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ABSTRACT

Multipole for Scattering Computations:

Spectral Discretization, Stabilization, Fast Solvers

by

Timothy Paul Pals

In 1985, Vladimir Rokhlin introduced the fast multipole method (FMM) for the

solution of the Laplace equation. The method has since been named, by Computing

in Science & Engineering magazine, one of the 20th century’s ten most influen-

tial algorithms. In 1990, Rokhlin introduced a version of FMM for the Helmholtz

equation that has greatly influenced algorithm development in the computational

electromagnetics community.

Unfortunately, scattering FMM is numerically unstable. Its instability can be

traced to the asymptotic behavior of the multipole basis functions. After demon-

strating the instability, I introduce measures that eliminate it without sacrificing

the method’s efficiency. Relative accuracies approaching 10−16 are possible, even for

scattering obstacles with diameters smaller than 10−200 wavelengths.

When applied to the solution of PDEs, multipole methods are embedded into it-

erative solvers such as GMRES. In many circumstances, the discretization produces

a poorly conditioned algebraic system, and iterative solvers are slow to converge. I

introduce a fast direct solver which avoids that difficulty. The multipole structure is

embedded into a large sparse system, to which a standard sparse solver is applied.

ix



I demonstrate scattering problems for which the new solver is clearly superior to

either dense Gaussian elimination or iterative FMM.

To apply FMM, the PDE is first reformulated as a weakly singular integral equa-

tion. Multipole methods constrain the integral discretization in a way that makes

a high-order numerical solution difficult. The existing high-order discretizations are

numerically unstable. I present a stable discretization of arbitrarily high order that

satisfies the multipole constraints. I routinely solve scattering problems using rules

with order 32, and I have constructed stable discretizations with orders as high as

288.

To illustrate these techniques, I exhibit numerical solutions in two space dimen-

sions. All computations have been carried out in Matlab. Scattering obstacles

with diameters greater than 1000 wavelengths can be comfortably treated with a

personal computer.
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Chapter 1

Introduction:
The Helmholtz Equation

-

uinc

G−

Figure 1.1: Snapshot of the total field u+uinc scattered by a circular cylin-
der G− under illumination by a plane wave uinc incident from the left. The
axis of the cylinder is perpendicular to the plane of the paper. The total
field vanishes at the cylinder surface.
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This dissertation covers the efficient numerical solution of the Helmholtz equation,

an elliptic partial differential equation (PDE) that governs linear wave scattering

processes. Figure 1.1 illustrates a simple problem setting.

Since this work has been carried out in the Department of Electrical and Com-

puter Engineering at UC Santa Barbara, I will emphasize electromagnetic scattering

processes. The Helmholtz equation does, however, play an important role in a host

of other natural phenomena:

• The field of acoustics is concerned largely with the scattering of sound

waves.

• The structure of materials at submicroscopic scales can be revealed

by the scattering of matter waves. Particle scattering is a standard

problem in quantum mechanics.

• General relativity predicts the existence of gravity waves that are scat-

tered by concentrations of matter and energy in the universe.

The numerical techniques contained herein apply to these domains as well.

1.1 The Helmholtz Boundary Value Problem

Although the Helmholtz equation typically materializes from more fundamental

physical laws (for examples, see Section 1.3), it is mathematically expedient to distill

those various starting points into a single unifying point of departure. Here, then,

is a nearly precise description of the problem we shall consider.

Problem 1.1 (Exterior Helmholtz) Given: (1) a real constant k > 0, (2) a

simple, bounded, piecewise very smooth curve Γ in the Euclidean plane E2, and (3)

2



a complex-valued function f : Γ → C on the curve. On the unbounded domain G+

with boundary Γ , construct a function u : G+ → C such that

∆u(x) + k2u(x) = 0 for x ∈ G+, (1.1a)

u(x) = −f(x) for x ∈ Γ, (1.1b)

lim
r→∞

√
r

(
∂u

∂r
(x)− iku(x)

)
= 0 where r := ‖x‖, (1.1c)

and the latter condition is to hold uniformly with respect to the direction of the vector

x ∈ G+.

The following remarks may clarify the hypotheses and the equations (1.1).

Problem 1.1 is the Dirichlet boundary value problem (BVP) for the Helmholtz

equation (1.1a). The differential operator ∆ is the Laplacian, also commonly denoted

by the symbol ∇2. Its definition in rectangular coordinates x = (x, y) is ∆u(x, y) :=

∂2u/∂x2 + ∂2u/∂y2.

The constant k is the wavenumber, the angular spatial frequency of a plane wave

solution to (1.1a). It is proportional to the temporal frequency ν through k = 2πν/c,

where c is the phase velocity of the plane wave. High frequency problems are those

for which k diamΓ is large.

In (1.1b) the data f is the restriction of a prescribed incident field uinc to the

boundary Γ . The solution u is the scattered field produced in response to that

excitation.

Other BVPs for the Helmholtz equation commonly occur. Introducing a linear

differential operator B : (G+ → C) → (Γ → C), the condition (1.1b) might be

replaced with

Bu(x) = −f(x), x ∈ Γ. (1.2)

3



In Section 1.3.2, I comment on other boundary conditions that are typically encoun-

tered, but otherwise our attention will be confined to the Dirichlet condition.

The condition (1.1c) is the Sommerfeld radiation condition. Another way of

writing it,

∂u

∂r
− iku = o

( 1√
r

)
as r →∞, (1.3)

makes use of the “little oh” notation for asymptotic behavior. This is a boundary

condition applied on a circle that encloses Γ and expands to infinity. The linear

combination of field values u and normal derivatives ∂u/∂r rejects functions with the

asymptotic character of incoming circular waves r−1/2e−ikr, but it accepts outbound

waves r−1/2eikr. The equivalent condition in the time domain (Section 1.3.1) is that

the scattering response must depend causally on the illuminating field.

Solutions of the Helmholtz equation that also satisfy (1.1c) are called radiating

solutions. The combination of (1.1a) and (1.1c) also ensures that u = O(r−1/2) and

∂u/∂r = O(r−1/2).

Regarding the restrictions on the curve Γ , a simple curve is one that does not

intersect itself. The qualifier piecewise very smooth demands that Γ may be parti-

tioned into a finite number of arcs, each of which may be parametrized by a vector

function x = γ(t) with two continuous derivatives on the arc interior. Furthermore,

a continuously turning tangent line must exist on each arc, so ‖γ ′(t)‖ 6= 0 at all

interior points. Every bounded piecewise smooth curve has a finite arc length, so

fractal curves are not allowed here. We shall consider both open and closed sim-

ple curves. A closed simple curve, or Jordan curve, is the common boundary of a

bounded domain G− and its unbounded exterior G+.

These restrictions on the curve have been adopted primarily because they are

the requirements of the Matlab code that I wrote to solve Problem 1.1. The user
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provides a symbolic piecewise parametrization of the curve, and the Maple kernel

underlying Matlab’s Symbolic Math Toolbox is used to compute two symbolic

derivatives of the parametrization. It is typical in existence proofs to see more

restrictive qualifications of Γ , but my code may actually be extended to allow still

more general boundaries. In particular, the problem might be generalized to allow

a finite collection of disjoint curves, but I will give no such examples of multiple

scattering obstacles in this work.

1.2 Survey of Contents and Contributions

Details of the new ideas mentioned in the abstract are contained in Chapters 3–5.

I have also devoted considerable energy to the expositions in this chapter and the

next, and they capture a lot of the hard-won insights that I have accumulated during

my studies. For the reader new to multipole, or to computational electromagnetics,

these chapters hopefully convey those insights without an unnecessary struggle.

After a section that gives the derivation of the Helmholtz equation from three

starting points, the remainder of this chapter is devoted to the construction and

numerical solution of scattering integral equations. The PDE can instead be solved

directly, with finite difference or finite element methods, but the integral equation

has two advantages:

• The computational grid occupies only the 1-D boundary Γ , rather

than the unbounded 2-D domain G+.

• Discretizations with a high order of accuracy are easier to construct.

On the other hand, integral equations generate dense algebraic systems, and the real

work lies in decreasing solution times.
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In Chapter 2, I present Rokhlin’s fast multipole method, from scratch. The

treatment is different in places from Rokhlin’s, and a few new ideas appear. In

particular, the multipole algorithm is represented with a dag, and that sets the

table for the direct solver introduced in Chapter 4.

The standard approach to Problem 1.1 is to embed the fast multipole method into

an iterative solver for linear systems. Not all discretizations, however, are compatible

with multipole. In Chapter 3, I introduce a stable, high-order discretization that I

expressly designed to work seamlessly with multipole methods. Then I explore the

application of various Krylov solvers and various preconditioners to various curves

Γ .

In Chapter 4, I abandon the iterative approach. I introduce a direct solver utiliz-

ing multipole structure. As far as I know, it is the first direct multipole solver to be

applied to 2-D scattering problems like Problem 1.1. It is then rather straightfor-

ward, by abusing the direct solver, to introduce new preconditioners for scattering

integral equations, and we are led back again to an iterative solver.

