk;ij 0

0 Im

)
,

where m is the rank of the product ACT .

It remains to treat the diagonal blocks. These are either dense matrices or

each is a rebus with one fewer levels than the case just treated. If a block is a

dense matrix (a zero-level rebus) we simply perform the addition

Dk;i ← Dk;i + Ak;iC
T
k;i.

If the block is a rebus with one fewer levels, we recursively apply the original

procedure until all the diagonals have terminated with a dense block.

So using a straightforward recursive algorithm we can efficiently add a low-

rank matrix to a rebus.

60

4.6 Numerical Examples

The following section reports the results of applying these methods to a num-

ber of test problems. Since conventional methods find the combination of non-

periodic boundary conditions with many collocation points the most problematic,

we focus on such problems.

The implicit treatment of the diffusion terms corresponds to the conventional

use of linearly implicit methods (see [3]) for the convection-diffusion or reaction-

diffusion equations arising in chemical simulation. Such simulations typically

use a spectral discretization in space and face exactly the problem we address:

efficiently solving the equations arising from an implicit discretization in time.

4.6.1 Backward Euler Discretization of a Diffusion Equa-

tion with Dirichlet Boundary Conditions

Consider the test problem of a diffusion equation applied to a Gaussian func-

tion.

∂u

∂t
=

∂2u

∂x2
− 1 ≤ x ≤ 1, t ≥ 0,

u(x, 0) = exp(x2) t = 0,

u(±1, t) =

√
1

t + 1
exp

(
−1

4(t + 1)

)
t > 0.

(4.6)

This mixed initial-boundary value problem has the exact solution

u(x, t) =

√
1

t + 1
exp

(
−x2

4(t + 1)

)
. (4.7)

Using a first order accurate implicit Euler method, we wish to integrate this

from t = 0 to t = 1 while maintaining our error ||u(x, 1) − û(x, 1)||∞ ≤ 10−3.

Thus we report timings and uniform errors after 1000 steps.

As stated earlier, we use collocation on the Gauss-Lobatto points. The num-

ber of collocation points ranges from 200 to 6,400. The CPU time taken for the

61

N CPU Time (s) error (e-5)
200 16 4.85
400 41 4.74
800 105 4.68
1600 251 4.66
3200 610 4.62
6400 1424 4.48

Table 4.1. Timings for 1000 rebus timesteps on N Chebyshev nodes.

••
•

•

•

•

0 2000 4000 6000

0

500

1000

1500

Collocation points

CPU
time (s)

Slope ≈ 1.3

200 500 1000 2000 5000

20

50

100

200

500

1000

Collocation points

CPU
time (s)

Figure 4.1. Timings for 1000 rebus timesteps on N Chebyshev nodes with linear

and log scales.

1000 steps is seen to scale approximately as N1.3 which, compares favorably to

the N3 or N2 scaling of other non-iterative methods of solution of the system.

Since we are using a direct method of solution, no preconditioning is necessary.

The scaling observed in Table 4.1 and Figure 4.1 falls short of the theoretical

performance of rebus-based methods. The theory and underlying solvers would

lead us to expect linear scaling of the solution time with the number of collocation

points. As the solvers are themselves linear in time (see [17]), the extra cost

associated with the PDE solver may be attributed to non-optimality of the rebus

representation with respect to the underlying rank structure. This can hopefully

be improved, but is already competitive with n · log n methods.

62

4.6.2 Crank-Nicolson Discretization of a Diffusion Equa-

tion with Time-Varying Non-Homogenous Dirichlet

Conditions

We return to the test problem of a diffusion equation applied to a Gaussian

function.

∂u

∂t
=

∂2u

∂x2
− 1 ≤ x ≤ 1, t ≥ 0,

u(x, 0) = exp(x2) t = 0,

u(±1, t) =

√
1

t + 1
exp

(
−1

4(t + 1)

)
t > 0.

(4.8)

Note that the Dirichlet boundary conditions are non-homogenous and time

varying. This is the same kind of boundary condition we would need to apply for

a Dirichlet boundary control problem.

This mixed initial-boundary value problem has the exact solution

u(x, t) =

√
1

t + 1
exp

(
−x2

4(t + 1)

)
. (4.9)

A second-order Crank-Nicolson scheme was employed for the time integration

of the linear term and this example does not have a nonlinear term. To demon-

strate that the current approach retains the second order convergence expected

of a Crank-Nicolson method we first refine our timestep on a fixed grid. Table 4.2

demonstrates the effect of taking 2n steps for n = 3 . . . 14 on a collocation grid of

64 Gauss-Lobatto points.

Assuming the error of the scheme is of the form ||u(x, 1)−û(x, 1)||∞ = k ·N−α,

a regression of the data determines α = 2.0 with R2 = 1.00. As expected, our

implementation of the Crank-Nicolson scheme is second-order.

To demonstrate the scaling properties of the method, now take a set number

of timesteps and refine our collocation grid. As the spatial accuracy is already

exponentially convergent, our accuracy is limited by the fixed timestep size. We

are refining the grid in order to show the desirable scaling properties of the method

as N grows.

