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Abstract

A Minimum Sobolev Norm Discretization Scheme for

Elliptic Partial Differential Equations

Joseph Moffitt

This thesis explores the idea of setting up the numerical solution to PDEs as

constrained minimization problems. The minimizations are over the local coeffi-

cients which describe the PDE in specified regions, while the constraints contain

the PDE itself, including the unknown solution. The minimizations are asking

that Sobolev norms of the coefficients be smallest, thus guaranteeing a certain de-

gree of smoothness to the solution of the PDE which they describe. An equivalent

minimization can be obtained which is only over the unknowns and is uncon-

strained. We solve it using a simple least squares minimization. This leads to

the solution to the PDE which is of minimum Sobolev norm. At this point, the

method shows impressive results experimentally in solving difficult Elliptic PDEs

including planar div-curl boundary value problems. This thesis is a documentation

of the work which has gone into exploring this method thus far.

Professor S. Chandrasekaran

Dissertation Committee Chair
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Chapter 1

Introduction

1.1 Full MSN - Advantages

The research group I have been involved with for the last few years, under the

direction of Prof. Chandrasekaran, has been exploring Minimum Sobolev Norm

(MSN) methods. Initially, these ideas were applied interpolation and approxima-

tion with the idea that Runge phenomenon could be controlled. Local and global

approaches were explored, and extensive experimentation showed that the method

could hold its ground in a variety of settings. With that solid foundation, various

ideas for solving PDEs began to be explored.

This thesis one of the most recent ideas on how to setup a PDE solver using

the MSN idea. Previously, we have explored using MSN to setup finite difference

type weights on arbitrary grids. This FD method showed that a high order of

convergence could be obtained on a variety of PDEs, but no proof was in sight,
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Chapter 1. Introduction

as is typical of finite difference approaches. In addition, the finite difference MSN

solver requires a square system containing the discretization weights, which makes

some types of PDEs particularly tricky to setup.

The Full Minimum Sobolev Norm (FMSN) method discussed in this thesis

shows promise in that initial numerical results reveal the order of convergence to

be on par and sometimes higher than FDMSN. In addition, we are forming a least

squares system, thus there is no constraint on the number of equations we must

use. This allows for ease of implementation of PDEs where the well-posedness

is in not simple to see. Third, the method is flexible in the way memory and

computation time can be managed. All the experiments done in this thesis did

not require the use of a supercomputer. Finally, a proof of convergence seems

plausible, where as working directly through FDMSN, no easy paths are seen.

1.2 Objectives and Outline

Therefore, the main goal this thesis is to simply document the method, since

it has not yet appeared in any of our publications. It is written in a style in that

anyone with a reasonable background in linear algebra should be able to read

the discussion and be able to implement it. Secondly, we aim show some initial

results. The results we have thus far show a high order method, which can solve

2



Chapter 1. Introduction

difficult Elliptic PDEs. Finally, we provide a working code, (with comments!), so

that anyone can immediately get started on solving PDEs. It works!

As a quick outline of what appears in the thesis. We first cover some basic

ideas behind interpolation and what can go wrong; namely Runge phenomenon.

We give a highly intuitive explanation of the Runge phenomenon, for those who

are new to the subject. Those familiar with these ideas can skip directly to the

section on MSN. The section on MSN is also highly intuitive, and does not require

any more knowledge than the basic undergraduate engineering courses. We then

see how the MSN idea can be applied to the PDE solver in this thesis which we

call Full MSN. Finally, we give some results and a working MATLAB code.

1.3 Differences with Finite Difference

We call the method Full MSN, because the solution to the PDE which we are

solving is setup as a constrained Sobolev Norm minimization problem of which me

must minimize the full Sobolev norm. The constraints are the PDE itself. This is

opposed to the MSN finite difference method, which solves for the local weights

using the minimum Sobolev norm idea. We can interpret this as the weights in the

FDMSN method being Runge phenomenon free, as opposed to the full solution

to the PDE being Runge free as in the FMSN method.
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Chapter 2

Interpolation

2.1 Using the monomial basis

Interpolation is the process of obtaining new data points from a set of given

old data points. More specifically, in this discussion we mean a process of finding

a function which passes through a finite set of given data values. The new data

points which hope to obtain are then the values which result from evaluation

of this interpolating function. In order to do this, the underlying function we

are finding must be expressed in some basis. Common basis functions include

polynomials, sinusoids, and rational functions. Thus the problem of interpolation

is reduced to a problem where we want to find the coefficients of the polynomial

that passes through all the given data points, if we so choose our interpolating

function to be in the monomial basis [4].

4



Chapter 2. Interpolation

To see exactly what is meant, we begin with the simplest possible case of

interpolation in the monomial basis. Our underlying function will then be some

polynomial. The solution for the coefficients can be setup as a linear system of

equations. How do we pick the order of this polynomial? Intuition from linear

algebra says we would like an invertible square system. This leads to choosing

the order of the polynomial to be one less than the number of data points given.

A formal proof of the uniqueness of the interpolating polynomial in this case can

be found in any textbook on the subject. However, things will not go as planned,

as we will see shortly. Solving the following system V a = f gives the coefficients

for the interpolating polynomial. The matrix V is the Vandermonde matrix with

entries Vi,j = xj−1
i .

V =




1 x1
1 x2

1 · · · xn−1
1

1 x1
2 x2

2 · · · xn−1
2

1 x1
3 x2

3 · · · xn−1
3

...
...

...
. . .

...

1 x1
n x2

n · · · xn−1
n




N×N

(2.1)

V a = f (2.2)

It remains however to show that the interpolating function converges to the under-

lying function. For example, suppose equispaced samples are taken from a given
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Chapter 2. Interpolation

test function. If we then construct the interpolating polynomial, as we increase

the number of samples, does the interpolating polynomial converge to the original

function?

It turns out, mathematicians Carl Runge, C. Meray and Emilie Borel inde-

pendently made the surprising discovery that the interpolating polynomial is ac-

tually likely to diverge! The phenomenon is now commonly known as Runge

phenomenon. This consideration is one of the main motivations in developing

the Minimum Sobolev Norm (MSN) interpolation scheme. Before going into the

details, it will be more instructive to first look more closely at Runge phenomenon.

2.2 Runge Phenomenon

In this section, a completely intuitive explanation of the Runge phenomenon

is presented. Carl Runge made the case that with polynomial interpolation on

an equispaced grid where the number of coefficients is equal to the number of

data points, the interpolating polynomial is likely to diverge with an increasing

number of sample values. The function he used to show this is now commonly

refered to as Runge’s function. We take Runge’s function in this explanation to

be the family of functions which vary with the parameter α in equation 2.3.

f(x) =
1

1 + αx2
, x ∈ [−1, 1], α > 0 (2.3)

6



Chapter 2. Interpolation

In Figure 2.1, we show 11 samples of the Runge function, α = 10, and the

polynomial interpolant which use those samples. We then show in Figure 2.2, 19

samples of the same function, and its interpolating polynomial. The interpolation

scheme here is the classical polynomial interpolation scheme described in Section

2.1. It can be seen that the interpolating polynomial is actually diverging with

an increasing number of samples.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

 

 

1/(1+10x2)
interpolant
sample points

Figure 2.1: Runge phenomenon, 11 samples
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Chapter 2. Interpolation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

 

 

1/(1+10x2)
interpolant
sample points

Figure 2.2: Runge phenomenon, 19 samples

This phenomenon arises due to the difference in shapes between Runge’s func-

tion and the monomials, which form our basis. Runge’s function dampens out to

zero towards the boundaries, and the monomials all grow. Just this difference is

not quite the whole story. It is the shape of the points in the middle region of

each half of the axis that play the crucial part. By this middle region, we mean for

example the region in [−0.75,−0.25] and [0.25, 0.75] when interpolation is being

done on [−1, 1]. With Runge’s function, these points can actually be controlled
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Chapter 2. Interpolation

by the parameter α. Increasing α makes the points in this middle region fall

quicker, thus creating a sharper middle peak. By increasing and decreasing this

parameter, we are shifting the two poles at ±√αi closer and farther, respectively,

to the origin.

Visually, to see how this causes Runge’s phenomenon, first take the example

of polynomial interpolation using 5 equispaced nodes on [−1, 1]. We will use

as our underlying function a shifted Runge’s function with parameter α = 1.

We shift Runge’s function down by 1 just to aid in visualization. Before even

looking at our interpolating polynomial, we know we will only have even powered

coefficients, due to the symmetry of Runge’s function. This example does not

exhibit Runge’s phenomenon just yet. The interpolating polynomial turns out to

be −0.9x2 + 0.4x4, as shown in Figure 2.3

The x2 component is required to bring the values of nodes at -0.5 and 0.5 down.

The x4 component was not large enough at -0.5 and 0.5 to accomplish this task,

thus it is used to bring the two end points at -1 and 1 up. Interpolation is thus

achieved. Of course, inverting the Vandermonde matrix to solve for the coefficients

does not consider components one at a time in the way we just described. It is

just a convenience that in this example we have a ’visually almost orthogonal’

decomposition to work with.
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Chapter 2. Interpolation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8
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−0.4
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0

0.2

0.4

 

 

1/(1+x2)

−0.9x2+0.4x4

sample points

−0.9x2

0.4x4

Figure 2.3: Runge phenomenon interpolant, 5 samples, α = 1

Now, we raise the parameter α to be equal to 100. This brings down the two

values at the midpoints -0.5 and 0.5 to equal almost -1 (recall we are using the

shifted Runge function). This has the effect of making the x2 component more

negative. In effect, the x4 component has to become larger in order for the end

points to interpolate. The interpolating polynomial turns out to be −4.8x2+3.8x4,

as shown in Figure 2.4.
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Figure 2.4: Runge phenomenon interpolant, 5 samples, α = 100

Here is where Runge phenomenon makes its appearance. The function values of

the nodes at x = −1 and x = −0.5 are essentially the same height. Thus, in order

for the interpolating polynomial to go through those points, the x2 component

must fall the same amount the x4 component rises in that interval. However,

in that same interval, the x4 component has a much greater curvature, thus a

noticeable bubbling effect is seen in the resulting interpolant. This bubbling effect

is the Runge phenomenon beginning to show itself.
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Chapter 2. Interpolation

In this discussion we have meant and still mean equispaced interpolation nodes.