In Chapter 5, I face the numerical instability of scattering multipole, conveniently

ignored in Chapters 2–4. Anyone who wishes to develop a multipole solver must

confront this issue. Here, after analyzing the instability, I give my solution, which

is to selectively scale the multipole basis and to selectively replace fast translations

with slow translations. Functions that compute log Jn(x) without underflow, and

logHn(x) without overflow, are required.

I have implemented all numerical methods in Matlab version 6.5. For many

computations, Matlab is not as fast as optimized machine code emitted by a

good compiler. Matlab, however, is a superior vehicle for experimentation. The

Matlab implementations do exhibit the predicted computational complexities. All
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computations have been carried out on an inexpensive desktop computer1 running

GNU/Linux.

1.3 Origins of the 2-D Helmholtz Equation

The Helmholtz equation originates from the wave equation, which is itself often

derived from more fundamental physical equations. Here, following a general dis-

cussion of the wave equation, I give specific connections to Maxwell’s equations and

to Schrödinger’s equation.

1.3.1 The Wave Equation

The wave equation for a function w : E2 × R→ R is

∆w(x, t)− 1

c2

∂2w

∂t2
(x, t) = 0, (1.4)

where c is the wave propagation speed. A Fourier transform with respect to the

variable t converts this hyperbolic PDE into an elliptic PDE.

Define the Fourier transform of w by2

w̃(x, k) :=

∫ ∞

−∞
w(x, t)eikct dt. (1.5)

The inverse transform of w̃ : E2 × R→ C is then

w(x, t) =
c

2π

∫ ∞

−∞
w̃(x, k)e−ikct dk. (1.6)

11.4 GHz AMD Athlon model 4 CPU with 512 MB RAM
2This may look more familiar after the replacements i → −j and kc → ω, and if that

is your preference then those substitutions may be propagated painlessly throughout this
dissertation.
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If (1.6) is substituted into (1.4), and if the order of integration and differentiation

is exchanged, we have

0 =
c

2π

∫ ∞

−∞

(
∆w̃(x, k)e−ikct − 1

c2

∂2

∂t2
w̃(x, k)e−ikct

)
dk

=
c

2π

∫ ∞

−∞

(
∆w̃(x, k) + k2w̃(x, k)

)
e−ikct dk.

(1.7)

A Fourier transform of each side of the latter equation gives the desired result

∆w̃(x, k) + k2w̃(x, k) = 0. (1.8)

The transformed wave function w̃ must satisfy the Helmholtz equation.

I have declined to select a particular function space so that operations such as the

exchange of differentiation and integration may be rigorously justified. I have also

chosen not to completely identify function spaces in the specification of Problem 1.1.

That avoids the trouble of switching function space settings from time to time, since

there is not a single choice that is preferred in all circumstances. The choice depends

on the details of the supplied data (Γ, f).

Since Fourier analysis of the wave equation gives the Helmholtz equation, we can

construct solutions of the wave equation through Fourier synthesis of solutions of

the Helmholtz equation at multiple values of k.

In scattering problems, attention is commonly restricted to time-harmonic wave

functions, which are functions that display a purely sinusoidal variation in time. A

time-harmonic solution has only two Fourier components, with wavenumbers k and

−k. The two components are complex conjugates, so that their sum is real-valued.
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Thus a time-harmonic solution assumes the form

w(x, t) = w̃(x, k)e−ikct + w̃(x, k)eikct

= 2 Re w̃(x, k)e−ikct

= 2|w̃(x, k)| cos(arg w̃(x, k)− kct).

(1.9)

Since throughout a time-harmonic scattering problem k is fixed, it is usually dropped

from the argument list of w̃.

Another way to derive (1.8) for time-harmonic waves is to substitute (1.9) into

(1.4).

1.3.2 The Maxwell Equations

In SI units, Maxwell’s equations for the electric field e : E3 × R → E3 and the

magnetic field h : E3 × R→ E3 in vacuum are the first-order system of PDEs,

∇× e = −µ∂h
∂t
, (1.10a)

∇× h = j + ε
∂e

∂t
, (1.10b)

∇ · e = ρ/ε, (1.10c)

∇ · h = 0, (1.10d)

where ε and µ are universal physical constants associated with the vacuum con-

tinuum, and the electric current density j and charge density ρ are the sources

that generate the electromagnetic field (e,h). The sources (j, ρ) may not be in-

dependently specified, since all electric current is simply charge in motion. Their

mathematical connection is the conservation law obtained by substituting (1.10c)
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into the divergence of (1.10b),

∇ · j +
∂ρ

∂t
= 0. (1.11)

The most important mathematical property of the system (1.10) is that the fields

(e,h) are a linear mapping of the sources (j, ρ). The most important physical

property is that they support wave solutions that propagate at the speed of light.

Note in (1.10) that there are eight equations in only six unknowns, the three

elements each of e and h. In fact, taking the divergence of (1.10a–b) and using

(1.11) gives

∂

∂t
∇ · e =

∂

∂t
ρ/ε (1.12a)

∂

∂t
∇ · h = 0, (1.12b)

so that (1.10c–d) are simply constraints on the data supplied to the Cauchy problem,

in which the fields in E3 for t > 0 are evolved from the initial values e(x, 0) and

h(x, 0). Thus, (1.10a–b) comprise the expected six equations in six unknowns, and

the remaining equations are attached to the initial condition.

Time-Harmonic Restriction

The time derivatives may be eliminated if we look only for time-harmonic solutions

e(x, t) = ReE(x)e−ikct and h(x, t) = ReH(x)e−ikct that develop in response to

time-harmonic currents j(x, t) = ReJ(x)e−ikct, where the speed of light c is given

by c := (µε)−1/2. Then, assuming k 6= 0, the system (1.10) is equivalent to

∇×E = ikηH, (1.13a)

∇×H = J − ikη−1E, (1.13b)
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where η :=
√
µ/ε is yet another universal physical constant, the vacuum impedance.

Unless k = 0, the Fourier transforms of (1.10c–d) are recovered by taking the diver-

gence of each equation in (1.13).

By taking the curl of (1.13a) and inserting (1.13b), it is demonstrated that the

first-order system (1.13) is equivalent to the second-order system

∇×∇×E − k2E = ikηJ , (1.14a)

H =
1

ikη
∇×E, (1.14b)

in which the fields E and H are decoupled. After a solution E to (1.14a) has been

found, the magnetic field may be determined by differentiating E as in (1.14b).

In contrast with the time-dependent equations (1.10), auxiliary potentials are not

required to decouple the time-independent equations (1.13).

By taking the curl of (1.13b), an alternative equivalent system is

∇×∇×H − k2H = ∇× J , (1.15a)

E =
1

ikη−1
(J −∇×H) . (1.15b)

Once (1.15a) is solved for H , the electric field is easily determined with (1.15b).

Boundary Conditions

Maxwell’s equations do not apply at material interfaces, where the fields are gener-

ally not differentiable. Physical models of source distributions on lower-dimensional

manifolds supply the boundary conditions needed to connect fields across an inter-

face.

We shall concern ourselves with solutions only for interfaces that separate vacuum

from an ideal metal that conducts electric current without dissipation. Inside such
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a metal, the time-dependent electric field e(x, t) vanishes, while the magnetic field

h(x, t) may be nonzero but must be static, exhibiting no variation with time. For

time-harmonic fields with k 6= 0, these interior conditions reduce to E = H = 0.

The appropriate condition at the boundary is the vanishing of the components

of E tangent to the conductor surface. A perfect conductor cannot support an

electromotive force. The boundary condition is

n̂(x)×E(x) = 0 for x ∈ Γ, (1.16)

where n̂ is a unit vector normal to the surface Γ and directed into the vacuum.

The boundary condition (1.16) is sufficient to determine a unique radiating solu-

tion of Maxwell’s equations exterior to a smooth conductor [80, §3.3].

While the tangential electric field is continuous on crossing Γ , the tangential

magnetic field has a jump discontinuity there. If H+ is the one-sided limit at Γ of

the magnetic field in G+, then the jump n̂×H+ equals the magnitude and direction

of a physical current sheet JΓ of zero thickness bound to the interface,

n̂(x)×H+(x) = JΓ for x ∈ Γ. (1.17)

Since JΓ is unlikely to be known a priori, the utility of (1.17) is somewhat less than

that of (1.16).

The normal field components may not be specified independently of the tangential

components. Together with Maxwell’s equations, (1.16) implies a boundary condi-

tion for the normal component of the magnetic field. Taking the surface divergence

of (1.16) and substituting (1.13a) gives

n̂(x) ·H(x) = 0 for x ∈ Γ. (1.18)
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(The surface curl of n̂ vanishes at smooth points of the boundary.) Similarly, taking

the surface divergence of (1.17) and substituting (1.13b) gives

n̂(x) ·E+(x) =
1

ikη−1
∇ · JΓ (x) for x ∈ Γ. (1.19)

Using (1.11), the right-hand side of (1.19) can be rewritten as the product of ε−1

and the surface charge density.

While the normal component of H is continuous at the interface, the normal

component of E has a jump discontinuity.

Neither boundary condition (1.18) nor (1.19) is sufficient to determine a unique

solution of Maxwell’s equations.