63

log2(N) N error
3 8 3.29E-05
4 16 1.07E-05
5 32 1.93E-06
6 64 4.87E-07
7 128 1.22E-07
8 256 3.04E-08
9 512 7.61E-09
10 1024 1.90E-09
11 2048 4.75E-10
12 4096 1.24E-10
13 8192 2.82E-11
14 16384 7.05E-12

Table 4.2. Convergence after N rebus timesteps on 64 Chebyshev nodes.

We solve Equation 4.8 from t = 0 to t = 1 for a changing number of collocation

points while maintaining our error ||u(x, 1)−û(x, 1)||∞ ≤ 10−5. We report timings

and uniform errors after 100 steps.

N CPU Time (s) error (e-6)
200 2.13 1.20
400 5.23 1.19
800 14.1 1.19
1600 38.5 1.20
3200 87.4 1.22
6400 213 1.44

Table 4.3. Timings for 100 rebus timesteps on N Chebyshev nodes.

A regression analysis of the data in Table 4.2 shows the cost to scale as N1.3

with R2 = 1.00. This exponent is not optimal, as linear scaling can theoretically

be achieved [18]. The performance is competitive with the N log(N) currently

possible for transform-based, diagonalizable problems. It is clearly superior to

the N3 cost expected for non-diagonalizable problems.

64

xx
x

x

x

x

0 2000 4000 6000

0

50

100

150

200

Collocation points

CPU
time (s)

200 500 1000 2000 5000

2

5

10

20

50

100

200

Collocation points

CPU
time (s)

Figure 4.2. Timings for 100 rebus timesteps on N Chebyshev nodes with linear

and log scales.

4.6.3 Crank-Nicolson / Runge-Kutta IMEX Discretiza-

tion of the Allen-Cahn Equation with Homogenous

Neumann Boundary Conditions

Having demonstrated the second order convergence of the method and the

scaling of computational cost with grid size, we now apply the method to a

more challenging simulation. We timestep a reaction-diffusion equation with a

nonlinear term and Dirichlet boundary conditions.

Consider the initial value problem for an Allen-Cahn equation of the form

ut = εuxx + u− u3 − 1 ≤ x ≤ 1, t ≥ 0,

u(x, 0) = sin(5πx/2) t = 0,

ux(±1, t) = 0 t > 0.

(4.10)

Equation 4.10 has stable equilibria at u(x) = ±1 and an unstable equilibrium

at u(x) = 0 . It also demonstrates slow dynamics, whereby metastable states

may persist for relatively long periods before undergoing a rapid transition to a

lower energy state [44].

In this case the linear term was integrated via a Crank-Nicolson scheme, the

nonlinear term via an explicit Runge-Kutta scheme and the Neumann bound-

65

ary conditions were enforced as described in Section 4.5. Table 4.4 shows the

computational time taken for different grid sizes.

N CPU Time (s)
200 2.06
400 5.12
800 13.9
1600 35.5
3200 86.7
6400 206

Table 4.4. Timings for 100 rebus timesteps on N Chebyshev nodes.

A regression of the data in Table 4.4 shows that the scaling exponent has

remained 1.3, as in Section 4.6.2, again with R2 = 1.00. The addition of Dirichlet

boundary conditions and a nonlinear term has not altered the scaling behavior

of the method.

The initial and final states are shown in Figure 4.3 and the evolution of the

state is shown in Figure 4.4. Around the midpoint of this evolution we observe

the transition out of the metastable state. High order methods are desirable for

tracking transitions such as this. As the solution is stable over relatively long

periods, an adaptive step size would also be appropriate for this kind of problem.

This is straightforward to implement in a rebus scheme. Whatever timestep

is needed, the relevant operator is still generated via fast operations from the

derivative rebus, which is already known.

66

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

u(x)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

u(x)

Figure 4.3. Initial condition and final (t = 127) state for the Allen-Cahn equation.

x

1.0

0.4

0.6

0.2

0.0

0.8

−0.2

−0.4

−0.6

−0.8

−1.0

Time

−1

0

1

Figure 4.4. Time evolution between the states of Figure 4.3

67

Chapter 5

Further Considerations for

Rebus-Based Solution of PDEs

by Spectral Collocation

5.1 Introduction

In applying rebus-based methods to the numerical solution of PDEs, there are

many auxiliary issues that need to be treated. by far the most important of these

is the question of conditioning. The Chebyshev derivative operator has very high

condition number, and all numerical calculations are constrained by this. The

problem is not critical for small systems, but as the size of the discretization

grows, the numerical concerns also do. Since the rebus methods of Chapter 4

assume that we are dealing with large systems, careful consideration of the effects

of ill-conditioning are called for.

In Section 5.2 we discuss these issues and in Section 5.3 we cover how best to

deal with them. Then in Section 5.4 we consider the application of these methods

in higher dimensional problems.

68

5.2 Conditioning of Chebyshev Derivative Op-

erators

Since we wish to work in double precision with large numbers of collocation

points, we need to be especially careful to avoid being swamped by numerical

errors. The pth order derivative sends the first p polynomials to zero and so will

have p singular values which are zero. On a computer this will result in singular

values of roughly machine precision and maximally ill-conditioned matrices.

This is not surprising, as without p boundary conditions we should not expect

to be able to solve g(p)(x) = f(x). However, imposing boundary conditions does

not give us a well conditioned system. Figure 5.1 gives an indication of the

magnitude of this problem, showing the largest and smallest nonzero singular

values for the second derivative.