When we increase the number of nodes, more get evenly distributed along the

region, but we also need a higher order polynomial to get a square system. Higher

order monomials have an ever wider central flat region, and the quick increase

near boundary sharpens. Thus, the bubbling effect gets worse with an increasing

number of nodes as can be seen in the Figures 2.1 and 2.2.

One more minor point needs to be addressed. All during the previous dis-

cussion, we have only considered equispaced nodes. The location of the nodes

have no bearing on the basis we are using. Having more nodes near the boundary

where the higher order terms in the basis take a sharp climb actually enables us

to avoid the Runge phenomenon. To visualize this, imagine the sharp increase

of x8. If we cluster more points near the boundary, we have sampled along the

’bubble’, forcing that region to interpolate at the prescribed nodes. When done

in the right way, this successfully avoids Runge phenomenon. The problem with

this is that in most cases when using interpolation, the interpolation nodes are

given to us. We often will not have a choice on the location of our data.

We have seen thus far that the amount of Runge phenomenon found in an

interpolating polynomial is a result of the location of the underlying functions

poles, and the location of interpolation nodes used. We can also view the effect

from the perspective of the polynomial coefficients as frequency components of

12



Chapter 2. Interpolation

the interpolating polynomial. Runge phenomenon is thus an effect where the

high requenc components of the interpolant are growing. This can be seen from

differentiating the Runge function and noting that the size of its derivatives are

actually increasing in regions near the boundary. Looking at the problem in this

light, we can intuitively develop an approach in the next section which suppresses

the Runge phenomenon through a low pass filtering. This has to be done in a

particular way to be effective, and we outline the approach in the next chapter on

the Minimum Sobolev Norm (MSN) technique.

A mathematically rigorous understanding of the Runge phenomenon requires

the evaluation of complex integrals using the theory of residues. The interested

reader can find the details in [5].

13



Chapter 3

Minimum Sobolev Norm
Interpolation

3.1 Intuition

Many attempts have been made at circumventing Runge phenomenon. This

explains the vast number of interpolation schemes one finds in the literature.

Splines, radial basis functions, conformal mappings, rational interpolants are all

in a way an attempt to avoid or suppress Runge phenomenon.

In this section, a method that successfully suppresses the Runge phenomenon is

described which we call the Minimum Sobolev Norm (MSN) interpolation scheme.

It involves using a higher order polynomial compared to the number of interpola-

tion nodes along with regularization constraints on the magnitude of the deriva-

tives of the interpolant. Ideas similar to this have been previously explored. Fejer,

the Hungarian mathematician, first proposed the idea of using a polynomial of

14



Chapter 3. Minimum Sobolev Norm Interpolation

degree 2N where N is the number of interpolation nodes. The other half of the

constraints were used to set the derivative at each node equal to zero in order

to dampen out oscillations. With MSN, we take the idea a bit further and in-

stead of controlling the derivative at each node, we control any derivative of our

choosing across the whole interval. This is done by controlling the norm of the

chosen derivative of the polynomial. The first step then is to find a norm which

has information about the derivatives of a polynomial. We achieve this by using

an appropriately defined Sobolev norm, and then set up an optimization problem

which picks the interpolating polynomial for which this norm is minimum.

The following discussion and development will take a route more guided by

intuition as opposed to a rigorous mathematical approach. Since the purpose of

this thesis is to communicate these ideas in a concise and intuitive way to working

engineers, the more rigorous details along with the proofs will be left out. The

interested reader can find these in [3].

3.2 Size of Fourier Series Coefficients

Information about the smoothness of a function is directly related to the rate

of decay of its Fourier series coefficients. This is related to the summability of

the Fourier coefficients. Consider the Fourier series coefficients of an absolutely

15



Chapter 3. Minimum Sobolev Norm Interpolation

continuous function f, where f̂(m) denotes the n-th Fourier coefficient. Then,

|f̂(m)| ≤ K

|m| . (3.1)

Thus if a periodic function on [0, 2π] is s times differentiable and its s-th derivative

is continuous, then the rate of decay of its Fourier coefficients is faster than 1
ms .

To see why, consider differentiating the Fourier series. Each coefficient f̂(m) will

be weighted by an (im)s, thus for the functions s-th derivative to be absolutely

continuous, the coefficients before differentiation must be decaying at least at the

rate 1
ms . In engineering terms, differentiation boosts high frequency components.

Thus, if we require a periodic function have 3 continuous derivatives, then its

Fourier coefficients must decay by at least 1
m3 . We enforce a similar constraint

when we solve for the MSN interpolant. In the MSN approach, we use a much

higher degree polynomial than the number of nodes, thus (as with ordinary poly-

nomial interpolation) there are an infinite number of solutions for the coefficients.

As the extra constraint we weight each coefficient am by m3 and ask that the

resulting 2-norm of these weighted coefficients be minimum. The approach thus

controls the rate of decay of the coefficients, thus controlling the resulting smooth-

ness. Since we are using a 2-norm minimization, we are in a sense asking that

the 3rd derivative (in this example) is controlled on average (in the 2-norm sense)

over the whole interval. Ultimately, the desired effect of removing Runge phe-

nomenon while maintaining interpolation is achieved. This method has provable

16



Chapter 3. Minimum Sobolev Norm Interpolation

convergence, and many of the ideas fall into the framework of Sobolev spaces. We

take a short look at some of the essential ideas guided by intuition in the following

discussion.

3.3 Picking a Sobolev Norm

A Sobolev norm is a norm which measures the magnitude of the derivatives

of a function. More specifically, we are want a measure of the magnitude of

the derivatives across the whole interval of interest, in an average sense. This is

opposed to a pointwise measure, such as getting a measure of the maximum value

that a derivative takes. Thus, we seek a 2-norm measure. We want to find such a

measure which works for polynomials, denoted as p.

As it will turn out, we do not require an exact measure of the derivatives of

the polynomial p. The 2-norm nature of the Sobolev norm we seek allows us

some extra freedom from exactness. To get our Sobolev norm, we measure the

magnitude of the derivatives of a closely related function instead. We choose the

Chebyshev polynomials as our basis for p (instead of the usual monomials). The

Chebyshev polynomials are defined by the recurrence relation in equation 3.2 or

by the trigonometric formula in equation 3.3. The recurrence relation formulation

17



Chapter 3. Minimum Sobolev Norm Interpolation

is more stable when evaluating derivatives at the boundary, but essentially both

are equivalent.

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x) + Tn−1(x)

(3.2)

Tn(x) = cos(n arccos(x)), n = 0, 1, 2... (3.3)

Denote the M-th order Chebyshev expansion of p as pM(x) shown in equa-

tion 3.4. In this basis, there is a simple path to obtaining a Sobolev norm of the

closely related function (p ◦ g)(θ) where g(θ) = cos(θ) and p = pM(x).

pM(x) =
M−1∑
m=0

amTm(x) (3.4)

pM(x) =
M−1∑
m=0

am cos(m arccos x) (3.5)

⇒ pM(cos θ) =
M−1∑
m=0

am cos mθ (3.6)

A quick visualization of the function composition (p◦ cos)(θ) is in order. Mov-

ing over the region from π to 2π in θ corresponds to moving from −1 to 1 in x.

In addition, moving from π to 0 in θ corresponds also to moving from −1 to 1

in x. Thus, (p ◦ cos)(θ) is an even 2π periodic function. More simply put, with

18



Chapter 3. Minimum Sobolev Norm Interpolation

each Chebyshev polynomial term, we are just creating a cosine from [0, 2π]. Thus,

our new function (p ◦ cos)(θ) is a cosine series using the coefficients a from our

Chebyshev expansion of p.

Since it is well understood how the decay of the Fourier series of a function

is related to its smoothness, we define the Sobolev norm on this new composed

function (p ◦ cos). This is straightforward to do since the only thing we have

to differentiate are sinusoids. The Sobolev norm simply becomes the weighted

2-norm of our coefficients am, with the weights ms. We take cosines to have unit

norm. The constant s which represents the s-th derivate is now a parameter. It

tells us which derivative we have used in calculating the Sobolev norm.

‖pM(θ)‖2
s = ‖ ds

dθs
pM(θ)‖2

2 (3.7)

=
M−1∑
m=0

|am|2m2s (3.8)

≈ ‖Dsa‖2
2 (3.9)

where the matrix Ds in the above equation is defined as
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Chapter 3. Minimum Sobolev Norm Interpolation

Ds =




1s 0 ... 0 0

0 2s ... 0 0

. . ... . .

0 0 ... 0 M s




M×M

. (3.10)

We now have a measure of magnitude of the s-th derivative of (p◦cos), through

a weighted 2-norm calculation. This Sobolev norm is in the average (weighted 2-

norm) sense, and since it is applied spectrally in θ, has meaning over the whole

interval. It should be apparent now that if we setup an underdetermined interpo-

lation problem on the Chebyshev polynomials from which we choose coefficients

whose Sobolev norm with parameter s (as defined in equation 3.10) is minimized,

we have chosen the interpolant which has the smallest energy in the s-th deriva-

tive, in an average sense over the whole interval, out of the infinite choices of

polynomials.

Note we have defined the Sobolev norm spectrally on (p◦cos) instead of directly

on pM(x). Thus one can raise the following question. We were able to define a

Sobolev norm for (p◦cos), but what does this say about pM(x) (the function which

we are interested in) and its derivatives? Is it a reliable measure of the derivatives

of pM(x)? Take as an example pM(x) = x, then (p ◦ cos) = cos(θ). We now look

at the first derivative of each. p′M(x) is equal to 1 along the whole interval [−1, 1],
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however on [π, 2π], (p ◦ cos)′ = −sin(θ). Starting at π and moving towards 2π,

(p◦cos)′ starts at 0, moves to 1, and ends up at 0 again. Pointwise, there are sharp

distortions between the two. However, looking on average, the derivatives are

mostly the same across the two intervals. This agrees intuitively with our approach

of using the weighted 2-norm spectrally in obtaining the Sobolev norm, since as we

know from Parsevals identity the 2-norm applies equally in the spatial and spectral

domains. Looking more closely, the connection above between (p◦cos)′ and p′M(x)

includes a 1√
1−x2 term. This term is integrable, even though pointwise it blows up

at the boundaries, thus in an average sense, the connection is meaningful, though

the exact analysis is subtle.