At singular points of the surface, such as at edges and corners, a continuously

turning tangent plane does not exist, and boundary conditions (1.16)–(1.19) cannot

be applied. An edge condition [107] [87, Ch. 9] may be necessary to select the appro-

priate solution in the presence of such singularities. A typical condition is that ‖E‖2

and ‖H‖2 be integrable on any region N̄ \G−, where N̄ is a closed neighborhood of a

point singularity and G− is the interior of the conductor. This condition guarantees

that bounded regions of space contain a finite amount of electromagnetic energy.

For reference, I provide boundary conditions for other material junctions. An

impedance boundary condition models the behavior of an imperfect electric conduc-

tor. The tangential components of E and H are related according to

n̂(x)× (E+(x)− Zn̂(x)×H+(x)
)

= 0 for x ∈ Γ, (1.20)

where Z ∈ C is the surface impedance.

A transmission boundary condition connects the fields at the junction of simple

dielectric materials. A simple material is one that is linear, homogeneous, and
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isotropic in its response to an electromagnetic field. Upon substitution of values of ε

and µ specific to the material, the vacuum equations (1.13) apply to simple materials

in a macroscopic sense [83, §6.7]. The macroscopic fields are not the actual fields

that exist between atoms of the material, but are smoothed versions of the rapidly

fluctuating microscopic fields. The transmission boundary condition is the continuity

of the tangential components of the macroscopic fields (E,H). Maxwell’s equations

then imply that the normal components of (εE, µH) are also continuous.

A Scattering Problem

Referring to Figure 1.2, consider a solution to Maxwell’s equations in the exterior

G+ of a perfectly conducting obstacle with boundary Γ . The electromagnetic field

(E,H) is generated by impressed current sources J inc that lie in G+, and by a

current sheet JΓ on the scattering obstacle that is induced in order to satisfy the

boundary condition (1.16). The impressed currents may be, for instance, the currents

developed on an antenna that illuminates the obstacle. It is assumed that the

antenna is far away from the scattering obstacle, so that the presence of the induced

currents JΓ causes a negligible perturbation of the impressed currents J inc.

The total electric field satisfies (1.14a), supplemented by boundary conditions at

Γ and at infinity:

∇×∇×E(x)− k2E(x) = ikηJ inc(x) for x ∈ G+, (1.21a)

n̂(x)×E(x) = 0 for x ∈ Γ, (1.21b)

lim
r→∞

x×∇×E(x) + ikrE(x) = 0 where r := ‖x‖. (1.21c)
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Figure 1.2: A plane electromagnetic wave irradiates a perfectly conducting
obstacle in three-dimensional space.

Once these equations are solved for E, the magnetic field is given by

H =
1

ikη
∇×E. (1.21d)

The condition (1.21c) is the Silver–Müller radiation condition, the vector field coun-

terpart of the Sommerfeld radiation condition. The magnetic field, too, will satisfy

the Silver–Müller condition. It is the appropriate boundary condition under the

assumption that the obstacle Γ and the impressed sources J inc are contained in a

sphere with finite diameter.

In the absence of the obstacle, the impressed currents generate an incident elec-

tromagnetic field (E inc,H inc). Typically in a scattering problem, the incident field is

specified in lieu of the impressed currents. In any case, when the impressed sources

have bounded support, the incident field satisfies the equations

∇×∇×Einc(x)− k2Einc(x) = ikηJ inc(x), x ∈ E3, (1.22a)

lim
r→∞

x×∇×Einc(x) + ikrE inc(x) = 0, r := ‖x‖, (1.22b)
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H inc =
1

ikη
∇×Einc, (1.22c)

and these equations may be solved for (E inc,H inc) if the current J inc is provided.

Often the incident field is specified to be a plane wave, and such a field can only

be approximately generated by some J inc with bounded support. However, the

departure of the actual incident field from a plane wave may be made arbitrarily

small in any bounded region of space enclosing the obstacle, so there is little need

to provide a separate formulation for plane wave illumination.

Now, using the linearity of the equations (1.21), the total fields are taken to be

the superposition of the incident fields and the scattered fields generated by the

surface current JΓ . The scattered fields are

Es := E −Einc, (1.23a)

Hs := H −H inc, (1.23b)

and by subtracting the equations in the system (1.22) from the corresponding equa-

tions in (1.21), the scattered electric field must solve the following problem, the 3-D

vector field analog of Problem 1.1,

Problem 1.2 (Exterior Vector Helmholtz) Given: (1) a real constant k > 0,

(2) a simple, bounded, orientable, very smooth surface Γ in Euclidean space E3,

with a continuous unit normal n̂ : Γ → E3, and (3) a function E inc : Γ → C on the

surface. Construct a function Es : G+ → C such that

∇×∇×Es(x)− k2Es(x) = 0 for x ∈ G+, (1.24a)

n̂(x)×Es(x) = −n̂(x)×E inc(x) for x ∈ Γ, (1.24b)

lim
r→∞

x×∇×Es(x) + ikrEs(x) = 0 where r := ‖x‖, (1.24c)

where the latter condition is to hold uniformly with respect to the direction of the
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vector x.

With the addition of a boundary condition at singular points, the problem may be

extended to cover piecewise smooth surfaces. The scattered magnetic field is given

by

Hs =
1

ikη
∇×Es (1.25)

after the equations (1.24) have been solved for Es.

The double curl equation (1.24a) is equivalent to the pair of equations

∆Es(x) + k2Es(x) = 0, (1.26a)

∇ ·Es(x) = 0. (1.26b)

Each rectangular component of Es satisfies the Helmholtz equation, but those com-

ponents are coupled through (1.26b).

This elliptic system is peculiar because on G+ there are four equations in three

unknowns, while on Γ there are only two boundary conditions. (The component of

Es normal to the boundary is not constrained.) An equivalent system is [30, Ch. 4]

∆Es(x) + k2Es(x) = 0 for x ∈ G+, (1.27a)

n̂(x)×Es(x) = −n̂(x)×E inc(x) for x ∈ Γ, (1.27b)

∂

∂n

(
n̂(x) ·Es(x)

)
= ∇ · (Einc(x)− (n̂ ·Einc)n̂(x)

)
for x ∈ Γ, (1.27c)

lim
r→∞

x×∇×Es(x)− x∇ ·Es(x) + ikrEs(x) = 0 where r := ‖x‖, (1.27d)

Here the equation (1.26b) on G+ has been replaced with an extra boundary condi-

tion (1.27c) on Γ . The radiation boundary condition is also modified. This set of

equations is a system of second-order PDEs with one condition per unknown at each

boundary point.
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The boundary condition (1.27c) is a Neumann condition on the normal component

of the scattered field. The right-hand side is the surface divergence of the tangential

components of the incident field. Using vector Green identities, it can be shown that

any solution of (1.27) must also satisfy (1.26b).

Another formulation of Problem 1.2 emphasizes the magnetic field. Starting from

(1.15) instead of (1.14), the equations read

∇×∇×H s(x)− k2Hs(x) = 0 for x ∈ G+, (1.28a)

n̂(x)×∇×H s(x) = −n̂(x)×∇×H inc(x) for x ∈ Γ, (1.28b)

lim
r→∞

x×∇×H s(x) + ikrH s(x) = 0 where r := ‖x‖. (1.28c)

Once these equations are solved for H s, the electric field is given by

Es = − 1

ikη−1
∇×H s. (1.29)

The boundary condition n̂ ·H s = −n̂ ·H inc is insufficient to determine a unique

solution, and so (1.28b) is the same as (1.24b). The boundary condition (1.28c) is

obtained by substituting (1.29) into (1.24c).

I have nothing further to say about the vector equations in their full generality,

but proceed now to distill them into the Helmholtz equation.

Reduction of 3-D Vector Fields to 2-D Scalar Fields

It is well-known [80, §3.12] that if all dependent variables (J ,E,H) are invariant

in the z-direction then the vector scattering problem splits into two separate scalar

problems.

In particular, split the electric field as E = ETE +ETM, where the rectangular

18



components of ETE and ETM are

ETE := (Ex(x, y), Ey(x, y), 0), (1.30a)

ETM := (0, 0, Ez(x, y)). (1.30b)

The subscript TE stands for “transverse electric,” and refers to a solution of the

Maxwell equations in which the electric field is polarized perpendicular to the z-axis

of translational symmetry, as is evident in (1.30a). The subscript TM stands for

“transverse magnetic,” and it indicates that the magnetic field is polarized perpen-

dicular to ẑ. By (1.13a), the rectangular components of the magnetic fields paired

with these electric fields are

HTE =
1

ikη

(
0, 0,

∂Ey
∂x
− ∂Ex

∂y

)
, (1.31a)

HTM =
1

ikη

(
∂Ez
∂y

,−∂Ez
∂x

, 0

)
, (1.31b)

and the latter justifies the name “transverse magnetic.” To be consistent with

(1.13b), the current density must also be split as J = JTE +JTM, with components

JTE := (Jx(x, y), Jy(x, y), 0), (1.32a)

JTM := (0, 0, Jz(x, y)). (1.32b)

With these definitions, any data–solution triple (J ,E,H) may be split as

(J ,E,H) = (JTE,ETE,HTE) + (JTM,ETM,HTM), (1.33)

where each triple on the right-hand side itself satisfies Maxwell’s equations (1.13).