•

•

•

•

•

•

10 20 50 100 200

1000

1×104

1×105

1×106

1×107

1×108

1×109

•

•

•

•
• •

10 20 50 100 200

3.7

3.8

3.9

4

Figure 5.1. Largest and smallest nonzero singular values of D2
ps against grid size

(note scales).

So, even if we manage to maintain our lowest singular value at order unity,

the condition number will grow as shown here, at a rate of p4 and reaching a

value of 109 by the time we have 512 collocation points. This leaves us only 8

digits of accuracy for an exact calculation.

Working with Chebyshev collocation methods with many collocation points,

high order derivatives and multiple dimensions is a numerically dangerous propo-

sition. The methods presented in this thesis aim to make certain types of cal-

culation much more efficient. However, the numerical considerations of roundoff

69

error and ill conditioning remain.

It is well known that the discretization of the derivative operator on Cheby-

shev nodes gives rise to an ill-conditioned matrix. As N , the number of discretiza-

tion points, increases, the condition number of the derivative matrix D grows with

O(N2). Similarly, the condition number of the second derivative operator grows

with O(N4). As the order of the linear term or the dimension increases, this can

quickly become unmanageable.

For example in a Kuramoto-Sivashinsky equation [44] we would have an

O(N8) condition number in 1d or O(N16) in 2d. If we are working with 16

digits of accuracy then at a grid size around N = 102 we can expect our an-

swer to contain no meaningful digits. In a two dimensional simulation we cannot

expect accuracy on any grid at all.

Dealing with this issue is part of using pseudospectral Chebyshev methods

and there is a considerable literature dealing with it.

5.3 Strategies for Better Conditioning

In the literature, there are a number of well known strategies to improve the

condition number and accuracy of pseudospectral derivative matrices.

5.3.1 Scaling of Boundary Conditions

We would expect the singular values of the differentiation matrix to vary

smoothly from the highest to the lowest. However, we observe jumps up to the

largest two singular values (see Figure 5.2). One way to try to overcome this

(without changing our basis polynomials) is to scale our boundary values.

Figure 5.3 shows the singular values for the backward Euler timestep matrix

on 256 collocation points with both unscaled boundary values and with boundary

values being scaled in proportion to the grid size. Surprisingly, the optimal scaling

70

•
•

• •
• • • • • • • • • • • •

0 5 10 15

0

2000

4000

6000

8000
••

••
••••••••••••••••••••••••••••

0 10 20 30

0

5×104

1×105

1.5×105

Figure 5.2. Spectrum of singular values for D2
ps for grid sizes 16 and 32.

factor was found to be the first power of p, not the second or fourth as might be

expected from the scaling of the matrix norm or condition number.

••
••
••

••

0 100 200 300 400 500

1

100

1×104

1×106

1×108
••

••
••

0 100 200 300 400 500

1

100

1×104

1×106

1×108

Figure 5.3. Singular values for 512×512 timestep matrix with (right) and without

(left) scaled boundary values.

We see that, for large numbers of collocation points, the highest singular

values are not the only problem. In fact the lowest singular values are an order

of magnitude off the smooth curve. As hoped, scaling the boundary values puts

them back on the curve, and reduces the condition number. However, this only

buys us one order of magnitude. The condition number still scales as p4.

5.3.2 Numerical Tricks and Basis Recombination

Numerical evaluation of the matrix representation of the derivative is subject

to serious roundoff errors, especially near the boundary points. Bayliss shows

how a simple adjustment to the matrix, chosen to ensure that constant functions

lie in the null space of the matrix, can improve this [7]. It is also possible to use

71

alternate formulae to generate the matrix elements, as in Tang and Trummer [41]

in order to avoid the cancellations leading to numerical errors. Each of these

methods can improve the accuracy of the matrix by a few orders of magnitude.

The scaling of the condition number is unfortunately not improved.

In a series of papers Heinrichs [27] described a specific basis recombination

strategy to improve the condition number of Dk to order Nk. This strategy is

also treated by Boyd in [13]. There is also the mapped Chebyshev approach

introduced by Tal-Ezer [31] and further studied in [21]. This also reduces the

condition number of the kth order derivative to O(Nk).

5.3.3 Extended Precision

The most straightforward way to keep ill-conditioning from interfering with

calculations which require high precision is to take advantage of extended preci-

sion floating point numbers. These are now available on a number of architectures

and supported by many compilers [5].

Using quadruple precision allows us to, for example, calculate on a 100 by

100 grid using Chebyshev collocation and still retain 16 digits of accuracy. In a

less extreme case, if 8 digits sufficed, we could use 1000 Chebyshev nodes in each

direction.

Calculating at extended precision incurs its own costs and does nothing to

mitigate the poor numerical behavior of the underlying problem. However, it

does keep numerical errors at bay without requiring any extra algorithmic or

analytic complexity. Thus for practical problems that are otherwise intractable

it offers a realistic approach.

5.3.4 Alternate Basis Sets

It is well known that other global basis sets, while lacking the optimality prop-

erties of the Chebyshev polynomials, lead to much better conditioned derivative

72

operators. Depending on the specifics of the problem it may be advisable to work

in a basis of Legendre or Jacobi polynomials.