Ultimately, however, the nature of this connection is irrelevant. The key point,

as we will see, is that weighting down the Chebyshev coefficients with Ds produces

converging interpolants free from Runge phenomenon, regardless of how we inter-

pret it. We do the weighting spectrally out of simple numerical practicality, due

to the fact that it becomes a diagonal matrix multiplication, and in addition, is

more well conditioned as compared to applying the same operator in the spatial

domain. Interpretations about what it exactly means mathematically for pM(x)

and its derivatives is not important. The fact is, it works! Proofs of convergence

can be found in [3], and do not hinge on any connection between the derivatives

of (p ◦ cos) and pM(x), the discussion here is given only to satisfy our intuition.
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3.4 The MSN solution

As we have pointed out, the Sobolev norm we have defined is a sufficient mea-

sure (in an average sense over the interval) of the s-th derivative of a polynomial.

In addition, the norm can be written as a diagonal matrix multiplication if we

know the actual Chebyshev coefficients. Returning to the problem of interpola-

tion, if we choose an interpolating polynomial whos order is much larger than

the number of interpolation nodes, we end up with underdetermined system and

we must use some additional constraints to choose one of the infinite number of

solutions. We use the above Sobolev norm as the additional constraint, and ask

that it be minimum. Using s=2 for example, and a polynomial degree M, we can

interpret that the coefficients solved for correspond to the M-th degree polynomial

which in the sense of our Sobolev norm, has smallest second derivative across the

whole interval.

With this idea in place, we are ready to state the minimization problem of

MSN interpolation. The idea is to find the interpolating polynomial defined by

the coefficients a for which the s-th Sobolev norm as described in equation 3.8 is

minimum.

a = arg min
a:V a=f

‖Dsa‖2
2 (3.11)
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We will present later a precise way of choosing the order M , but assume now

that M is larger than N . For interpolation in 1d, a good choice is M = 3N .

V a = f (3.12)

Equation 3.12, is an underdetermined system, thus there are infinitely many

solutions. In order to choose the one with minimum Sobolev norm, we multiply

the coefficients to be solved for with the Sobolev weight matrix. In order to keep

the same equations, we multiply its inverse on the left. Note Ds as defined in

equation 3.10 is invertible.

⇒ V D−1
s Dsa = f (3.13)

We now simply treat Dsa as a new unknown z for which we are solving for.

⇒ V D−1
s z = f (3.14)

We can now solve for the minimum norm solution z using the pseudo-inverse.

z = (V D−1
s )†f (3.15)

⇒ a = D−1
s (V D−1

s )†f (3.16)

= D−2
s V T (V D−2

s V T )−1f . (3.17)

If z has minimum norm, so does Dsa. Thus, we have in fact chosen the

coefficients a with minimum Sobolev norm.
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The interpolant at some x ∈ [−1, 1] is then given by the sum

pM(x) =
M−1∑
m=0

aMTm(x)

= V (x)a, (3.18)

where V (x) = [ T0(x) T1(x) ... TM−1(x) TM−1(x) ].

The choice of the order M and the Sobolev weight parameter s play a cru-

cial role in determining whether the interpolant will converge or diverge. Once

appropriately chosen, convergence in N , the number of points, can be achieved.

Convergence results can be found in [2] and proofs in [3].

Intuitively, the order M should be chosen based on the smallest grid spacing

of the points N . This makes sense, since two very close points which jump largely

in their data value may require a much higher degree polynomial for interpolation

with the additional constraint for Runge suppression. We define the meshnorm

I(xN) as the following:

I(xN) =

⌈
π

mini6=j ‖θi − θj‖
⌉

, (3.19)

where θi = cos−1 xi. We require that M = cI(xN) for convergence. In the case of

equispaced gridding, we can safely set the order M = 3N .

The choice of s depends on the smoothness of the underlying function of which

we are trying to approximate. For very rough functions, such as |x|, s can be
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chosen as low as 0.5. For functions with 2 continuous derivatives, we require that

s be a minimum of 2. Note, s need not be an integer.

Finally, note that we do not achieve convergence in M or in s. For a fixed

N , increasing s may seem to increase the accuracy of the interpolant for a while,

but ultimately does not achieve convergence. This can be seen intuitively, if we

have only 5 points, no matter how high we choose s, we are not gaining anymore

information about our underlying function. A similar argument follows for M .

3.5 MSN in higher dimensions

In 2d, our grid points now become the vector xi = {xi, yi}N
i=0. The correspond-

ing meshnorm is now

I(xi) =

⌈
π

mini 6=j ‖θi − θj‖2

⌉
, (3.20)

where θi = {cos−1 xi, cos−1 yi}. In practice a safe estimate for the order is

M = 4

dmini6=j‖θi−θj‖2e .

For completeness, we also show how the Chebyshev vandermonde matrix along

with the appropriate Sobolev weights can be formed.

Tm,n(x) = Tm(x)Tn(y), 0 ≤ m < Mx, 0 ≤ n < My, (3.21)
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V =




T0,0(x0) T0,1(x0) ... T0,My−1(x0) ... TMx−1,My−1(x0)

T0,0(x1) T0,1(x1) ... T0,My−1(x1) ... TMx−1,My−1(x1)

. . . . . .

T0,0(xN−1) T0,1(xN−1) ... T0,My−1(xN−1) ... TMx−1,My−1(xN−1)




(3.22)

The Sobolev weight matrix Ds can be defined in the following way.

Ds =




(1 + 02 + 02)
s
2 0 0 ... 0

0 (1 + 02 + 12)
s
2 0 ... 0

. . . . .

0 0 0 ... (1 + (Mx − 1)2 + (My − 1)2)
s
2




(3.23)
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Full MSN (FMSN)

4.1 Introduction

We have shown how the MSN idea can be used to solve for an interpolating

polynomial which is free from Runge phenomenon. Now we extend the idea to

the numerical solution of PDEs. Those readers unfamiliar with the topic of PDE

solvers can look to the appendix for a more detailed explanation and development

with simple examples applied to ODEs. There, we first solve globally a 1d bound-

ary value problem using FMSN, present some numerical and memory issues, then

show how solving the same problem with the local FMSN approach remedies those

issues. The complete method which we propose as a PDE solver uses the local

FMSN approach, and is explained with sufficient detail in the following section.
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4.2 FMSN Solution of PDEs

In this section, we present a method which numerically approximates the solu-

tion to PDEs such that the global solution obtained is of minimum Sobolev norm.

What we mean by this will be explained shortly. Assume the PDE operator is

given by L and the boundary equation is given by B. The PDE we wish to solve

is given generally as:

L(u(x, y)) = f(x, y), (x, y) ∈ Ω (4.1)

B(u(x, y)) = g(x, y), (x, y) ∈ ∂Ω. (4.2)

The coordinates for the discretization of the interior region Ω and the boundary

∂Ω are stored in the vectors x and y to form the list of coordinates (x,y). The total

number of discretization points from the boundary and interior total to N . We can

split these into interior points and boundary points using the following notation.

The interior region is discretized with NI points and is denoted (xint
j , yint

j ), j =

1, 2, ...NI . The boundary is discretized with NB points (xbnd
j , ybnd

j ), j = 1, 2, ...NB.

These are the discretization nodes for which we can specify knowns and unknowns,

depending on the PDE and boundary conditions. In the example PDEs which we

solve in this thesis, the values of f(x, y) are known at the interior points (xint,yint)

and are stored in f . The boundary values are known points in (xbnd,ybnd) and
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are stored in g. We will be solving for the unknowns u at the interior points

(xint,yint).

We place specification points contained in (cx, cy) which are the centers (cxi, cyi),

l = 1, 2...k of all the windows to be placed down. A window is used to select local

discretization points in (x,y). The set of points which falls under each window

is denoted by the set Cl, defined in equation 4.3. Assuming the interior grid

(xint,yint) is rectangularly equispaced, let hh denote the horizontal grid spacing

and hv denote the vertical grid spacing. The window size can be setup as a rect-

angular window, based on L− 1, the number of grid spacings a window will cover

in each direction.

Cl = {(xn, yn) : ‖xn − cxl‖∞ ≤ hh(L− 1)

2
∩ ‖yn − cyl‖∞ ≤ hv(L− 1)

2
}, l = 1, 2...k

(4.3)

Choosing a sufficient number of specification points and window size is the

next task. We conjecture that for n-th order PDEs, the windows need at least n

overlapping points along any direction. We assume in the discussion this criteria

is met. Window placement will be covered more in depth in the following sections

on implementation. Assuming we have properly placed our k windows, our aim

is to solve the following minimization problem, where each i represents a window

centered at some point (cxi, cyi).
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min
∀i,Biai=zi

k∑
i=1

‖Dsai‖2
2 (4.4)

Each i represents a different window. In general, Biai = zi is the following

equation, 


LV (φ(xint
i ))

V (φ(xint
i ))

BV (φ(xbnd
i ))




a =




f int
i

uint
i

gbnd
i




(4.5)

where f int
i and bbnd

i are the known values of f and g which fall under the i-th

local window. uint
i are the local unknowns on the interior which fall under the

i-th window. In the examples we solve in this paper, all the unknowns fall are

assumed to be on the interior, but this need not be the case. We also require

an affine mapping φ(x) to map the points which fall under the window Ci to be

within the range [−1, 1], as the Chebyshev polynomials are only defined on [−1, 1].

The first observation to make is that the minimizations in equation 4.4 are

over each local set of coefficients ai. We have stated that u is an unknown in

the PDE which we are trying to solve, but at this point in the discussion it is

only part of the constraint in each minimization. Furthermore, since each window

must overlap, each minimization in the summation is coupled through u.