Substituting the TM expressions into (1.14a), and observing that (1.30b) implies

∇ ·ETM = 0, we obtain the Helmholtz equation

∆Ez(x, y) + k2Ez(x, y) = −ikηJz(x, y) (1.34)
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for the scalar function Ez. From a solution to (1.34), the magnetic field can be

recovered with (1.31b).

Substituting the TE expressions into (1.15a), and using the fact that∇·HTE = 0,

we obtain the Helmholtz equation

∆Hz(x, y) + k2Hz(x, y) = −∂Jy
∂x

(x, y) +
∂Jx
∂y

(x, y) (1.35)

for the scalar function Hz. The electric field can be recovered with (1.15b),

ETE =
1

ikη−1

(
Jx −

∂Hz

∂y
, Jy +

∂Hz

∂x
, 0

)
, (1.36)

after a solution to (1.35) has been found.

We may specialize these results to the scattering configuration of Figure 1.3, in

which the symmetry of the cylindrical object and the incident field guarantees that

the induced surface currents and the scattered fields are invariant in the z-direction.

Figure 1.3: A plane wave with wavefronts orthogonal to the x-y plane il-
luminates a perfectly conducting cylinder with noncircular cross section.
The axis of the cylinder is parallel to the z-axis. If either the electric field
or the magnetic field is polarized in the z-direction, then the scattering is
described by the 2-D Helmholtz equation.
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In the TM scattering problem, the incident field E inc is polarized in the z-

direction, and by (1.24b) the scattered field Es will also be polarized in the z-

direction. Collapsing the z-dimension, let x now be a point in the x-y plane and let

Γ be the boundary of the open cross section G− of the cylinder in the x-y plane.

In Figure 1.1, the cross section is a circle, and the terminology of the problem was

given in two dimensions. But as Figure 1.3 indicates, every 2-D scattering problem

may be reinterpreted as the TM scattering from a 3-D cylinder.

After making the replacements E inc = f(x)ẑ and Es = u(x)ẑ, the vector equa-

tions (1.24) simplify to

∆u(x) + k2u(x) = 0 for x ∈ G+, (1.37a)

u(x) = −f(x) for x ∈ Γ, (1.37b)

lim
r→∞

x ·∇u(x)− ikru(x) = 0 where r := ‖x‖. (1.37c)

Once these equations are solved for u, the scattered magnetic field is given by

Hs =
1

ikη

(
∂u

∂y
x̂− ∂u

∂x
ŷ

)
. (1.38)

The equations (1.37a–b) are identical to equations (1.1a–b). The condition (1.37c)

is equivalent to

∂u

∂r
− iku = o

(1

r

)
as r →∞, (1.39)

which is stronger than the Sommerfeld condition (1.1c).

In the TE scattering problem, the incident field H inc is polarized in the z-

direction, and by (1.28b) the scattered field H s will also be polarized in the z-

direction. Making the replacements H inc = g(x)ẑ and H s = u(x)ẑ, the vector

equations (1.28) simplify to

∆u(x) + k2u(x) = 0 for x ∈ G+, (1.40a)
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n̂(x) ·∇u(x) = −n̂(x) ·∇g(x) for x ∈ Γ, (1.40b)

lim
r→∞

x ·∇u(x)− ikru(x) = 0 where r := ‖x‖. (1.40c)

Once these equations are solved for u, the electric field is given by

Es = − 1

ikη−1

(
∂u

∂y
x̂− ∂u

∂x
ŷ

)
. (1.41)

In view of (1.40b), when the obstacle is a perfect conductor, TE illumination pro-

duces the Neumann BVP for the Helmholtz equation. In the general boundary

condition (1.2), the differential operator is B = n̂ · ∇ and the boundary data f is

the normal derivative of the incident magnetic field.

If the incident field E inc in Figure 1.3 has an arbitrary polarization, then the

solution to Problem 1.2 is the sum of solutions to TE and TM scalar problems. The

excitation for the TM subproblem is given by (1.30b) as the orthogonal projection

of Einc onto the z-axis, and the remainder (1.30a) is the excitation for the TE

subproblem.

In general the computation of scattering from a metal cylinder requires the so-

lution of both Dirichlet and Neumann problems for the Helmholtz equation. In its

present state, however, my code treats only the Dirichlet problem. It is capable

of computing the solution to the cylindrical scattering problem when the incident

electric field is polarized parallel to the cylinder axis.

Expanding the code to include the Neumann problem would enable solutions not

only for arbitrary polarizations but also for obstacle materials that give transmission

or impedance boundary conditions.
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1.3.3 The Schrödinger Equation

In SI units, Schrödinger’s equation for the motion of a nonrelativistic particle with

mass m through a conservative force field with potential energy V (x) is the linear

second-order PDE

− ~
2

2m
∆ϕ(x, t) + V (x)ϕ(x, t) = i~

∂ϕ

∂t
(x, t), (1.42)

where ~ is Planck’s constant and ϕ : E3 × R → C is a field associated with the

particle. That field may be normalized so that |ϕ|2 is a probability density function.

Under this normalization, the probability that the particle lies in any region R ⊂ E3

at some time t is
∫
R
|ϕ(x, t)|2 dx.

The time-independent Schrödinger equation results from a Fourier transform of

(1.42) with respect to time t. Often interest is restricted to time-harmonic functions,

ϕ(x, t) = ψ(x)e−iωt, which have a single Fourier component. Substitution into (1.42)

gives

− ~
2

2m
∆ψ(x) + V (x)ψ(x) = ~ωψ(x), (1.43)

which shows that ψ is an eigenfunction of the Hamiltonian operator − ~2

2m
∆ + V (x).

The eigenvalue ~ω is the energy E of the particle, which does not change with time.

Since ϕ is complex-valued, I have written ϕ = ψe−iωt instead of ϕ = Reψe−iωt.

It is unnatural to impose on (1.43) a restriction ω ≥ 0. The physical meaning of any

negative-energy solutions (ω < 0) should be investigated.

Consider the particle scattering from an infinite energy barrier with boundary Γ

separating a (possibly empty) bounded domain G− from an unbounded domain G+,

V (x) =




∞ if x ∈ Γ ∪G−,
0 if x ∈ G+.

(1.44)
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Then (1.43) reduces to the Helmholtz equation,

∆ψ(x) + k2ψ(x) = 0 for x ∈ G+, (1.45)

where ~k =
√

2mE is the particle momentum.

The particle can never be found inside the energy barrier, so ψ(x) = 0 for x ∈ G−.

The probability field is continuous on E3, so the appropriate boundary condition to

apply to a solution of (1.45) is ψ(x) = 0 for x ∈ Γ .

It is natural to impose the Sommerfeld radiation condition at infinity, but then,

lacking a source term on the right-hand side of (1.45), the solution will be ψ ≡ 0.

Rather than adding a source term as in (1.21a), which would require the introduction

of additional physics, I will simply assume that there is some external source that

produces a nonzero incident field ψinc(x) that satisfies the Helmholtz equation for

x ∈ E3.

As in Section 1.3.2, the linearity of Schrödinger’s equation may be utilized to

decompose the wave function as ψ = ψinc +ψs, where ψs is a scattered field which is

the solution of a Dirichlet BVP,

∆ψs(x) + k2ψs(x) = 0 for x ∈ G+, (1.46a)

ψs(x) = −ψinc(x) for x ∈ Γ, (1.46b)

lim
r→∞

r

(
∂ψs

∂r
(x)− ikψs(x)

)
= 0 where r := ‖x‖, (1.46c)

where (1.46c) is the 3-D Sommerfeld radiation condition.

For the case ω < 0, the wavenumber k is imaginary. As indicated in Table 6.1,

the negative-energy solutions are evanescent, decaying exponentially fast away from

the boundary Γ .

In the subsequent discussion, I use terminology specific to the scattering of a clas-
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sical electromagnetic wave, but in every instance the solution may be reinterpreted

as the unnormalized probability field for the scattering of a matter wave from an

impenetrable 2-D obstacle. One reason I stick to classical electromagnetics is that

the potential energy (1.44) may have limited application. The 3-D Coulomb po-

tential energy V (x) = ‖x‖−2 is representative of more realistic forces, but putting

that into (1.43) gives a variable-coefficient exterior problem, to which quite different

numerical techniques must be applied.

1.4 From PDE to Integral Equation

The standard way to transform the boundary value problem (1.1) into an integral

equation begins by mirroring Green’s development of an integral representation for

a solution to the Laplace equation [92]. The principal tool in that development is

the divergence theorem of vector calculus.

Rather than pursue that angle, I will take a more expedient approach that starts

by assuming that the scattered field can be expressed as a linear combination of

selected elementary solutions.