We note that the methods developed here for Chebyshev collocation methods

are equally applicable in any other basis. The low-rank structure we are taking

advantage of stems from the smoothness of the operator itself, not the basis in

which it is represented.

5.3.5 Iterative Refinement

If we are only able to obtain relatively low accuracy, but have our system in

factored form it may be desirable to employ a few cycles of iterative refinement.

By calculating our backward error and performing another fast solve we may

extend the accuracy of the solution.

5.3.6 Exploiting Limited Precision

We can also use the fact that our final accuracy is known to be limited to our

advantage. Whether it is due to the order of our timestepping scheme or due to

the conditioning of the differential operator, we often know that we are working

to less than machine precision.

Similar to a wavelet representation, the rebus is a thresholded representation

and captures the operator to arbitrary but finite precision. The thresholding is

similar to that of an economy SVD, where basis vectors corresponding to small

singular values are discarded.

If we know that our solution will not have more than, say, 10 digits of accuracy

we can threshold more aggressively, discarding factors of the off-diagonal blocks

corresponding to singular values smaller than 10−10. This results in lower rank

representations of the off-diagonal blocks and hence faster computation speed.

By remaining aware of the limitations imposed on the accuracy of our solution

in timestepping methods we may at least dispense with unnecessary computations

73

and work with the relevant components of our problem. If only very low accuracy

is required, as would be the case for a preconditioner or an iterative refinement

step, we may work with a coarse approximation to the operator and proceed

through the calculations very rapidly.

5.4 Higher Dimensional Problems

5.4.1 Introduction

Using the rebus structure to solve linear systems arising from pseudospectral

discretizations of PDEs has the greatest impact on the time and memory required

when the problem is large. If the problem of interest consists of timestepping an

initial condition on 10 Chebyshev nodes, then our operator will be a 10 by 10

matrix, and the overhead of using a rebus will not be worth bearing.

In a timestepping setting, the accuracy of the solution will almost certainly be

determined by the temporal step size. This is due to the fact that the solutions

at each step are spectrally accurate in the number of discretization points. If the

solution we are seeking is smooth, there will likely be no gain from refining the

grid in space. Of course, if the solution contains shocks or boundary layers that

we wish to track precisely, the spatial convergence will not be spectral and in this

case large numbers of collocation points are justified.

The other important scenario where large matrices will be needed is higher

dimensional problems. In fluid or plasma dynamics, we will likely want to track

interfaces and boundary layers and also, if possible, work in three dimensions. In

quantum mechanical simulations, even higher dimensions may be needed. Using

conventional methods, pseudospectral methods are prohibitive unless the problem

can be diagonalized (that is, periodic boundary conditions imposed). It would

seem that rebus methods should have the greatest impact in this high dimensional

arena.

We saw in Section 3.3.2 that a modern computer (in 2005) with 1.5GB of RAM

74

could not call the standard LAPACK routine dgetrf on a matrix larger than

about 105 by 105 without running out of memory. For a one dimensional problem,

this is an ample number of collocation points. However, in a two-dimensional

problem, a matrix this size would correspond to around 300 collocation points in

each dimension. For a three-dimensional problem, it would correspond to only

40 collocation points in each direction.

5.4.2 Intrinsic One-Dimensionality of the Rebus

The rebus “automatically” captures HSS structure in one dimension, but this

is not necessarily true in higher dimensions. It may seem that if a discretization

of |xi − xj|2 demonstrates the requisite smoothness and decay properties in one

dimension, then it should still possess them in two and three dimensions and the

rebus representation should remain equally effective in capturing them.

We will consider two pictures of the rebus, the hierarchical block matrix and

the binary tree structure, and see why further work is required for higher dimen-

sional problems. First consider the block structure in Figure 2.1. As discussed

in Section 1.2, the prototype for a hierarchically semiseparable matrix might be

a banded matrix or its inverse. In either case, we capture and full blocks near

the diagonal, and then efficiently represent the low-rank outer blocks by their

low-rank factors.

A banded matrix is however unlikely to arise in practice unless it is from

an inherently one-dimensional problem. A finite difference discretization, for

example, will give rise to a banded matrix in one dimension but to a block-banded

matrix in two dimensions. This stems from the fact that the discretization points

have a natural order in one dimension and so the regularity of the interactions

reveals itself in a predictable way. The diagonal of the matrix always corresponds

to a nodes interaction with itself, and as we move away from the diagonal the

distance between the nodes corresponding to our row and column increases.

In a two-dimensional problem, there is no natural order of the nodes, and

so we cannot assume that the smoothness of the interactions will be adequately

75

captured. Numbering the nodes by counting across nodes in rows has the problem

that it fails to account for proximity between say the nodes exactly halfway along

adjacent rows. Similar remark hold for numbering along columns.

The same difficulty can be noticed if we consider the binary tree representation

of the rebus. The leaves capture local interactions, and the branches, representing

the translation operators, mediate between these localities on different scales.

However, the binary tree structure assumes that one unit of our domain on a

coarser scale can be split into exactly two neighboring units on a finer scale.

Again, it is clear what this means in a one-dimensional space, but it requires

some interpretation in the higher dimensional case.