Let us assume now that we have some u which satisfies every constraint equa-

tion, thus ∀i, Biai = zi. We now have an infinite choice over what ai to choose
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to try and satisfy the global minimum. What we can do is get a formula for the

optimal ai that works for such a u, that is in terms of ui. We can use this to

plug back into each minimization, thus rendering the minimizations over ui only.

Thus what remains is to find each ui which makes the global optimization prob-

lem minimum. But this is much simpler since the u of which we can choose from

have already met the constraints. Thus, the problem becomes a standard uncon-

strained least squares minimization problem. In order to get the actual formula

for the optimal ai, we do some linear algebra to get each Dsai in terms of each

zi (which contains ui), to then be plugged back inside the minimization. Take a

single minimization, indexed by i,

min
Biai=zi

k∑
i=1

‖Dsai‖2
2 (4.6)

Assuming that we have some ui, we can express the coefficients ai in terms

of zi through a pseudoinverse of Bi (recall zi contains ui). Numerically, this can

be achieved through a QRV factorization. Ds is chosen to have the appropriate

Sobolev weights as described in equations 3.23. In our experiments, we have used

what is known as the ’economy’ SVD for this QRV factorization, where V T is m

by n (contains only its first m rows) and Σ is m by m, given m<n.

First, insert D−1
s Ds into the constraint equation,
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Biai = zi (4.7)

BiD
−1
s Dsai = zi (4.8)

and form the pseudoinverse taking the SVD of BiD
−1
s .

UiΣiW
T
i = BiD

−1
s (4.9)

UiΣiW
T
i Dsai = zi (4.10)

W T
i Dsai = Σ−1

i UT
i zi (4.11)

Since Wi is orthogonal, and does not affect the norm, we can plug this back into

the minimization:

min
ui,ai

‖W T
i Dsai‖2

2 = min
ai

‖Dsai‖2
2 (4.12)

= min
ui

‖Σ−1
i UT

i zi‖2
2 (4.13)

Note the final minimization in equation 4.13 is over ui only. Thus we have removed

the coefficients ai from the minimization, but have kept an equivalent minimiza-

tion problem. Note, at this point the minimizations are still coupled, due to the

overlapping of windows, but now, we only have to work with u. Thus, we have

an unconstrained minimization, which is a sum of squared 2-norms, each of which

are linear in each ui. We call the matrix Σ−1
i UT

i as Mi and partition its columns
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based on the rows which were used for Bi and zi in equation 4.5.

Σ−1
i UT

i = Mi =

[
Mf i Mui Mbi

]
(4.14)

The global minimization in equation 4.4 can now be expressed solely in terms of

u as

min
ui

k∑
i=1

∥∥∥∥Mi




fi

ui

gi




∥∥∥∥
2

2

(4.15)

where each minimization in the sum can be written as

min
ui

∥∥∥∥
[

Mf i Mui Mbi

]




fi

ui

gi




∥∥∥∥
2

2

. (4.16)

Since each local minimization is over ui we can rewrite the above equation as

min
ui

k∑
i=1

∥∥∥∥Muiui − (−Mf ifi −Mbigi)

∥∥∥∥
2

2

. (4.17)

Thus, each local minimization is a standard least squares minimization. We

still can not proceed by separately minimizing each of these terms, which are in

the global minimization of equation 4.15, since they are coupled by overlapping

windows. However, we can combine the sum of the above least squares minimiza-

33



Chapter 4. Full MSN (FMSN)

tions into a single least squares matrix minimization problem, over the full u.

Keeping columns consistent for each point in f ,u, and g, we can form the grand

sparse matrices MGu,MGf , and MGb, with a set of rows for each of the individual

least squares minimization problems in equation 4.16. We can setup the following

minimization which solves our PDE for u and obtains the global minimization of

equation 4.13.

min
u

∥∥∥∥MGuu− (−MGf f −MGbg)

∥∥∥∥
2

2

(4.18)

MGuu
LS
= −MGf f −MGbg (4.19)

Note, proper indexing must be used to form the grand sparse matrices MGu,MGf ,

and MGb. That topic is covered in some more detail in the following section.

The generality of the approach is where this method derives its power. We

have a flexible control over memory use and computation time by working with

the window sizes and locations. The local approach also lends itself to setting up

a variety of PDEs. Most importantly, the method is a least squares approach.

The method is still in its early stages, but we see advantage in not requiring a

square system. In cases where the number of equations required for a solution

to the PDE is not exactly clear, for example with div-curl problems, the least

squares system could prove quite valuable.
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4.3 Sparse Matrix Indexing

In this section, we go into some more detail regarding forming the grand sparse

matrices MGu,MGf , and MGb.

When setting up the local matrix Bi, the discretization points in (x,y) which

fall under each window indicate the equations which are associated with each

points (PDE on interior points, boundary equation on the boundary points). If a

window falls in the center region and contains only interior points, then the bottom

block row BV (φ(xbnd
i )) of Bi (as well as the rows of gbnd

i in zi) will not exist.

Consequently, there will be no local matrix Mbi in equation 4.16 for that window.

Thus, when we solve for each local Mi in equation 4.14, the grid points which

formed each row of Bi and zi are the same grid points corresponding to the columns

of matrices Mf i,Mui and Mbi since we have essentially taken a psuedoinverse of

the matrix Bi.

These locally solved for matrices Mf i,Mui, and Mbi must then be placed in the

grand sparse matrices MGu,MGf , and MGb. These matrices contain the matrices

Mi from each local solve, and are thus global matrices. The grand sparse matrices

MGu and MGf each have NI columns corresponding to all the interior points of

(x,y). MGb has NB columns corresponding to every point on the boundary. Thus,

we emphasize the importance of having an index for every point in (x,y) to be
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able to used for indexing specific columns of the grand matrices MGf ,MGu, and

MGb.

Each local solve for Mi gets its own set of rows in the grand matrices. Thus,

if for example the i=1 window which was used in solving for M1 had 10 in-

terior points, and 4 boundary points, the block row matrices of B1 given by

LV (φ(xint
1 )), V (φ(xint

1 )),BV (φ(xbnd
1 )) would have 10, 10, and 5 rows, respectively.

Thus, M1 is a square matrix with 25 rows and columns. Thus, 25 rows are set

apart in the grand matrices MGu,MGf , and MGb for which the column blocks

[
Mf 1

]
25×10

,[Mu1]25×10, and [Mb1]25×5 (all from M1) will be placed.

The local matrices Mf 1,Mu1, and Mb1 will fill in the exact columns of the

grand matrices which correspond to the same points which went into the rows of

B1 and z1. This emphasizes the point of setting up a consistent indexing to enable

the filling in of the global matrices MGf ,MGu, and MGb. Thus, each window i will

have its own set of rows, but will share columns, depending on how much windows

overlap.

Once we have filled in the grand matrices MGf ,MGu, and MGb after completing

all the local solves for Mi, we can proceed to solving the global optimization

problem in equation 4.18 by means of equation 4.19.
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4.4 Window Placement

We will run though some examples of placing windows, varying the overlap,

and noting its effect on accuracy. All of our examples will have x be on the square

domain (x, y) ∈ [−0.5, 0.5], [−0.5, 0.5] with equispaced gridding, corners removed.

Our first option is placing a window at every point in x. The solution attains

the highest accuracy due to the consistent bandwidth of MGu being close to 25,

using and L = 5 window. The window on the interior is selecting all the points it

should (25 points) as an L = 5 window. However, the matrix MGu is the largest,

and computation time is the longest. In this case, we say the overlap parameter

O was chosen to be 3, since two L = 5 windows placed on adjacent points on a

equispaced grid will overlap over the distance of 3h units, with 4 grid points on

top of each other.

The second option is coming up with a scheme which places windows in an

equispaced manner, but not at every point in x. To do this, given a fixed window

size L, we then choose an overlap amount. Placing windows down on the square

region from [a, b], for a given L, we can find the number of windows which fit into

[a, b] with an overlap O of our choosing as:
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Wwidth = (L− 1)h (4.20)

S = Wwidth −Oh (4.21)

Nw = 2b(b− a)/(2S)c+ 1 (4.22)

Wwidth represents the total width of the window; a window when placed on a

sample which can select L = 5 equispaced samples (that are h apart) is 4h wide.

S denotes the spacing of the center of the windows, after an overlap of O has been

accounted for. Nw is the number of windows which fit into the region [a, b]. When

a window is placed at all the Nw centers, we are not guaranteed to cover every

point in the region, since we have floored the result for Nw.Basically, a case could

arise when Nw windows is an insufficient covering, but adding one more window

on each side S away means those two additional windows fall outside the region

[a, b]. We can test for this case, and when it occurs (for some instances of L and

O) we just place additional windows on the boundary instead. In 2d, these extra

boundary windows will use the same spacing S along the boundary. We show

some examples of what we mean in the following discussion. The 2d region we

consider is the square region (x, y) ∈ [−0.5, 0.5], [−0.5, 0.5].

Shown below is an overlap O = 3 with window size L = 5. This time however,

the windows are placed between points, instead of on top of points as in the first
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case we discussed. Note, both the overlap amount O and the window size L are in

relation to the equispaced gridding of x. Two adjacent windows in 2d are shown in

Figure 4.4. Boundary points are diamonds, interior points are circles, and window

centers are filled in diamonds.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4
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0.4

0.6

0.8

Figure 4.1: Two adjacient windows of size L=5 and overlap O=3

An overlap of 2 guarantees that regardless of window placement, each window

will overlap at least two points in any direction. See Figure 4.4 for two adja-
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cent windows. Again, boundary points are diamonds, interior points are circles,

window centers are filled in diamonds.
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Figure 4.2: Two adjacent windows of size L=5 and overlap O=2

An even more optimal placement is available when we choose an O of 1.5.