1.4.1 Elementary Solutions

We can compile a catalog of elementary radiating solutions to the Helmholtz equa-

tion. Elementary solutions are loosely defined as the fields produced by canonical

source distributions—point, surface, volume. Since the actual scattered field will be

represented as a superposition of those elementary fields, we restrict our interest to

elementary solutions that are free of singularities in the domain G+. An elementary
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solution v should satisfy

∆v(x) + k2v(x) = 0 for x ∈ G+, (1.47a)

∂v

∂r
(x)− ikv(x) = o

( 1√
r

)
where r := ‖x‖. (1.47b)

Since no regard is given to the values assumed by v on the boundary of G+, this

function is not generally a solution of Problem 1.1. The less restrictive problem

(1.47) has infinitely many solutions.

Consider, for example, the field generated by a point source. If (1.47a) is to be

satisfied, the point source must be located at some position y outside of G+. The

corresponding field vy is the solution of

∆vy(x) + k2vy(x) = δ(x− y) for x ∈ E2, (1.48a)

∂vy
∂r

(x)− ikvy(x) = o
( 1√

r

)
where r := ‖x‖, (1.48b)

which is known to be

vy(x) = − i
4
H0(k‖x− y‖), (1.49)

where H0 is the Hankel function [1, Ch. 9] of first kind and order 0. The Hankel

function is a solution of Bessel’s differential equation, which is the radial equation

that materializes when separation of variables in polar coordinates is applied to

(1.48a).

The elementary solution (1.49) is the radiating fundamental solution 3 Φ(x,y) of

the Helmholtz equation. It is also known as the free-space Green function of the

Helmholtz equation.

The fundamental solution may be multiplied by an arbitrary complex number

3Most authors define the fundamental solution to have the opposite sign, i.e.,
i
4H0(k‖x− y‖), so that (∆x + k2)Φ(x,y) = −δ(x− y). That choice changes the sign of
the step discontinuities in the jump relations (1.62) and (1.72) at surface distributions.
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without violating (1.47). A particular choice of multiplier gives the electric field

produced by an oscillating point current in a TM configuration. (The point current

in 2-D space becomes a line current in 3-D space.) Maxwell’s equations for the

current density J(x) = δ(x− y)ẑ are

∇×E(x) = ikηH(x), (1.50a)

∇×H(x) = δ(x− y)ẑ− ikη−1E(x), (1.50b)

and upon substitution of v(x)ẑ for E(x) we have ∆v(x) + k2v(x) = −ikηδ(x−y).

The field generated by the point current is therefore −ikηΦ(x,y).

The derivatives of Φ(x,y) with respect to either x or y are also elementary

solutions. A directional derivative in the variable y is the field generated by a

current dipole. Second-order derivatives in y give the fields generated by current

quadrupoles. In general, a derivative of order p gives the field of a multipole with

2p poles.

Another class of elementary solutions are the fields generated by continuous cur-

rent distributions. If the current J(x) is supported on some region R contained in

G−, the corresponding elementary solution is

v(x) = −ikη
∫

R

Φ(x,y)J(y) dy. (1.51)

The currents may instead be supported only on a lower-dimensional set such as the

boundary Γ . The latter choice is interesting because it has a clear physical connec-

tion to the scattering problem: The scattered field is generated by a continuous sheet

of electric current on the conductor surface. Denoting this surface current density

by σ, the corresponding elementary solution is

v(x) = −ikη
∫

Γ

Φ(x,y)σ(y) dΓ (y), (1.52)
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in which dΓ (y) is the differential element of arc length at the point y. The monopole

distribution σ is also known as a single layer. A double layer is a surface distribution

of dipoles, which generates the elementary solution

v(x) = −ikη
∫

Γ

∂Φ(x,y)

∂n(y)
χ(y) dΓ (y), (1.53)

where χ is the source density and the dipoles are everywhere oriented in the direction

of the surface normal. The directional derivative of Φ(x,y) is taken with respect to

the variable y.

Table 1.1 lists these elementary solutions. We may choose to represent the solu-

tion of Problem 1.1 using only a physically correct source distribution—the single

layer—or we may choose nonphysical sources. The use of nonphysical sources is just

an application of the equivalence principle [80, §3.5]. It offers greater flexibility than

the restriction to physical sources, and that flexibility can be utilized to construct

an integral equation with desirable mathematical properties.

1.4.2 Scattering Integral Equations

All the elementary solutions already satisfy (1.1a) and (1.1c). Any linear combina-

tion of those elementary solutions also satisfies those equations. The only equation

left to satisfy is the Dirichlet boundary condition (1.1b). If the solution is represented

by the field of a continuous source distribution, such as vc, vd, or ve in Table 1.1,

then forcing the field to satisfy (1.1b) will generate an integral equation.

All integral equations developed in this section are specific to TM illumination of

a metal cylinder. The incident field does not, however, need to be a plane wave.
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Table 1.1: Some Elementary 2-D Solutions

(a) Point monopole of amplitude I at position y

va(x) = −ikηIΦ(x,y)

(b) Point dipole of vector amplitude I d̂ at position y

vb(x) = −ikηId̂ ·∇yΦ(x,y)

(c) Single layer of density σ on curve Γ

vc(x) = −ikη
∫

Γ

Φ(x,y)σ(y) dΓ (y)

(d) Double layer of density χ on curve Γ

vd(x) = −ikη
∫

Γ

∂Φ(x,y)

∂n(y)
χ(y) dΓ (y)

(e) Continuous monopole distribution of density J in the region R

ve(x) = −ikη
∫

R

Φ(x,y)J(y) dy

Electric Field Integral Equation

The electric field integral equation (EFIE) derives from a physical source represen-

tation. Since the scattered field is generated by a current sheet on the metallic

obstacle, it is given by an expression of type (1.52). The unknown currents σ are

determined by forcing the single-layer field to satisfy the Dirichlet condition. In the

limit as the point x approaches the boundary Γ from the exterior G+, the scattered

field must take on the values −f(x) = −uinc(x), so

−ikη
∫

Γ

Φ(x,y)σ(y) dΓ (y) = −uinc(x) for x ∈ Γ (1.54)
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is the desired integral equation [115]. The unknown function σ appears in the inte-

grand, where it is multiplied by the kernel Φ(x,y).

Once σ is found by solving (1.54), the scattered field can be computed by evalu-

ating the integral

u(x) = −ikη
∫

Γ

Φ(x,y)σ(y) dΓ (y) (1.55)

at points x ∈ G+.

Magnetic Field Integral Equation

The EFIE is an integral equation of the first kind. In an integral equation of the

second kind, the unknown function also appears as a free term outside the integral

operator. The magnetic field integral equation (MFIE) is a well-known example of

a second-kind equation [104] [115].

The MFIE starts with the same physical representation of the scattered field

that was the starting point for the EFIE. But while the EFIE was derived from the

boundary condition (1.16) for the electric field, the MFIE is constructed from the

boundary condition (1.17) for the magnetic field. Substituting the TM magnetic

field expression (1.38), the required cross product at the boundary is

n̂(x)×H+(x) = −ẑ 1

ikη
n̂(x) ·∇(u(x) + uinc(x)

)
. (1.56)

Since this cross product must equal the surface current density σẑ, the boundary

condition is

∂u

∂n
(x) = −∂uinc

∂n
(x)− ikησ(x), (1.57)

where u has the same expression (1.55) as it did in the development of the EFIE.
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Application of (1.57) to that expression seems to generate the integral equation

∫

Γ

∂Φ(x,y)

∂n(x)
σ(y) dΓ (y) =

1

ikη

∂uinc

∂n
(x) + σ(x) for x ∈ Γ, (1.58)

where the normal derivative has been exchanged with the integration.

We have made a mistake, however, and (1.58) is incorrect. The problem is that

the elementary solution

v(x) =

∫

Γ

∂Φ(x,y)

∂n(x)
σ(y) dΓ (y) (1.59)

is discontinuous at boundary points x ∈ Γ . In either G− or G+ it is an analytic

function, but it suffers a step discontinuity in crossing the curve Γ . Since the solution

(1.55) is evaluated only at points x ∈ G+, the correction to (1.58) is

lim
z→x

∫

Γ

∂Φ(z,y)

∂n(x)
σ(y) dΓ (y) =

1

ikη

∂uinc

∂n
(x) + σ(x), (1.60)

where x ∈ Γ and z ∈ G+.

The discontinuity has a simple characterization, given by a jump relation [30,

§2.4–2.5]. Let v+(x) be the one-sided limit of (1.59) as the boundary point x ∈ Γ is

approached from the exterior G+, and let v−(x) be the interior limit. More precisely,

v±(x) := lim
δ→0+

v(x± δn̂(x)), (1.61)

so the boundary point is approached along the normal direction. Then the jump

relation for (1.59) is

v±(x) = v(x)± 1
2
σ(x) (1.62)

at any nonsingular point x of the boundary. (The factor 1
2

is modified at corners.)

The magnitude of the jump is |σ|.
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The jump relation can be used to evaluate the limit in (1.60). The result is

∫

Γ

∂Φ(x,y)

∂n(x)
σ(y) dΓ (y) =

1

ikη

∂uinc

∂n
(x) +

1

2
σ(x) for x ∈ Γ, (1.63)

and this is the MFIE. Note that its construction actually requires more information

than given in Problem 1.1, because the forcing term cannot be determined from the

Dirichlet data f alone.