5.4.3 Nested Dissection Ordering

As long ago as the early 1970s, similar issues arose in the ordering of sparse

matrices. It is clear in the sparse case that how we order our unknowns can have

a large effect on the time required for a direct solution of a set of equations.

Computationally, this can be thought of as fill-in. This term refers to the obser-

vation that as rows of a sparse matrix are eliminated, new non-zeros appear in

the remaining rows. It also has a deeper interpretation in terms of the adjacency

graph of the sparse matrix. This allows many tools from graph theory to be used

to determine optimal orderings.

In 1973, papers by Alan George [23] and Birkhoff and George [12] introduced

the idea of nested dissection ordering. For the sparse matrices arising in two-

dimensional finite element methods, this ordering of the nodes was shown to

reduce the computational cost to O(N3) for an N × N grid of elements. In a

usual row by row ordering the cost of solving the system would be O(N4).

A sparse matrix usually arises when we restrict ourselves to local interactions

as in the case of finite difference and finite element discretizations. Whenever we

are looking at adjacencies, we will have local interactions of this kind.

If we generalize this to the case where the elements do not have to be adjacent

76

to interact, but interact less with separation, we can still realize considerable

benefits. Consider a model problem as follows. Form a mesh on the unit square

(0, 1)× (0, 1) by dividing it into N2 squares each of side length 1/N Each smaller

square interacts with the others with a force

fij =
1

dij

=
1

|xi − xj|
where i and j run over all elements from 1 to N2. Now consider the matrix A,

where ai,j = fij.

Figure 5.4 shows the interaction of elements in an N × N grid, ordered by

nested dissection. Each element of the N × N grid exerts a force proportional

to fij as above. The darker the cell at ai,j, the stronger the interaction between

the cell numbered i and the cell numbered j. The diagonals are the darkest,

representing the action of a cell on itself.

Figure 5.4. A two-dimensional interaction in nested dissection ordering.

The two important properties restored to the interaction matrix are the

smoothness of the interaction and the concentration of strong interactions around

the diagonal. This resembles the situation for the interaction in one dimension.

So far nested dissection orderings have been used in rebus applications in

two and three dimensional problems. More sophisticated treatments of multi-

dimensional problems will probably rely on some extensions of the rebus such

77

as a block-rebus structure or a rebus whose components are not matrices but

themselves rebuses. Without these extensions (and their associated algorithms)

the nested dissection ordering seems to lead to the most efficient representation

of operators in higher dimensions.

78

Chapter 6

Conclusions and Topics for

Further Research

In the thesis so far we have described and demonstrated a number of rebus

algorithms and applied them to the solution of PDEs. Now that these basic

results are in place, and have a full code-base to support them, we are in a

good position to extend these applications to even faster and more accurate PDE

solvers.

The two most immediate applications are LU accelerated timestepping and

implementing the fourth-order exponential time differencing method. Both of

these are treated in this section. Leveraging the existing results and code, each

of these should be relatively easy to implement.

6.1 LU Accelerated Timestepping

In Chapter 4, we demonstrated fast timestepping solutions for PDEs with a

range of boundary conditions. Each timestep required, among other operations,

the solution of a linear system. At the time these experiments were done, there

was no way to factorize the rebus to allow for easy solution against multiple right

79

hand sides. In particular, there was no LU factorization.

Given that now this algorithm has been determined, implemented and tested,

an appropriate first application would be a new implementation of the PDE

solvers that take advantage of the factorization to greatly improve their perfor-

mance. As noted in Section 3.3.2, the forward and back solving only takes 15% of

the solution time. It is natural to ask what the overhead of the LU factorization

is, compared to an alternative direct solver that does not explicitly factorize the

rebus.

Compared to the solution times presented by Chandrasekaran, Gu and Lyons

in [17], the solution times in Table 3.4 (comprising an LU decomposition, a for-

ward solve and a back solve) are slower by a factor of two. Let the time for

solving a given linear system in rebus form, using the methods presented in [17],

be c. The cost of solving against M right hand sides will be c ·M . Using LU

decomposition once, and then forward and back substitution, the cost will be

1.7 · c + 0.3 · c ·M . The break-even point, at which we are better off using the

factorization, arrives before M = 3. Thus, in any timestepping problem we will

gain by using the LU factorization.

The only complication in implementing this is the application of boundary

bordering. If we no longer have the original rebus, and wish to work only with

the LU factors then we need to determine the correct way to impose boundary

conditions on the factors.

In the case of constant boundary conditions of either Dirichlet or Neumann

type, we can simple apply the boundary bordering before factorization. Even

in the case of time-varying Dirichlet conditions, we can use a fast leaf-update

on the L factor without problems. However, the case of time-varying Neumann

conditions may require some extra work.

80

6.2 Alternate Timestepping Schemes for Stiff

Nonlinear PDEs

Linearly implicit methods are a popular choice for solving PDEs with a non-

linear contribution and a stiff linear term. However, there are other methods

available. Kassam and Trefethen compare the available schemes in [11], and sug-

gest that the integrating factor (IF) and exponential time differencing (ETD)

schemes may be superior choices. Methods of the ETD type appear to have been

introduced by Beylkin, Keiser and Vozovoi in [10].