Care must be taken in using an overlap of less than the amount required by the

PDE order. Assume for the discussion we solving a second order PDE. Notice

that with the location shown below of the L = 5 windows, an overlap of 1.5

still guarantees that two points always fall under the overlapping sections of the
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window. Here we have found an optimal spacing for equispaced grids for second

order problems. The accuracy of the solution under this gridding remains since

we have overlapped at 2 points with every window, and the number of rows in

the grand matrix Mu is minimized. Figure 4.4 shows a few chosen windows along

this grid. Some windows are left out in order to aid visualization.
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Figure 4.3: Adjacent windows of size L=5 and overlap O=1.5

Note, however, that given some other arbitrary placement of two L = 5 win-

dows which overlap by 1.5 (not at the placements given by the example above),
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we are not guaranteed that two points will fall under the overlapping sections of

the windows.

Finally, we show an example of the case where we need additional windows

to cover the boundary. This case arises when the number of windows Nw in

equation 4.22 does not cover the boundary. This happens because we are using

the floor operation in equation 4.22. We do this because we prefer instead of

placing the windows outside the boundary, to place them exactly on the boundary.

Notice with this scheme, when these additional windows are needed, the overlap

from the points placed on the boundary with the interior placed points is always

greater than O, never less than. Here, we use a 16 by 16 gridding of (x,y), with

L=6.5 and O=1.5.

The optimal window placement scheme shown above using O = 1.5 will be

used in our examples in solving Helmholtz problems, along with using additional

windows placed on the boundary when necessary.
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Figure 4.4: A set of windows of size L=6.5 and overlap O=1.5

4.5 Implementation Overview - numerical con-

siderations

Presented in this section are some points to consider when implementing the

FMSN method. We will cover a necessary idea to produce working rectangular

windows along with some essential steps for sparse memory allocation.

43



Chapter 4. Full MSN (FMSN)

For the rectangular windows to work, we must introduce an additional ε on the

window width in order to account for floating point arithmetic. In 1d for example,

given a window size L = 5, say we place a window exactly on a grid point in x.

Given that x is equispaced, then the two end points of the window fall exactly on

top of the points that are 2*h away from the center of the window. In floating

point arithmetic, these points are not guaranteed to be selected. Thus, we add

an epsilon to the window length which guarantees these points fall just inside the

window. For point selection, ε = h
1000

works well.

The same idea must be applied again when doing the mapping φ(x) from the

points under the window to [−1, 1] to be used in the Chebyshev expansions. The

problem is in possibly mapping a point which falls at the end point of the window

(which includes the ε) to 1 or slightly over 1. We then add instead of just ε to

the transformation used in mapping, we add a 2ε. This guarantees that no points

selected by the window will be exactly on 1 in the Chebyshev basis, which could

potentially create NaN results.

Finally, a consideration in allocating memory for the grand matrices MGu and

MGf . We must first determine how many rows each of these matrices has. This

can only be known by doing a sweep of all the windows, and seeing how many

points fall under each window. We can then total this number up, seen as ’rowcnt’

in the attached MATLAB code in the appendix. In addition to just getting the
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size of the grand matrices, during this sweep we can collect the necessary index

information which will setup the sparse matrix indexing that is required to put

the local solutions for Mi into the grand matrices The number of columns in MGf ,

MGu, and MGb.

4.6 Numerical Results

We present the numerical results for FMSN applied to Elliptic PDEs in this

section. Two of the PDEs are Helmholtz problems, and one is a div-curl problem.

The results contain the maximum relative error, measured only at the interior

discretization nodes, (xint,yint).

error =
‖u(xint,yint)− uint

solved‖∞
‖u(xint,yint)‖∞ (4.23)

All experiments for FMSN were run using MATLAB, on a machine with 8GB of

RAM.

The first problem, which we will call ’good Helmholtz’ is given by

∇2u− u = f, in Ω (4.24)

u = g, in ∂Ω (4.25)

u =
1

1 + x2 + y2
(4.26)
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N L=3 FD L=7 FD L=13 FD L=17 FD L=5 FMSN
30 9.5e-4 4.1e-5 1.6e-07 9.3e-09 1.2e-07
100 8.2e-5 8.5e-7 2.8e-10 4.0e-11 6.9e-10
200 2.0e-5 1.1e-7 4.8e-11 7.6e-11 4.5e-11
500 1.2e-5 7.7e-9 3.1e-10 9.8e-10 6.3e-12

Table 4.1: Relative Error for MSNFD vs FMSN, ’good Helmholtz’

on the region (x, y) ∈ [−0.5, 0.5], [−0.5, 0.5]. The region is equisampled with N

samples in both directions, along with removing the four corner boundary points.

We show results for a window size L = 5, compared with the family of results

from the Finite Difference MSN method. A window overlap of 1.5 as defined in

equation 4.22 is used for window placement. The Sobolev parameter s is set to

15 in all experiments. We can see the method attains a very high accuracy at a

low number of samples.

The next problem we consider is the ’hard Helmholtz’ problem, given below.

We have added strong high frequency term making spectrum two-sided, along with

adding Neumann boundary conditions. In addition, the solution u is extremely

rough. Note that accuracies would be achieved similar to those of the first problem

if the underlying function u was the same. In this case, however, we need at least

N = 100 points to even begin to approach what could be seen as the Nyquist

sampling rate of the underlying function. The FMSN solver at L = 13 is on par

with the FDMSN solver at L = 13.
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N L=3 FD L=7 FD L=13 FD L=17 FD L=13 FMSN
30 2.8e-01 7.8e-01 9.0e+0 2.5e+02 7.412667e+00
100 1.9e-01 1.3e-01 1.6e-01 2.1e-01 3.530832e+00
200 4.4e-01 1.0e-02 5.2e-03 2.9e-03 2.792513e-03
500 2.2e-02 1.1e-03 3.3e-05 2.6e-06 1.366790e-05

Table 4.2: Relative Error for MSNFD vs FMSN, ’hard Helmholtz’

∇2u + 10000u = f, in Ω (4.27)

∇u.n̂ = g, in ∂Ω (4.28)

u =
sin(10x + 201y2)

1 + 900(x2 + y − 0.1)2

+
1

1 + 721(x + y − 0.32)

+
e−x2

1 + 1000(x + y2 − 0.25)2

+
1

1 + 1120(x2 + y2 − 0.5)2

(4.29)

We can get a loose handle on the order of the method, based on the window

size L. As an initial estimate, the order of the method for the good Helmholtz

problem is around 5.5 for lower values of N and is close to 3.5 for larger N , for

a L = 5 window. For the hard Helmholtz problem, the order is at 4 for larger

values of N with a L = 13 window.

Finally, we show results a div-curl on the square region (x, y) ∈ [−0.5, 0.5], [−0.5, 0.5],

using a smooth function to show that the method actually works. In 2d, the solu-
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tion is now a vector field with two values (uxg,uyg) at every point on the interior

discretization points. We name the components uxg and uyg, which not to be con-

fused with the partial derivatives of some 2d function u(x, y) which are sometimes

written ux and uy.

The boundary conditions are setup such that on the top three sides of the

square, we have given the normal component only, while on the bottom side, only

the tangential component is known. This requirement comes from a constraint

on the existence of solutions to the PDE itself. Well-posedness of planar div-curl

systems is the topic of [?], where many more examples and details can be found.

The div-curl PDE we solve numerically is given by:

∂uxg(x, y)

∂x
+

∂uyg(x, y)

∂y
= fdiv in Ω (4.30)

−∂uxg(x, y)

∂y
+

∂uyg(x, y)

∂x
= fcurl in Ω (4.31)

uxg = g1, in ∂Ω1 (4.32)

uyg = g2, in ∂Ω2 (4.33)

uxg(x, y) =
1

1 + x2 + y2
(4.34)

uyg(x, y) = x2 − 2y2 + xy − x + 1 (4.35)

where ∂Ω1 = ∂Ω ∩ {{x = −0.5} ∪ {x = 0.5} ∪ {y = −0.5}}

and ∂Ω1 = ∂Ω ∩ {y = 0.5}.
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N rel err cond no LS residual
7 4.3e-4 1.2e5 5.2e-6
15 1.7e-5 1.6e4 6.7e-8
30 3.5e-8 2.1e5 2.2e-9
60 1.3e-9 3.8e5 2.3e-10

Table 4.3: FMSN div-curl results, smooth solution

We treat the other components on the boundary as if they don’t exist, and

only solve for (uxg, uyg) on the interior. Also, we have chosen a window width of

L = 5 and an overlap of O = 1.5.

This concludes the preliminary collection of results for FMSN. We have shown

that we have a higher order method, which can solve planar div-curl problems.

Now it remains to be shown that method will work over a wide class of PDE

problems and dimension. In future experiments, more window sizes must be

tested, and we must look into the behavior of the condition number for large N .

In order to get condition number estimates for such large matrices, we need to

move to a supercomputer setting. This will also enable us to obtain results for

very large values of N .
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Extensions and Future Work

Many experiments still need to be done using FMSN. These include going

through each PDE and detailing the order of convergence, and other results with

varying window sizes, overlap, and grid densities.

The real advantage this method has is that it is a least squares method. The

method should be tested on div-curl problems of varying geometries and boundary

conditions. Papers have been written on the well-posedness of div-curl systems,

this will be a source of direction.

We shall also apply FMSN to a whole host of non-elliptic PDEs. This can

possibly take the form of time stepping and higher dimensional approaches.

As we become more confident in the method, we can begin applying it to real

world applications. At this moment however, much of the above explorations still

need to be done.
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.1 Global Approach - 1d Boundary Value Prob-

lem

In this section, we present an ODE solver which uses the same principles as
the FMSN PDE solver. We make a separate presentation here to explicitly write
out the exact details of the solver using a second order ODE. Here we cover the
basic building block of our approach through the example of solving globally a
1d boundary value problem with Dirichlet boundary conditions. In this section,
we disregard numerical and memory considerations as a compromise in order to
simply demonstrate basic idea of the method. Thus, the method described here is
incomplete and is not suitable for use in solving larger problems to high accuracy.
One issue is due to memory constraints inherent in forming the dense matrix
to be factored for the global solution. The other is due to requirement of an
accurate QRV factorization of this matrix. Moving to the local method presented
in the following sections remedies both of these issues. The local method uses
a generalized version of what is presented in this section in a way which solves
numerically an ODE or PDE with minimum Sobolev norm.