Note also that the integral operator in the MFIE is similar to, but not the same

as, the double-layer operator. Here the kernel is the normal derivative of Φ(x,y) at

the evaluation point x instead of at the source point y. The elementary solution

(1.59) is the directional derivative of the field produced by a monopole layer.

Despite its apparent added complexity, the MFIE is superior to the EFIE in some

important respects. The advantages are conferred by a broad class of operators of

the form λI − A, where I is the identity and A is compact. A thorough treatment

of compact operators is beyond the scope of this discussion, but I will make a brief

characterization. Much of what I have learned about functional analysis has been

gleaned from books by Naylor and Sell [112] and Stakgold [129], and there are many

other fine references.

Let the linear operator A act on a normed linear space V of infinite dimension. If

A is compact, then its rangeA(V) ⊂ V can be approximated to arbitrary accuracy by

a finite-dimensional subspace of V. Thus A is in a sense a smoothing transformation:

Its range has essentially fewer degrees of freedom than its domain. The smoothing

property is easy to grasp when A is an integral operator with a smooth kernel.

If the compact operator A is also one-to-one, then it has a left inverse A−1 :

A(V) → V. However, unless A(V) is exactly finite dimensional, the inverse is

necessarily unbounded. The first-kind equation Aϕ = f is then ill posed. If f ∈
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A(V), then a unique solution ϕ ∈ V exists, but arbitrarily small perturbations in

the data f can produce arbitrarily large fluctuations in the solution ϕ. Clearly that

portends trouble for any solution computed with machine arithmetic.

The singularity in the EFIE kernel is not strong enough to keep the integral

operator from being compact on V = L2(Γ ). If the boundary is not everywhere

sufficiently smooth, then compactness is lost, but we proceed under the assumption

that Γ is smooth. Let

(
Sσ
)
(x) :=

∫

Γ

Φ(x,y)σ(y) dΓ (y) where x ∈ Γ (1.64)

be the single-layer integral operator, so that the EFIE is

Sσ = (ikη)−1f, (1.65)

where f(x) = uinc(x) is the Dirichlet data of the incident field. The operator S is

compact, and the condition number ‖S‖‖S−1‖ of the integral equation is infinite.

A discretization of the integral operator may be exact for only an N -dimensional

subspace of L2(Γ ). Unless we happen to generate a singular N × N coefficient

matrix, the condition number of the discrete system is finite. But as N →∞, that

finite condition number grows without bound.

To decrease the discretization error, we would like to increase N . Unfortunately,

that also increases the sensitivity of the computed solution to data uncertainties and

rounding errors. If the condition number increases rapidly as N → ∞, the latter

numerical errors will quickly dominate the discretization error.

That sensitivity is not exhibited by computed solutions of the MFIE. Let

(
S ′σ
)
(x) :=

∫

Γ

∂Φ(x,y)

∂n(x)
σ(y) dΓ (y) where x ∈ Γ (1.66)
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be the normal derivative of the single-layer integral operator, so that the MFIE is

(
1
2
I − S ′

)
σ = −(ikη)−1g, (1.67)

where g(x) = n̂(x)·∇uinc(x) is the Neumann data of the incident field. The operator

S ′ is compact, but the operator 1
2
I−S ′ is not. The Riesz–Fredholm theory [98] [109]

shows that if 1
2

is not an eigenvalue of S ′, then 1
2
I − S ′ has a bounded inverse. The

condition number ‖ 1
2
I − S ′‖‖(1

2
I − S ′)−1‖ is bounded as well.

That property ought to be preserved by the discretization. As N → ∞, the

condition number of the finite algebraic system will not grow without bound. A

bounded condition number has two important consequences:

• Discretization error can be decreased without fear of instability.

• Iterative solvers such as CGN [62] are more efficient.

Those are the virtues of the MFIE. It does, however, suffer from two limitations:

• It cannot be applied to open curves Γ .

• S ′ can have an eigenvalue of 1
2
, and in that event 1

2
I − S ′ is not

invertible.

The latter defect can be fixed by a number of established techniques. The former

is more serious. Only recently [85] [86] has an integral equation of the second kind

been constructed for the Dirichlet BVP exterior to an open curve.

When Γ is an open curve, there is no interior G− where the magnetic field van-

ishes, and the boundary condition (1.17) for the magnetic field is replaced by the

jump condition

n̂× (H+−H−) = σẑ, (1.68)

where H± are the one-sided limits limδ→0+H
(
x± δn̂(x)

)
. Upon substitution of
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the integral representation of the magnetic field, (1.68) simplifies to the tautology

σ = σ. The MFIE construction fails to generate a useful equation.

In general, an elementary solution with a discontinuity at Γ is needed to refor-

mulate Problem 1.1 as an integral equation of the second kind. For the elementary

solutions (1.53) and (1.59), the discontinuity at boundary point x is a nonzero jump

proportional to the unknown source density at x. But if G− is empty, then the

Dirichlet condition requires that the field values be the same on either side of the

curve Γ , so a nonzero jump cannot be tolerated. And if the jump is zero at x ∈ Γ ,

then the source density of the elementary solution must also be zero there.

Other types of BVPs exterior to open curves are more easily treated. If the

Dirichlet condition is replaced with a jump condition, then the solution can be

expressed as a boundary integral in which the surface densities are known. No

integral equation needs to be solved. Following Kirchhoff, jump boundary conditions

are often used to model perfect absorbers [10, §II.4].

The limitation of the MFIE for closed curves is that at a countable set of wave-

numbers {ki} the integral operator has a nontrivial nullspace. Those irregular wave-

numbers depend on the shape of the boundary. The temporal frequencies {cki/2π}

are the resonant frequencies of the cavity G− with a boundary Γ that is not a perfect

metal, but rather a perfect magnetic conductor [80, §1.14]. The tangential magnetic

field vanishes at the surface of such a material.

Combined Field Integral Equation

The combined field integral equation (CFIE) [105] [114] is a scattering integral equa-

tion for closed curves Γ that does not suffer from the MFIE’s interior resonance

problem. The CFIE is simply a linear combination of the EFIE (1.65) and the
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MFIE (1.67). In operator notation, it is

(
1
2
I − S ′ + iλS

)
σ = −(ikη)−1(g − iλf). (1.69)

If Reλ 6= 0, then the CFIE operator is guaranteed to have no irregular wavenumbers.

It is bounded and one-to-one for any k > 0, and it has a bounded inverse.

Combined Source Integral Equation

A relative of the CFIE is the combined source integral equation (CSIE) [106] [114],

another equation that cleans up the MFIE for closed curves. Unlike the previous

three integral equations, the CSIE represents the scattered field with a nonphysical

source distribution. The nonphysical sources generate a scattered field identical to

the one produced by the actual currents induced on the metal surface.

Assume that two continuous source distributions lie on the boundary Γ . Let one

be a layer of monopoles, and the other a layer of normally directed dipoles. More-

over, we assume that the monopole density is everywhere proportional to the dipole

density. If χ = −(ikη)−1ϕ is the unknown dipole density, and the proportionality

constant coupling the sources is iλ, then the z-component of the scattered electric

field is

u(x) =

∫

Γ

(
∂Φ(x,y)

∂n(y)
+ iλΦ(x,y)

)
ϕ(y) dΓ (y). (1.70)

The function ϕ must be selected so that u satisfies the Dirichlet boundary condition

u(x) = −f(x) for x ∈ Γ .

The elementary solution of the single layer is continuous on x ∈ E2. There is no

jump at the boundary, so simple replacement of x ∈ G+ with x ∈ Γ is acceptable,

just like in the development of the EFIE.

On the other hand, the elementary solution of the double layer is discontinuous
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at the boundary. If

v(x) =

∫

Γ

∂Φ(x,y)

∂n(y)
ϕ(y) dΓ (y) (1.71)

is the elementary solution, then the jump relation is

v±(x) = v(x)∓ 1
2
ϕ(x) (1.72)

at any nonsingular point x of the boundary. This differs from (1.62) only in the sign

of the jump.

Using the jump relation, in the limit as the point x ∈ G+ approaches a boundary

point, the field is

u+(x) = −1
2
ϕ(x) +

∫

Γ

(
∂Φ(x,y)

∂n(y)
+ iλΦ(x,y)

)
ϕ(y) dΓ (y), x ∈ Γ. (1.73)

This must equal −f(x), and so the CSIE is

(
1
2
I − D − iλS

)
ϕ = f (1.74)

in operator form. The double-layer integral operator is

(
Dϕ
)
(x) :=

∫

Γ

∂Φ(x,y)

∂n(y)
ϕ(y) dΓ (y) where x ∈ Γ, (1.75)

which is the complex conjugate of the adjoint of S ′: D∗ = S ′.

If 1
2

is an eigenvalue of S ′, then 1
2

is also an eigenvalue of D, so a double layer alone

cannot avoid interior resonances. If Reλ 6= 0, then no resonances bother the CSIE.

Some work [95] has been done on choosing λ to minimize the condition number. I

use λ = k + 1, which works well at both high and low frequencies.