These alternate methods rely on the observation that the linear part of the

equation can be solved exactly by a matrix exponentiation. As ever, a suitable

explicit step is sought for the nonlinear terms so as to avoid an iterative solution

of a nonlinear system.

To take a timestep using this type of method, the linear term must be inverted,

exponentiated or raised to a power. In the scheme favored in [11], (ETDRK4, an

exponential time differencing technique based on the fourth order Runge-Kutta

scheme) all of these must be done. This poses no particular problem if we have

periodic boundary conditions in one dimension. However, if this is not the case

and we cannot diagonalize our operator we must be able to efficiently invert,

exponentiate and multiply a full matrix.

In calculating the timestep in the IF and ETD schemes, matrix exponentiation

plays a central role. The integrating factor which multiplies both sides of the PDE

is of the form eLh, and needs to be calculated. If the linear operator is constant, it

only needs to be calculated once. If we are working in Fourier space, the operator

can be rendered diagonal and again, the calculation is straightforward. Note that

the exponential will not itself be sparse.

The more difficult case is that of a function L on a finite domain with physical

boundary conditions. If a pseudospectral Chebyshev discretization is used, the

matrix exponential becomes very expensive to evaluate. It is an O(N3) operation

and even for relatively modest N may be the rate determining step.

81

The matrix exponential arises frequently in physics and mathematics due to

its special role in the solution of linear differential equations. However, like the

matrix inverse, it is usually avoided in numerics. The matrix exponential is well-

studied numerically (see for example [28]), but has properties that have prevented

it from being a practical choice in numerical applications.

Foremost among these undesirable properties is that calculating and applying

exponentials of a general matrix requires working with dense matrices. Even if

the original matrix is itself sparse, the exponential will not be. Thus, even for

finite difference or finite element methods, solution via matrix exponentiation

is not practical. An exception arises when the matrix to be exponentiated is

diagonal or circulant (and so diagonalizable by Fourier transform). These can

arise in applications with periodic boundary conditions. However, the need for

the Fourier transform further limits it to constant coefficient problems.

Beylkin has shown that in a wavelet basis, general matrix exponentiations

may be represented with sparse matrices (to finite but arbitrary precision). He

then proceeded to apply this insight in solving the linear terms of PDEs [10].

We suggest a similar approach, but using the rebus to capture the structure in a

conventional basis.

Consider the case of the standard finite difference discretization of the second

derivative operator.

D2 =
1

h2



−2 1 0 · · · 0

1 −2 1 0
...

0
. 0

... 1 −2 1

0 · · · 0 1 −2


=

1

h2
· A. (6.1)

We will consider matrix A without the scaling factor 1
h2 , as this cannot affect

the rank structure. If we evaluate the matrix eA we find it has the rank structure

shown in Figure 6.1 and Table 6.1. These numerical ranks correspond to singular

values of magnitude greater than 10−12. The ranks of the off-diagonal blocks stay

constant, even as the block size grows exponentially. Decreasing the tolerance

82

to 10−6 has the effect of causing the off-diagonal ranks to become constant at rank

4. This means that although the matrix eA is dense, the off-diagonal blocks have

singular values that fall off very rapidly towards zero and may be very efficiently

compressed by the rebus structure.

Figure 6.1. Rank structure of eA with shading proportional to rank.

N Rank of N ×N block % of full rank
256 7 2.73
128 7 5.47
64 7 10.9
32 7 21.9
16 7 43.8
8 7 87.5
4 4 100
2 2 100

Table 6.1. Rank structure of the 512× 512 eA with tolerance 10−12.

So, we see that if we need to apply the matrix exponential of derivative

operators in a finite difference basis, a rebus representation will be a valuable tool.

83

Although we lose the sparsity of the original operator, the overall complexity of

the operator is seen to be quite low.

Now let us consider the pseudospectral derivative operator. In this case, the

Chebyshev derivative matrix D already has nontrivial off-diagonal structure.

Figure 6.2. Rank structure of eD in pseudospectral Chebyshev basis with shading

proportional to rank.

In Figure 6.2 and Table 6.2 we see that the exponential of the pseudospectral

derivative operator also has low-rank off-diagonal structure. In this case, we

see the ranks are larger, but still grow very slowly once we get away from the

diagonal.

Thus, in applications of the matrix exponential, we expect to benefit from

the application of the rebus structure whether using a finite difference or pseu-

dospectral discretization.

The matrix exponential is most often computed using the scaling and squaring

84

N Rank of N ×N block % of full rank
256 20 7.8
128 19 14.8
64 16 25.0
32 14 43.8
16 11 68.8
8 8 100
4 4 100

Table 6.2. Rank structure of the 512 × 512 matrix of eD in the pseudospectral

Chebyshev basis with tolerance 10−12.

algorithm favored by Golub and Van Loan in [25] and in the review papers [33],

[34]. The calculation is accomplished with matrix multiplications and a matrix

solve and is therefore easily implemented for the rebus structure. With an O(N)

matrix exponentiation, IF and ETD schemes could be applied to problems with

a time-varying linear operator and to large problems with non-periodic boundary

conditions.

In [10], the authors demonstrated a sparse matrix exponentiation for wavelet

representations of strictly elliptic operators. We should be able to do something

similar in a standard basis by:

1. using fast operators to construct the matrix exponential via scaling and

squaring, and

2. implementing an ETDRK4 timestepping scheme which takes advantage of

the fast rebus algebra.