The differential equation is denoted by the differential operator L. We will
solve the following second order differential equation for u on the interval [−1, 1],
with Dirichlet boundary conditions. Thus, u(−1) and u(1) are given.

L(u(x)) = u′′(x)− u(x) = f(x), x = [−1, 1] (.1)

u(−1) = α1, u(1) = α2 (.2)

The following is notation for the discretization. Assume for simplicity we are
discretizing over the region x = [−1, 1] using N equispaced discretization nodes.
Each node is an element of the vector x and is denoted xk, k = 1, 2...N . x1 and
xN represent the two boundary nodes at x = −1 and x = 1. The values of the
differential equation are stored in the vector f and are denoted fk, k = 2, 3...N − 1.
The values in f are only known on the interior nodes x2...xN−1. The values of
the solution at the nodes x are stored in the vector u. The elements of u are
denoted uk, k = 1, 2...N . The boundary values of u are assumed to be known and
are denoted u1 and uN . The problem is now to solve the following constrained
optimization problem:

min
{Ba=z}

‖Dsa‖2
2 (.3)
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Where Ba = z represents:



LV (xint)
V (x1)
V (xint)
V (xN)


 a =




f
u1

uint

uN


 (.4)

The Chebyshev vandermonde matrix V is assumed to have sufficiently high
order M as defined in equation 3.20, and contains a row for every node in x.
V (x1) and V (xN) are the rows in V which correspond to the boundary points,
while we denote V (xint) to mean the rows corresponding to the interior points
x2...xN−1. LV (xint) represents the differential operator applied to the Chebyshev
polynomials in the Vandermonder matrix. Thus, in this example, LV (xint) =
V ′′(xint) − V (xint). We write out the second and fourth blocks of B and z sep-
arately because they represent the boundary equation. Some other differential
operator could be applied to these boundary rows, but for this example we are
solving a boundary value problem with Dirichlet conditions.

Assume we have some u which satisfies the constraint. We rewrite Dsa in
terms of z and plug this back into the minimization. The minimization is now
in terms of z, and thus u. The problem becomes an unconstrained least squares
minimization over u.

We begin by inserting the Sobolev weight matrices D−1
s Ds into Ba = z, fol-

lowed by taking a QRV factorization of BD−1
s . We can assume for now that an

SVD is sufficient for small problems. Numerical considerations are addressed in
the following sections.

BD−1
s Dsa = z (.5)

Q1R1W1 = BD−1
s (.6)

Substituting back and taking Q1 and R1 to the right hand side:

Q1R1W1Dsa = z (.7)

W1Dsa = R−1
1 QT

1 z (.8)

We can plug this back into the minimization problem since W1 is orthogonal,
and notice the problem is now over u, a has been eliminated from the minimiza-
tion.

min
a
‖Dsa‖2

2 = min
a
‖W1Dsa‖2

2 (.9)

= min
u
‖R−1

1 QT
1 z‖2

2 (.10)
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Taking the terms inside the minimization in equation .10, we rename R−1
1 QT

1 as
M and partition it into two column blocks Mf and Mu corresponding to the rows in
z containing f and u, respectively. Note, M is square and has size (2N−2, 2N−2).
N − 2 rows are from f and N are from u.

R−1
1 QT

1 = M =
[

Mf Mu

]
(.11)

Using the above partition, we can rewrite the minimization problem in equa-
tion .10 as:

min
uint

∥∥∥∥
[

Mf Mu

]



f
u1

uint

uN




∥∥∥∥
2

2

(.12)

Recall, u1 and uN are the Dirichlet boundary condition values and are known,
thus we are minimizing over uint. We can split the matrix multiplication in equa-
tion .12 even further1. It should also be apparent now that we are minimizing
over uint, as the values of u on the boundary are given.

min
uint

‖Mf f + Mu(∗, 2 : N − 1)uint + u0Mu(∗, 1) + uN−1Mu(∗, N)‖2
2 (.13)

min
uint

‖Mu(∗, 2 : N − 1)uint − (−Mf f − u0Mu(∗, 1)− uN−1Mu(∗, N))‖2
2 (.14)

Written in this form, we can see now that equation .14 is a standard least
squares minimization problem, equivalent to the well known problem Ax = b when
A is a tall matrix. Note the matrix Mu(∗, 2 : N − 1) is tall and has dimensions
(2N-2,N-2). The values for uint can now be solved for by any of the standard least
squares matrix solutions [6], for example by using a QR factorization.

.2 Numerical Considerations

In the previous section we used a global approach to finding the solution which
has minimum Sobolev norm of an ODE. The problem with this approach can be
seen when we increase N . Here, the dense matrix M will grow with N . For large
problems in 2d, the QRV factorization not only becomes too expensive, but also
highly inaccurate. To see why, consider the matrix undergoing the factorization,
BD−1

s . In D−1
s , the high frequency terms become exponentially small, thus render-

ing the matrix BD−1
s to be highly ill conditioned for larger values of s. Specialized

techniques have been developed to deal with this situation, as can be found in [1],

1The notation (∗, 1 : 3) following a matrix is used to denote selecting the first 3 columns of
that matrix, for example.
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see the sections on CODA, the Complete Orthogonal Decomposition Algorithm.
As a simpler work around, we stick to using an SVD as the QRV factorization
and propose using the local approach presented in the following section as a way
to keep the problem at bay.

.3 Local Approach - 1d Boundary Value Prob-

lem

We now solve the same ODE that was used in the global approach. This time
instead of using the whole grid of discretization nodes x to form the M matrix we
place a new grid down which we call the specification points. The k specification
points will be stored in the vector c. A specification point cl will be the center
point for which we place a window of some width which will grab the discretization
nodes x. We will still be solving for the ODE at the points in x. Locations in c
can match locations in x, including being on the boundary.

One way to specify the size of the local window is in relation to the grid density
of x, given x is an equispaced grid. Let h be the distance between two samples in
x. Then we can define a window width of L samples for example. Let C be the
set of values in x that fall in this window placed at some location stored in c.

Cl = {xn : ‖xn − cl‖∞ <
h(L− 1)

2
}, l = 1, 2...k (.15)

The idea now is to place windows such that the whole region of points in x is
covered. We are free to choose the window sizes and locations, we will see this
effects the accuracy and solve time in the discussion to follow. For now, we show
how to setup the large system which will solve the ODE with minimum Sobolev
norm.

Each window placed at cl will select a set of discretization points from x.
Some windows may fall over only interior points, other will select both boundary
and interior points, depending on their location cl. Knowing the corresponding
equations for the interior and boundary at every point in x, we can setup a local
solve, treating it identically to how we setup the global solution in the previous
section. One extra step needs to be added, and that is the affine transformation
which maps points from the windowed neighborhood set Cl to [−1, 1].

Thus, each window will have its own set of local equations given by the region
in which it is placed, and thus its own Sobolev norm to minimize. We can now
pose this as the following global optimization problem:
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min
{u|Biai=zi}

k∑
i=1

‖Dsai‖2
2 (.16)

Where Biai = zi represents the local set of equations given by the points that
fall under the k windows centered at ci, i = 1, 2...k. Thus we are asking that the
sum of the Sobolev norms given locally from each ui be minimum.

Proceeding by example, if the first window c1 contains only the left boundary
and some close by interior points, then B1a1 = z1 would mean:



LV (φ1(xint1))

V (φ1(x1))
V (φ1(xint1))


 a =




f
u1

uint1


 (.17)

Where xint1 are the interior points which fall under window 1, which is centered
at c1. Note, c1 is allowed to be a boundary point. We can not simply use the
points in x which fall under the window in the Vandermonde matrix. For example,
if we were solving on a region outside of [−1, 1], these points are not even defined
for the Chebyshev polynomials. We must use an affine transformation to map
the points under the window into [−1, 1]. To form a consistent mapping, we map
the leftmost reaching value of the window to -1 and the rightmost reaching value
to 1, not the left and right most point under the window. For now, we assume
a constant window size. Future work could include adaptive algorithms where
window sizes vary.

We now proceed identically to the idea behind the global method. We form
Mu1 and Mf 1, using 1 to denote from the first window. However, instead of
solving for u locally here, we stop and save the matrices Mu1 and Mf 1 and place
them into the larger sparse grand matrices MGu and MGf . We repeat the process
for all k windows. Each new window gets its own set of rows in MGu and MGf ,
but the columns of both MGu and MGf are indexed in relation to the points in x.
According to how much the windows overlap, columns will be shared. A banded
structure arises for 1d problems in both grand matrices MGu and MGf assuming
that our window has slid from the left boundary to the right boundary. In higher
dimensions, the sparsity pattern will not be as simple.

min
u

∥∥∥∥
[

MGf MGu

] [
f
u

] ∥∥∥∥
2

2

(.18)

Where MGu and MGf are the following sparse matrices.
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MGu =

columns indexed as all points in x︷ ︸︸ ︷


[Mu1]
[Mu2]

[Mu3]
. . .

[Muk]




,MGf =

columns indexed as the interior points in x︷ ︸︸ ︷


[
Mf 1

]
[
Mf 2

]
[
Mf 3

]
. . .[
Mf k

]




(.19)

We again find the resulting solution has been reduced to a least squares prob-
lem. The first and last columns of MGu multiplied by the boundary conditions u1

and uN , respectively, should be taken to the right hand side. Then uint can be
solved for using any standard matrix algebra technique, for example using by a
QR factorization of the remaining columns of the matrix MGu. This is assuming
all the values of f are known, and are thus also multiplied with MGf and taken to
the right hand side.

Using the local approach gives us control over the sparsity and size of the ma-
trix which will must invert, MGu. This also controls the amount of computation
time required in assembling the matrix. Using a smaller window size will reduce
the number of non-zero terms, along with the number of rows. Using fewer spec-
ification points for the windows will reduce the number of rows. The number of
columns is fixed as the number of points in x.