Following Colton and Kress [31], I apply the CSIE to closed curves Γ . Its right-

hand side is simpler than the right-hand side of the CFIE. If, however, the physical

currents σ are wanted, then it is much easier to find them by solving the CFIE,
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rather than finding them from the solution ϕ of the CSIE.

1.5 Discretization of Integral Equations

Starting from an analytic problem description, such as a PDE or an integral equa-

tion, the unified approach of numerical analysis is to systematically replace integrals

and derivatives with sums and differences. An elliptic PDE or a Fredholm integral

equation is transformed by this discretization into a system of N algebraic equa-

tions. The discretization scheme should be convergent, so that as N → ∞ the

discretization error—the difference between the solutions of the discrete and contin-

uous problems—vanishes.

The discrete system is a better candidate for a solution algorithm that uses simple

arithmetic in R. If it is solved on a computer, inexact arithmetic generally prevents

an exact solution. The algorithm must be stable, so that rounding errors do not ac-

cumulate catastrophically. Furthermore, all intermediate quantities must be neither

too large nor too small to be represented in machine arithmetic.

In the field of computational electromagnetics, the influential work of Harring-

ton [81] has established the method of moments as the discretization scheme of

choice for linear integral equations. Briefly, the approximate solution is drawn from

a selected linear manifold of dimension N . A member of this space is singled out

by requiring the residual to be orthogonal to a second linear manifold of dimension

N . In other fields of study, this solution framework is known as the Petrov–Galerkin

method. The great flexibility afforded by the choice of the two linear spaces is the

method’s hallmark. But that flexibility is also an invitation to inefficiency. Often-

times the work expended in preparing the algebraic system dominates the computa-
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tion. In my work, I have consistently used an efficient variant of collocation, which

is a subclass of moment methods.

Assume that we have a Fredholm equation of the second kind—perhaps the

CSIE—which has the general form

ϕ(s) = f(s) +

∫ b

a

K(s, t)ϕ(t) dt, s ∈ [a, b], (1.76)

where the kernel K(s, t) and the driving function f(s) are known. Like the general

Petrov–Galerkin method, collocation begins by choosing an N -dimensional linear

space to which the computed solution will belong. If a basis for that space is {ϕn},

then the approximate solution is uniquely represented as a linear combination

ϕ̂(s) =
N∑

n=1

xnϕn(s). (1.77)

To determine the coefficients {xn}, substitute (1.77) into (1.76) to give

N∑

n=1

xnϕn(s) ≈ f(s) +
N∑

n=1

xn

∫ b

a

K(s, t)ϕn(t) dt, s ∈ [a, b]. (1.78)

The = sign has been replaced with a ≈ sign because equality cannot be expected

to hold for all s ∈ [a, b]. Under the approximation (1.77), we anticipate a nonzero

residual f(s)+
∫ b
a
K(s, t)ϕ̂(t) dt−ϕ̂(s). The residual measures the pointwise violation

of equality in the integral equation. In the method of collocation, the residual is

forced to vanish at a set of N points {tm} selected from [a, b]. This prescription

generates the algebraic system

N∑

n=1

xnϕn(tm) = f(tm) +
N∑

n=1

xn

∫ b

a

K(tm, t)ϕn(t) dt, 1 ≤ m ≤ N, (1.79)

which can be written in the vector form

Mx = f +Qx. (1.80)
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The matrices M and Q have elements

Mmn = ϕn(tm), (1.81a)

Qmn =

∫ b

a

K(tm, t)ϕn(t) dt. (1.81b)

If M −Q is nonsingular, the system (1.80) has a unique solution.

Other ways to generate a linear system, starting from the basis expansion (1.77),

include minimization of the residual 2-norm (the method of least squares) and the

Galerkin testing procedure that is the backbone of most finite element methods.

These discretization schemes produce a system of the form (1.80), but the matrix

elements are more complicated.

A particular constraint on the choice of basis will impart greater meaning to the

term “collocation.” If the basis functions satisfy ϕn(tm) = δmn, then the sum on

the left-hand side of (1.79) collapses, and M reduces to the identity matrix. At the

points s ∈ {tm}, the sum in (1.77) collapses as well, giving

ϕ̂(tm) = xm. (1.82)

The coefficients {xm} are samples of the approximate solution ϕ̂(s) at the points

{tm}, the same points used to establish the linear system (1.79). After solving

(1.80) for x, the formula (1.77) interpolates those samples to produce an approximate

solution for s ∈ [a, b].

Collocation is still not particularly attractive if we must compute N 2 integrals

to fill the matrix Q. Each matrix element might be computed with a quadrature

rule—well-known examples are the trapezoidal rule and Simpson’s rule—which ap-
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proximates the integral of an arbitrary smooth function g as

∫ b

a

g(t) dt ≈
P∑

p=1

wpg(tp), (1.83)

where {wp} are the quadrature weights and {tp} are the quadrature nodes. If a

P -point quadrature rule is applied to the integral in (1.81b), filling the matrix Q

requires O(N 2P ) flops.

To slash the time required for the matrix fill, I always use a quadrature rule with

nodes that coincide with the collocation points {tm}. Then, since ϕn(tp) = δnp, the

quadrature sum collapses:

Qmn ≈
N∑

p=1

wpK(tm, tp)δnp

= wnK(tm, tn).

(1.84)

If K :=
[
K(tm, tn)

]
is a matrix of kernel samples and w :=

[
wn
]

is the weight

vector, then Q = K diag(w). Given the weights, each matrix element requires only

a single kernel function evaluation and a single multiplication.

The efficient version of collocation described here produces the same algebraic

system as Nyström’s method. That method dispenses with the expansion (1.77), but

instead applies a quadrature rule directly to the integral equation (1.76). A square

system of equations is constructed by forcing the residual to vanish at the quadrature

nodes. The main distinction between the collocation and Nyström methods is that

Nyström’s approximate solution is not the interpolation (1.77) of the computed

vector x but rather the following interpolation:

ϕ̂(s) = f(s) +
N∑

n=1

wnK(s, tn)ϕ̂(tn), s ∈ [a, b]. (1.85)

(Note that no such interpolation exists for equations of the first kind.) This simply
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revisits the approximation of the integral equation before the residual constraint is

applied to find {ϕ̂(tn)}. In view of (1.85), the Nyström method is a collocation

method in which the expansion basis is automatically selected by the choice of

quadrature rule.

This discussion has so far assumed that the integrand in (1.76) is smooth. In

scattering integral equations, however, K(s, t) or one of its derivatives will be un-

bounded on the diagonal s = t. (If the boundary Γ is not smooth, singularities also

occur on lines parallel to the s- and t-axes.) Then the integral in (1.81b) must be

treated more carefully to achieve high performance. In (1.84) the same quadrature

rule has been used for all rows of Q. This cannot be maintained for the scattering

integral equation, because the diagonal kernel singularity has a different location

in each row. A singular quadrature rule has weights that of course depend on the

location of the singularity. Each row of Q must use the same nodes but a different

set of weights, and (1.84) is changed to

Qmn ≈
N∑

p=1

wp(tm)K(tm, tp)δnp

= wn(tm)K(tm, tn).

(1.86)

Using the componentwise Schur–Hadamard matrix product �, this is compactly

expressed as Q = W �K, where the matrix W :=
[
wn(tm)

]
stores the weights of N

singular quadrature rules.

I use collocation instead of a Nyström method because the Nyström interpolation

formula becomes a burden when the kernel is singular. The only modification to

(1.85) is to replace wn with wn(s), showing the dependence of the weights on the

singularity location. But that slight change dictates that a distinct set of weights

be used for each evaluation point s, and those weights are usually too expensive to
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generate on the fly.

1.6 Spectral Product Rule for the EFIE

Colton and Kress [31] apply a spectral quadrature rule to the CSIE in order to

efficiently solve Problem 1.1 on the exterior of analytic closed curves that are not

optically large. A spectral quadrature rule has a discretization error that vanishes

exponentially fast as the number of quadrature points increases. A positive constant

ζ < 1 may be found such that ε = O(ζN ) as N →∞.

In this section, I describe the construction of this singular quadrature rule for the

EFIE. The CSIE includes a double-layer kernel in addition to the single-layer kernel

of the EFIE, but the double-layer kernel is treated the same way.

Once again, the EFIE is

∫

Γ

Φ(x,y)σ(y) dΓ (y) = (ikη)−1uinc(x) for x ∈ Γ, (1.87)

where the function σ is the unknown current density on the boundary. Let the

boundary curve Γ be parametrized by the function γ : [0, 1] → Γ . In this section,

the curve is assumed to be closed, so γ may be extended to a function on R with

unit period. At the point y = γ(t) on the curve, the differential element of arc

length is dΓ (y) = ‖γ ′(t)‖dt. After substituting the parametrization into (1.87), the

line integral becomes a standard 1-D integral. The equation assumes the standard

Fredholm form ∫ 1

0

K(s, t)ϕ(t) dt = f(s), s ∈ [0, 1], (1.88)
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after defining the new functions

ϕ(t) := σ
(
γ(t)

)
, (1.89a)

f(t) := (ikη)−1uinc

(
γ(t)

)
, (1.89b)

K(s, t) := Φ
(
γ(s),γ(t)

)
‖γ′(t)‖

= − i
4
H0

(
k‖γ(s)− γ(t)‖

)
‖γ′(t)‖.