A concern in implementing this scheme is that the exponential of an operator

with hierarchically semiseparable structure might not itself contain the same

structure. Just as the exponential of a sparse matrix need not be sparse, it

could be that the exponential of a rebus will not have any of the rank structure or

smoothness that the rebus is meant to take advantage of. The preliminary results

above show that the exponentials do in fact retain the hierarchically semiseparable

structure that we need. They are perfect candidates for rebus representation.

85

Bibliography

[1] A. W. Appel. An efficient program for many-body simulation. SIAM J.

Sci. Stat. Comput., 6(1):85–103, January 1985.

[2] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri. Implicit–explicit Runge-Kutta

methods for time-dependent partial differential equations. Appl. Numer.

Math., 25(2–3):151–167, 1997.

[3] U. M. Ascher, S. J. Ruuth, and B. Wetton. Implicit-explicit methods for

time-dependent partial differential equations. SIAM J. Num. Anal., 32:797–

823, 1995.

[4] E. Asplund. Inverse of matrices {aij} which satisfy aij = 0, j > i+ p. Math.

Scand., 7:57–60, 1959.

[5] D. H. Bailey. A portable high performance multiprecision package. Techni-

cal Report RNR-90-022, NASA Ames Research Center, Moffett Field, CA

94035, 1992.

[6] J. E. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algo-

rithm. Nature, 324(6270):446–449, 1986.

[7] A. Bayliss, A. Class, and B. J. Matkowsky. Roundoff error in computing

derivatives using the Chebyshev differentiation matrix. J. Comput. Phys.,

116:380–383, 1994.

[8] G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet transform and nu-

merical algorithm I. Commun. Pure & Appl. Math., 44:141–183, 1991.

86

[9] G. Beylkin, N. Coult, and M. J. Mohlenkamp. Fast spectral projection

algorithms for density-matrix computations. J. Comput. Phys., 152(1):32–

54, 1999.

[10] G. Beylkin, J. M. Keiser, and L. Vozovoi. A new class of time discretization

schemes for the solution of nonlinear PDEs. J. Comput. Phys., 147(2):362–

387, 1998.

[11] G. Beylkin and K. Sandberg. Fourth-order time stepping for stiff PDEs.

Technical Report NA-03/14, Oxford University, 2003.

[12] G. Birkhoff and A. George. Elimination by nested dissection. In J. F. Traub,

editor, Complexity of Sequential and Parallel Algorithms, pages 221–269.

Academic Press, New York, 1973.

[13] J. P. Boyd. Chebyshev and Fourier Spectral Methods. Springer-Verlag, New

York, 1989.

[14] S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, and A.-J. van der Veen.

Fast stable solver for sequentially semi-separable linear systems of equations.

Lecture Notes in Computer Science, 2552:545–554, 2002.

[15] S. Chandrasekaran and M. Gu. Fast and stable algorithms for banded plus

semiseparable systems of linear equations. SIAM Journal on Matrix Analysis

and its Applications, 5(2):373–384, 2003.

[16] S. Chandrasekaran and M. Gu. A divide and conquer algorithm for the

eigendecomposition of symmetric block-diagonal plus semi-separable matri-

ces. Numerische Mathematik, 96(4):723–731, 2004.

[17] S. Chandrasekaran, M. Gu, and W. Lyons. A fast and stable adaptive solver

for hierarchically semi-separable representations. Technical Report UCSB

Math 2004-20, U.C. Santa Barbara, 2004.

[18] S. Chandrasekaran, M. Gu, and T. Pals. Fast and stable algorithms for hi-

erarchically semi-separable representations. Submitted for publication, 2004.

87

[19] R. Coifman, V. Rokhlin, and S. Wandzura. The fast multipole method for

the wave equation: a pedestrian prescription. IEEE Antennas Propag. Mag.,

35(3):7–12, June 1993.

[20] M. Crouzeix. Une mèthode multipas implicite-explicite pour l’approximation

des èquations d’èvolution paraboliques. Numer. Math, 35:257–276, 1980.

[21] W. S. Don and A. Solomonoff. Accuracy enhancement for higher deriva-

tives using Chebyshev collocation and a mapping technique. SIAM J. Sci.

Comput., 18(4):1040–1055, 1997.

[22] B. Fornberg. A Practical Guide to Pseudospectral Methods. Cambridge

University Press, Cambridge, UK, 1996.

[23] A. George. Nested dissection of a regular finite element mesh. SIAM J.

Numer. Anal., 10:345–363, 1973.

[24] D. Gines, G. Beylkin, and J. Dunn. LU factorization of non-standard forms

and direct multiresolution solvers. Appl. Comput. Harmon. Anal., 5(2):156–

201, 1998.

[25] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University

Press, Baltimore, MA, 1996.

[26] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J.

Comput. Phys., 73(2):325–348, 1987.

[27] W. Heinrichs. Improved condition number for spectral methods. Math.

Comp., 53:103–119, 1989.

[28] M. Hochbruck and Ch. Lubich. On Krylov subspace approximations to the

matrix exponential operator. SIAM J. Numer. Anal., 34(5), 1997.