In choosing windows sizes and locations, it is important that no points in x
are not covered by a window, or we will end up with a zero column in MGu, given
that we setup MGu to have a column for every point in x before adding the local
computations. We also at this point make the conjecture that for second order
problems, a minimum window overlap of two points is required. Likewise for
fourth order problems, we would need four, though this has not yet been proven
mathematically.

.4 MATLAB code

% FMSN PDE Solver
% 9/7/11
% Joseph Moffitt

clear
%clc

%u = @(x,y) ((sin(10*x+201*y.^2)./(1+900*(x.^2+y-0.1).^2)) + (1./(1+...
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%721*(x+y-0.3).^2)) + (exp(-(x.^2))./(1+1000*(x+y.^2-0.25).^2...
%)) + (1./(1+1120*(x.^2+y.^2-0.5).^2)));
%u = @(x,y) 1/(1+100*x^2+100*y^2);
u = @(x,y) 1./(1+x.^2+y.^2)

usym = sym(u);
ux = diff(usym,’x’);
uxx = diff(ux,’x’);
uy = diff(usym,’y’);
uyy = diff(uy,’y’);
%make sure the PDE in line 251 matches the following
f = uxx+uyy-usym;
%f = uxx+uyy+10000*usym;

shape = ’Square_geom’;
Ntest = [10];
stest = [15];
mkeeptest = [5];

errall = zeros(length(Ntest),length(stest),length(mkeeptest));
condall = zeros(length(Ntest),length(stest),length(mkeeptest));

iN = 1;
iS = 1;
iM = 1;

tic
for N = Ntest
for s = stest

Nx = N;
Ny = N;

fprintf(’OK READY\n’)
fprintf(’N = %d\n’,N)

width = 1.0;
height = 1.0;
h_w = width/(Nx-1);
h_h = height/(Ny-1);
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epsl_w = h_w/1000;
epsl_h = h_h/1000;
L=5;
OVL = 1.5;
winl = (L-1)*h_w;
WinSPACE = winl-OVL*h_w;
numwins = 2*floor(width/(2*WinSPACE))+1;

ninterior = N^2;
nboundary = 4*N;

%yi first to mimick the python code!!!!!!!
[yi xi xb yb h] = generate_grid(ninterior, nboundary, shape);
%Now, call the FMSN PDE Solver, with the given boundary.
% The following lines makes this code mimick the python code
xb = fliplr(xb);
yb = fliplr(yb);
remcorners = [1, Nx,(Nx+Ny-1),(2*Nx+Ny-2)];
xb(remcorners) = [];
yb(remcorners) = [];

%xb = xb*width;
%yb = yb*height;
%xi = xi*width;
%yi = yi*height;

Ni = length(xi);
Nb = length(xb);
Ntot = Ni+Nb;

xb = xb’;
yb = yb’;

x = [xi;xb];
y = [yi;yb];

Nside = Nb/4;
% !!!!!!!!!! SETUP BOUNDARY CONDITIONS HERE !!!!!!!!!!!!!
% Make sure the BC matches the one in line 263
%BC_V = [zeros(Nside,1) ones(Nside,1); ones(Nside,1) zeros(Nside,1...
%); zeros(Nside,1) ones(Nside,1); ones(Nside,1) zeros(Nside,1)];
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if ((numwins-1)*WinSPACE/2+winl/2)<width/2
add2 = 2;

else
add2 = 0;

end

if add2 == 0
NxW = numwins;
NyW = numwins;

nWinterior = (NxW)^2;
nWboundary = 4*(NxW);

%yi first to mimick the python code
[yi_W xi_W xb_W yb_W h_W]=generate_grid(nWinterior, nWboundary, shape);
yi_W=(yi_W*2)*((numwins-1)/2)*WinSPACE;
xi_W=(xi_W*2)*((numwins-1)/2)*WinSPACE;
xb_W=(xb_W*2)*((numwins-1)/2)*WinSPACE;
yb_W=(yb_W*2)*((numwins-1)/2)*WinSPACE;
end
if add2 == 2
NxW = numwins;
NyW = numwins;
nWinterior = (NxW)^2;
nWboundary = 4*(NxW);
%yi first to mimick the python code
[yi_W xi_W xb_W yb_W h_W]=generate_grid(nWinterior, nWboundary, shape);
yi_W=(yi_W*2)*((numwins-1)/2)*WinSPACE;
xi_W=(xi_W*2)*((numwins-1)/2)*WinSPACE;
xb_W=(xb_W*2)*((numwins-1)/2)*WinSPACE;
yb_W=(yb_W*2)*((numwins-1)/2)*WinSPACE;
xb_W = fliplr(xb_W);
yb_W = fliplr(yb_W);
yi_W = [yi_W; yb_W’];
xi_W = [xi_W; xb_W’];
xb_W = [-0.5 xb_W(1:(NxW)) 0.5*ones(1,NyW+2) fliplr(xb_W(1:(NxW...

))) -0.5*ones(1,NyW+1)];
yb_W = [-0.5*ones(1,NyW+2) yb_W((NxW):(NxW+NyW-1)) 0.5*ones(1,NyW...

+2) fliplr(yb_W((NxW):(NxW+NyW-1)))];

end
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Ni_W = length(xi_W);
Nb_W = length(xb_W);
NtotW = Ni_W+Nb_W;
xb_W = xb_W’;
yb_W = yb_W’;
xW = [xi_W;xb_W];
yW = [yi_W;yb_W];

if L == 3
Ni_W = length(xi);
Nb_W = length(xb);
NtotW = Ni_W+Nb_W;
xb_W = xb;
yb_W = yb;
xW = [xi;xb];
yW = [yi;yb];

end

%the following plots our window placement setup
%{
figure
hold on;
scatter3(xi, yi, ones(length(xi),1),’ko’,’LineWidth’,2);
plot3(xb, yb, ones(length(xb),1), ’kd’,’LineWidth’,2);
for i = 1:length(xW)
plot3(xW(i), yW(i), 1,’d’,’Color’,[0.2 0.2 0.2],’LineWidth’,4);
plot([xW(i)-h_w*(L-1)/2,xW(i)-h_w*(L-1)/2,xW(i)+h_w*(L-1)/2,...
xW(i)+h_w*(L-1)/2,xW(i)-h_w*(L-1)/2], [yW(i)-h_h*(L-1)/2,...
yW(i)+h_h*(L-1)/2,yW(i)+h_h*(L-1)/2,yW(i)-h_h*(L-1)/2,...
yW(i)-h_h*(L-1)/2],’Color’,[(i+length(xW)/2)/(length(xW)*2) (i...
+length(xW)/2)/(length(xW)*2) (i+length(xW)/2)/(length(xW)*2)])
end
axis([-0.8 0.8 -0.8 0.8])
hold off;
%}

%Find the windows and indices.
%Store in a list
list_ind = [];
li_u = [];
li_g = [];
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li_f = [];
rowcnt = 0;
tic
for k= 1:NtotW

Lwb_x = xW(k)-h_w*(L-1)/2-epsl_w;
Rwb_x = xW(k)+h_w*(L-1)/2+epsl_w;
Lwb_y = yW(k)-h_h*(L-1)/2-epsl_h;
Rwb_y = yW(k)+h_h*(L-1)/2+epsl_h;
xy_w_ind=find(x >= Lwb_x & x <= Rwb_x & y >= Lwb_y & y <= Rwb_y);
interior_cnt = nnz(xy_w_ind<=Ni);
boundary_cnt = nnz(xy_w_ind>Ni);
% the following lists will GROW inside the loop
list_ind = [list_ind; length(xy_w_ind); xy_w_ind];
li_f = [li_f interior_cnt];
li_u = [li_u interior_cnt];
li_g = [li_g boundary_cnt];

rows_LV_V_BV = interior_cnt+interior_cnt+boundary_cnt;
rowcnt = rowcnt+rows_LV_V_BV;

end
gatherinfotime = toc;

li_sum = li_f+li_u+li_g; %each entry is the number of rows of each Mi
f_cnt_win = li_f.*li_sum;
u_cnt_win = li_u.*li_sum;
g_cnt_win = li_g.*li_sum;

iMf = zeros(sum(f_cnt_win),1); %to be used for sparse indexing
jMf = zeros(sum(f_cnt_win),1); %to be used for sparse indexing
Mf_data = zeros(sum(f_cnt_win),1); %data to be filled into the Mf
iMu = zeros(sum(u_cnt_win),1);
jMu = zeros(sum(u_cnt_win),1);
Mu_data = zeros(sum(u_cnt_win),1);
iMg = zeros(sum(g_cnt_win),1);
jMg = zeros(sum(g_cnt_win),1);
Mg_data = zeros(sum(g_cnt_win),1);

Mcheck = [];
ind_find = 1;
rowstop = 0;
ind_umat = 0;
ind_fmat = 0;
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ind_gmat = 0;

tic
for k = 1:NtotW

fprintf(’-indx %d/%d-\n’,k,NtotW)
num_points = list_ind(ind_find);
xy_w_ind = list_ind(ind_find+1:ind_find+1+num_points-1);

ind_interior = find(xy_w_ind<=Ni);
ind_boundary = find(xy_w_ind>Ni);

x_w = x(xy_w_ind);
y_w = y(xy_w_ind);

Lwb_x = xW(k)-h_w*(L-1)/2-2*epsl_w;
Rwb_x = xW(k)+h_w*(L-1)/2+2*epsl_w;
Lwb_y = yW(k)-h_h*(L-1)/2-2*epsl_h;
Rwb_y = yW(k)+h_h*(L-1)/2+2*epsl_h;

phi_x=2/(Rwb_x-Lwb_x);
phi_y=2/(Rwb_y-Lwb_y);

x_w_phi = phi_x*(x_w-Lwb_x)-1;
y_w_phi = phi_y*(y_w-Lwb_y)-1;

maxgridsize = 1e6;
tol = 1/maxgridsize;
dxc = bsxfun(@minus, acos(x_w_phi), acos(x_w_phi)’);
dyc = bsxfun(@minus, acos(y_w_phi), acos(y_w_phi)’);
dx = sqrt(dxc.^2+dyc.^2);
M = round(3*pi/min(min(dx(dx>tol))));
clear dxc dyc dx;
Mx = M;
My = M;
%Mcheck = [Mcheck M];
D_inv = zeros(Mx*My,1);
for l=0:Mx-1
D_inv((l*My + 1):(l+1)*My,1) = (1+l^2+(0:My-1).^2).^(-s/2);

end

Vxx = zeros(num_points, Mx*My);

64



Bibliography

Vx = zeros(num_points, Mx*My);
Vyy = zeros(num_points, Mx*My);
Vy = zeros(num_points, Mx*My);
V = zeros(num_points, Mx*My);
for t=1:num_points
Vxx(t,:) = kron(([0:Mx-1].^2.*cos([0:Mx-1]*acos(x_w_phi(t))))/...

(x_w_phi(t)^2 - 1) + ([0:Mx-1]*x_w_phi(t).*sin([0:Mx-1]*...
acos(x_w_phi(t))))/(1 - x_w_phi(t)^2)^(3/2),...
cos(acos(y_w_phi(t))*[0:My-1]));

Vx(t,:) = kron( ([0:Mx-1].*sin([0:Mx-1]*acos(x_w_phi(t))))/...
(1 - x_w_phi(t)^2)^(1/2) , cos(acos(y_w_phi(t))*[0:My-1]));

Vyy(t,:) = kron(cos(acos(x_w_phi(t))*[0:Mx-1]) ,...
([0:My-1].^2.*cos([0:My-1]*acos(y_w_phi(t))))/...
(y_w_phi(t)^2 - 1) + ([0:My-1]*y_w_phi(t).*sin([0:My-1]*...
acos(y_w_phi(t))))/(1 - y_w_phi(t)^2)^(3/2));

Vy(t,:) = kron(cos(acos(x_w_phi(t))*[0:Mx-1]), ([0:My-1].*...
sin([0:My-1]*acos(y_w_phi(t))))/(1 - y_w_phi(t)^2)^(1/2));

V(t,:) = kron(cos(acos(x_w_phi(t))*[0:Mx-1]), ...
cos(acos(y_w_phi(t))*[0:My-1]));

end

% !!!!!!! SETUP THE PDE HERE !!!!!!!!
LV = phi_x^2*Vxx(ind_interior,:)+...

phi_y^2*Vyy(ind_interior,:)-V(ind_interior,:);
%LV = phi_x^2*Vxx(ind_interior,:)+...
phi_y^2*Vyy(ind_interior,:)+10000*V(ind_interior,:);

BV = zeros(length(ind_boundary),Mx*My);
for ibo = 1:length(ind_boundary)

% !!!!!!! SETUP THE BOUNDARY CONDITIONS HERE !!!!!!!!
% Use the following line to have Dirichlet boundary conditions:
BV(ibo,:) = V(ind_boundary(ibo),:);
% Use the following line to have Neumann boundary conditions:
%BV(ibo,:) = phi_x*Vx(ind_boundary(ibo),:)*...
%BC_V((xy_w_ind(ind_boundary(ibo))-Ni),1)+phi_y*...
%Vy(ind_boundary(ibo),:)*BC_V((xy_w_ind(ind_boundary(ibo))-Ni),2);

end
Vint = V(ind_interior,:);

[dum,ps] = sort(D_inv, ’descend’); %apply a permutation to the rows
clear dum
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Ddiag = diag(D_inv);
A=Ddiag(ps,:)*[LV’ Vint’ BV’];
[dum,sig1,w1] = svd(A,’econ’);
M1 = diag(1./diag(sig1))*w1’;

if sum(sum(isnan(M1)),2)>0
k
M1
fprintf(’BREAK! ASSEMBLY CREATED a NaN!’)
break

end

indx_rows_M = 1:li_sum(k);
rep_i_f = repmat(indx_rows_M,1,li_f(k));
rep_i_u = repmat(indx_rows_M,1,li_u(k));
rep_i_g = repmat(indx_rows_M,1,li_g(k));

indx_cols_Mf = reshape(repmat(xy_w_ind(ind_interior)’,li_sum(k),1),...
length(ind_interior)*li_sum(k),1);

indx_cols_Mu = reshape(repmat(xy_w_ind(ind_interior)’,li_sum(k),1),...
length(ind_interior)*li_sum(k),1);

indx_cols_Mg = reshape(repmat(xy_w_ind(ind_boundary)’,li_sum(k),1),...
length(ind_boundary)*li_sum(k),1);

Mfd = reshape(M1(:,1:length(ind_interior)),...
length(ind_interior)*li_sum(k),1);

Mud = reshape(M1(:,length(ind_interior)+1:2*length(ind_interior)),...
length(ind_interior)*li_sum(k),1);

if li_g(k) ~= 0 % skip when we cover only interior points
Mgd = reshape(M1(:,2*length(ind_interior)+1:li_sum(k)),...

length(ind_boundary)*li_sum(k),1);
end

iMf((ind_fmat+1):(ind_fmat+f_cnt_win(k))) = rep_i_f+rowstop;
jMf((ind_fmat+1):(ind_fmat+f_cnt_win(k))) = indx_cols_Mf;
Mf_data((ind_fmat+1):(ind_fmat+f_cnt_win(k))) = Mfd;

iMu((ind_umat+1):(ind_umat+u_cnt_win(k))) = rep_i_u+rowstop;
jMu((ind_umat+1):(ind_umat+u_cnt_win(k))) = indx_cols_Mu;
Mu_data((ind_umat+1):(ind_umat+u_cnt_win(k))) = Mud;

if li_g(k) ~= 0 % skip when we cover only interior points
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iMg((ind_gmat+1):(ind_gmat+g_cnt_win(k))) = rep_i_g+rowstop;
jMg((ind_gmat+1):(ind_gmat+g_cnt_win(k))) = indx_cols_Mg-Ni;
Mg_data((ind_gmat+1):(ind_gmat+g_cnt_win(k))) = Mgd;

end

rowstop = rowstop+li_sum(k);
ind_find = ind_find+num_points+1;
ind_fmat = ind_fmat+f_cnt_win(k);
ind_umat = ind_umat+u_cnt_win(k);
ind_gmat = ind_gmat+g_cnt_win(k);

end
assembletime = toc;

ff = matlabFunction(f);
fRHS = ff(xi,yi);
%{
uref = zeros(length(x),1);
for ik = 1:length(x)
uref(ik) = u(x(ik),y(ik));
end
%}

% !!!!!!! SETUP BOUNDARY CONDITIONS HERE !!!!!!!!!
%uxF = matlabFunction(ux);
%uyF = matlabFunction(uy);
%u_BC_funct = [uxF(xb,yb) uyF(xb,yb)];
%u_BC = sum((u_BC_funct.*BC_V),2);
% Use the following for Dirichlet Boundary conditions
u_BC = u(xb,yb);

tic

Mg = sparse(iMg,jMg,Mg_data,rowcnt,Nb,rowcnt*L^2);
clear iMg jMg Mg_data
Mgu_BC=Mg*u_BC;
clear Mg u_BC

Mf = sparse(iMf,jMf,Mf_data,rowcnt,Ni,rowcnt*L^2);
clear iMf jMf Mf_data
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MffRHS=Mf*fRHS;
clear Mf fRHS

MM_fg=-MffRHS-Mgu_BC;
clear MffRHS Mgu_BC
formmatrixtime = toc;

Mu = sparse(iMu,jMu,Mu_data,rowcnt,Ni,rowcnt*L^2);
clear iMu jMu Mu_data

tic
uSOL = Mu\MM_fg;
solvtime = toc;
uref = u(xi,yi);
err = max(abs(uSOL-uref))/max(uref);

LSresid = max(abs(((Mu*uref)-(MM_fg))))/max(abs((MM_fg)));
LSresidsolv = max(abs(((Mu*uSOL)-(MM_fg))))/max(abs((MM_fg)));

n_non_z = nnz(Mu);
mnew = sign(abs(Mu));
mutnnz = sum(mnew,2);
maxBW = max(mutnnz);
avgBW = sum(mutnnz)/length(mutnnz);
maxBWrows = sum(maxBW == mutnnz);

tic
RS = qr(Mu,0);
xrand = rand(size(RS,1),20);
xrandcol = max(abs(xrand));
xr1 = xrand./repmat(xrandcol,size(RS,1),1);
bo=RS*xrand;
normRs = max(max(abs(bo)));
xsol = RS\xr1;
normRsi = max(max(abs(xsol)));
wallis = sqrt(pi*(size(RS,1)-1)/2);
condno = wallis*normRs*normRsi;
condnotime = toc;

fprintf(’Information about Mu:\n’)
fprintf(’Number of Non-zeros vs total size of Mu: %d, %d\n’,n_non_z,...
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size(Mu,1)*size(Mu,2))
fprintf(’Max bandwidth of Mu = %d, found in %d rows\n’,full(maxBW),...

full(maxBWrows))
fprintf(’Avg bandwidth of Mu = %d\n’,full(avgBW))
fprintf(’Size of Mu = %d x %d \n’,size(Mu,1),size(Mu,2))
fprintf(’Cond number of Mu = %d\n’,condno)
fprintf(’LS residual w/ refernce = %d\n’,LSresid)
fprintf(’LS residual w/ solved soln = %d\n’,LSresid)
fprintf(’Max absolute relative error = %d\n’,err)
fprintf(’%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n’,err)
fprintf(’Information about Timings:\n’)
fprintf(’Cond no est time = %d\n’,condnotime)
fprintf(’Solve time = %d\n’,solvtime)
fprintf(’Assemble time = %d\n’,assembletime)
fprintf(’Form sparse matrix time = %d\n’,formmatrixtime)
fprintf(’Gather indeces time = %d\n’,gatherinfotime)

figure
plot3(xi,yi,(uSOL-uref))

errall(iN,iS,iM) = err;
condall(iN,iS,iM) = condno;

iS = iS+1;
end

iS=1;
iN=iN+1;
end
tottime=toc;
save(’err_N_s_m.mat’,’errall’)
save(’cond_N_s_m.mat’,’condall’)
save(’time.mat’,’tottime’)
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