[29] R. W. Hockney and J. W. Eastwood. Computer simulation using particles.

Taylor & Francis, Inc., 1988.

88

[30] P. Jones, J. Ma, and V. Rokhlin. A fast direct algorithm for the solution of

the laplace equation on regions with fractal boundaries. J. Comput. Phys.,

113(1):35–51, 1994.

[31] D. Kosloff and H. Tal-Ezer. Modified chebyshev pseudospectral method with

O(N−1) time step restriction. J. Comput. Phys., 104:457–469, 1993.

[32] W. Lyons, H. D. Ceniceros, S. Chandrasekaran, and M. Gu. Fast algorithms

for spectral collocation with non-periodic boundary conditions. J. Comput.

Phys., 207(1):173–191, 2005.

[33] C. B. Moler and C. F. Van Loan. Nineteen dubious ways to compute the

exponentional of a matrix. SIAM Rev., 20(4):801–836, 1978.

[34] C. B. Moler and C. F. Van Loan. Nineteen dubious ways to compute the

exponentional of a matrix, twenty-five years later. SIAM Rev., 45(1):3–49,

2003.

[35] S. T. O’Donnell and V. Rokhlin. A fast algorithm for the numerical evalu-

ation of conformal mappings. SIAM J. Sci. Stat. Comput., 10(3):475–487,

May 1989.

[36] V. Rokhlin. Rapid solution of integral equations of classical potential theory.

J. Comput. Phys., 60:187–207, 1985.

[37] V. Rokhlin. Rapid solution of integral equations of scattering theory in two

dimensions. J. Comput. Phys., 86(2):414–439, 1990.

[38] P. Starr. On the numerical solution of one-dimensional integral and differ-

ential equations. Technical Report YALEU/DCS/RR-888, Yale University,

1991.

[39] P. Starr and V. Rokhlin. On the numerical solution of two-point boundary

value problems II. Technical Report YALEU/DCS/RR-802, Yale University,

1990.

89

[40] G. Strang and T. Nguyen. The interplay of ranks of submatrices. SIAM

Review, 46(4):637–646, 2005.

[41] T. Tang and M. R. Trummer. Boundary layer resolving pseudospectral meth-

ods for singular perturbation problems. SIAM J. Sci. Comput., 17:430–438,

1996.

[42] J. M. Varah. Stability restrictions on second order, three level finite difference

schemes for parabolic equations. SIAM J. Numer. Anal., 17:300–309, 1980.

[43] N. Yarvin and V. Rokhlin. A generalized one-dimensional fast multipole

method with application to filtering of spherical harmonics. J. Comput.

Phys., 147(2):594–609, 1998.

[44] D. Zwillinger (Ed.). Handbook of Differential Equations. Academic Press,

Boston MA, 3rd edition, 1997.

90

	Contents
	Introduction
	Overview
	Low-Rank Blocks and Semiseparable Structure
	Extensions of Semiseparability
	Semiseparable Plus Structure
	Continuous and Block Matrix Analogues

	Low-Rank Structure
	Examples of Low-Rank Structure

	Connections to Earlier Work
	Tree Codes
	Fast Multipole Methods

	Rebus Methods

	Hierarchically Semiseparable Structure and the Rebus Representation
	Introduction to HSS Structure
	Fundamentals of the Rebus Representation
	Description of the Rebus

	Lemmas Concerning Rebus Structure
	Merging
	Splitting

	Block Sparse Notation
	Fundamental Block Sparse Relationships
	Splitting and Merging
	Projection and Interpolation
	Recursive Representations of a Matrix

	Tree-based Structure

	Algorithms for the Rebus Representation
	Rebus-Vector Multiplication
	Algorithm
	Comments

	Rebus-Rebus Multiplication
	Algorithm
	Numerical Experiments

	LU Factorization
	Description of Algorithm
	Numerical Examples

	Forward (and Back) Substitution
	Forward Substitution
	Back Substitution
	Numerical Examples

	Applications to PDEs I
	Introduction
	Approach to PDEs
	Description of the PDE
	Underlying Elliptic Problem
	Rebus Scaling
	Diagonal Updates

	Boundary Conditions by Boundary Bordering
	Initialization
	Boundary Conditions in Matrix Form
	Formulation as a Low-Rank Product
	Low-Rank Addition

	Numerical Examples
	Backward Euler Discretization of a Diffusion Equation with Dirichlet Boundary Conditions
	Crank-Nicolson Discretization of a Diffusion Equation with Time-Varying Non-Homogenous Dirichlet Conditions
	Crank-Nicolson / Runge-Kutta IMEX Discretization of the Allen-Cahn Equation with Homogenous Neumann Boundary Conditions

	Applications to PDEs II
	Introduction
	Conditioning of Chebyshev Derivative Operators
	Strategies for Better Conditioning
	Scaling of Boundary Conditions
	Numerical Tricks and Basis Recombination
	Extended Precision
	Alternate Basis Sets
	Iterative Refinement
	Exploiting Limited Precision

	Higher Dimensional Problems
	Introduction
	Intrinsic One-Dimensionality of the Rebus
	Nested Dissection Ordering

	Further Research
	LU Accelerated Timestepping
	Alternate Timestepping Schemes for Stiff Nonlinear PDEs

	Bibliography