(1.89c)

The kernel K(s, t) is unbounded at s = t.

Were we to construct a singular quadrature rule of the type

∫ 1

0

K(s, t)ϕ(t) dt ≈
N∑

n=1

wn(s)K(s, tn)ϕ(tn), (1.90)

then collocation would produce a matrix with main diagonal entries wn(tn)K(tn, tn).

But since K(tn, tn) = ∞, this fails. One alternative is to design a quadrature rule

that does not include the node at the singularity. For such a rule, the main diagonal

entries would be zero, and collocation would give a system

(W �K)ϕ̂ = f , (1.91)

where the matrix K samples the kernel at all quadrature node pairs,

Kmn :=




K(tm, tn) if m 6= n,

0 if m = n.

(1.92)

Here, however, we follow Colton and Kress [31] in a different approach.

A product rule is also capable of eliminating the infinite diagonal. A product rule

is designed to integrate a class of functions g that can be factored as g(t) = s(t)h(t),

where s is a known function and h is an arbitrary smooth function. In particular, s
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may be nonsmooth. The product rule has the form

∫ b

a

s(t)h(t) dt ≈
N∑

n=1

wnh(tn). (1.93)

Note that only the factor h is sampled at the quadrature nodes. The singular factor

s influences the weights {wn}, which are usually determined by making the rule

(1.93) exact for an N -dimensional linear space of smooth functions h.

In the application of this idea to the EFIE, we do not, however, set out to con-

struct a product rule of the type

∫ 1

0

K(s, t)ϕ(t) dt ≈
N∑

n=1

wn(s)ϕ(tn) (1.94)

because the kernel depends on the boundary Γ . If every conceivable boundary

required its own product rule, then the quadrature rule construction would be the

dominant cost of the numerical solution to Problem 1.1. Moreover, (1.89c) shows

that the kernel is a complicated function, and our product rule only needs to treat

the singularity. It does not, for instance, need to treat the oscillatory behavior of

the Hankel function.

The singularity of the single-layer kernel is logarithmic, a fact that can be exposed

by writing the Hankel function of order 0 as

H0(z) = (log z)A0(z2) +B0(z2), (1.95)

where A0 and B0 are entire functions. For an analytic boundary, the parametriza-

tion γ is an analytic function, and ‖γ(s)− γ(t)‖2 is also analytic. Assuming the

parametrization is nonsingular, the metric coefficient ‖γ ′(t)‖ is analytic as well, be-

cause γ′(t) is nowhere zero. Consequently, we only need a singular quadrature rule
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for the integral

(Lh)(s) :=

∫ 1

0

log(k‖γ(s)− γ(t)‖)h(t) dt, (1.96)

for an arbitrary analytic function h with unit period.

In (1.96) the singularity still shows, through the presence of the function γ, a

dependence on the boundary. Let us proceed nevertheless to develop the quadrature

rule for the simplest case, in which Γ is a circle of radius α. Let the origin of

coordinates lie at the center of the circle. The obvious parametrization of this curve

in rectangular coordinates is γ(t) = (α cos 2πt, α sin 2πt), so the Euclidean distance

between any two points on the curve is

R◦(s, t) := ‖γ(s)− γ(t)‖

= α
√

(cos 2πs− cos 2πt)2 + (sin 2πs− sin 2πt)2

= 2α sinπ|s− t|.

(1.97)

The product rule should take the form

∫ 1

0

log(2kα sinπ|s− t|)h(t) dt ≈
N∑

n=1

wn(s)h(tn). (1.98)

Furthermore, since we intend to solve the integral equation by collocation, we do

not need the weights {wn(s)} for all values of s, but only at the quadrature nodes

s ∈ {tn}. The weights for s = tm form a row vector wT
m, and the N row vectors for

each singularity location can be stacked together to give a weight matrix W with

elements Wmn = wn(tm).

Since the boundary is invariant under rotations, the quadrature rule should also

possess circular symmetry. Let the nodes {tn} be equally spaced in the interval

[0, 1), so tn = (n− 1)/N . Then the matrix W is circulant: Row m + 1 is the right
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circular shift of row m. If we take s = 0 to find the first row of W , (1.98) becomes

N∑

n=1

W1nh(tn) ≈
∫ 1

0

log(2kα sinπt)h(t) dt. (1.99)

All other rows of W are determined from wT
1 by the circulant property. Circulant

matrices will be discussed in greater detail in Section 2.3.2.

Since the Fourier coefficients of h decay at an exponential rate, the quadra-

ture rule will have spectral accuracy if it is designed to be exact for trigonomet-

ric polynomials. Assuming that N = 2p + 1 is odd, we force the rule to be

exact for h ∈ span{e−i2πpt, . . . , e−i2πt, 1, ei2πt, . . . , ei2πpt}. With the substitutions

hm(t) = ei2π(m−1−p)t for 1 ≤ m ≤ N , and replacing the ≈ sign with an = sign,

(1.99) generates the linear system

FDpw1 = b, (1.100)

where, if ω := e−i2π/N , then D := diag(1, ω, . . . , ωN−1) and F :=
[
ω(m−1)(n−1)

]
is the

discrete Fourier transform (DFT) matrix of order N .

The elements of b are

bm :=

∫ 1

0

log(2kα sin πt)ei2π(m−1−p)t dt, (1.101)

and these integrals may be computed numerically with an adaptive integration rou-

tine. Because the integrand is unbounded, the computation can be time-consuming

if many digits of accuracy are required. Fortunately, the integrals submit to further

analysis. It is an interesting exercise in contour integration in the complex plane to
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show that [63, Eq. 4.384-1 and Eq. 4.384-3]

∫ 1

0

log(2kα sinπt)e±i2πqt dt =





log kα if q = 0,

− 1

2|q| if q ∈ Z \ 0.

(1.102)

Therefore bT =
[
−(2p)−1, . . . ,−1

4
,−1

2
, log kα,−1

2
,−1

4
, . . . ,−(2p)−1

]
, and numerical

integration is unnecessary.

Solving (1.100), the weights for s = 0 are w1 = (1/N)D
p
Fb. That expression

can be further simplified using a shift property of the DFT.

Let Z :=
[
e2, . . . , eN , e1

]
be a circular permutation matrix constructed by re-

ordering the columns {en} of the identity matrix. If Z premultiplies a column

vector, it effects an downward circular shift of the vector elements. The relevant

shift property is DF = FZT . Applying the shift p times to b,

w1 =
1

N
F
[
log kα,−1

2
,−1

4
, . . . ,−(2p)−1,−(2p)−1, . . . ,−1

4
,−1

2

]T
, (1.103)

and this can be computed in O(N logN) flops with a fast Fourier transform (FFT).

This discussion assumed that N is odd, but the case of even N is similar. If

N = 2p, then the entry −(2p)−1 occurs only once on the right-hand side of (1.103).

Now a product rule for a circle is by itself uninteresting. Fortunately, with a little

more work it can be applied to all smooth Jordan curves, which is a set of boundaries

large enough to be interesting. In (1.95), the kernel was split apart to expose the

elementary behavior of the singularity. The simplified kernel in (1.96) is log kR,

where R(s, t) := ‖γ(s)− γ(t)‖ gives the Euclidean distance between any two points

on Γ . The kernel splitting can be further extended to utilize the quadrature rule for
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the circle. Rewrite the kernel as

log kR = log
(
kR◦ ×

R

R◦

)

= log kR◦ + log
R

R◦
,

(1.104)

where R◦, defined in (1.97), is the distance function for points on the circle.

This splitting works only because the second term in (1.104) is smooth. To avoid

the logarithmic singularity in that term, there must exist constants a and b such

that 0 < a ≤ R/R◦ ≤ b. This requirement is satisfied because

1. R and R◦ vanish at the same points, namely s = t modulo the interval

[0, 1)

2. lims→tR/R◦ exists and is bounded away from zero

Figure 1.4 illustrates the smoothness of this term for an analytic Jordan curve.

We still have the freedom of choosing the circle radius α to make R/R◦ as smooth

as possible, but that choice only weakly affects the accuracy of the quadrature rule.

Note that we have achieved a remarkably clean separation of the singular behavior

from the details of the boundary geometry:

single-layer kernel = singular function independent of Γ

+ nonsingular function dependent on Γ .

It is unreasonable to assume that such a clean separation may be found for all

kernels.

The quadrature rule for smooth pieces of the kernel must use the same nodes

as the singular product rule. We already selected those nodes to be equally spaced

points in [0, 1). The (N + 1)-point trapezoidal rule uses these points, and it is a

spectral discretization for analytic periodic integrands [35].
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Figure 1.4: (a) A uniform grid of 24 points is applied to both a circle and a
the smooth boundary of a nonconvex domain. The 24 chords with lengths
‖γ(ti)− γ(tj)‖ are shown at i = 7 for both curves. (b) Graph of the chord
ratio R(s, t)/R◦(s, t) at s = t7. The chord ratio is a smooth function at
any value of s.
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In summary, the discretization covered here produces the algebraic system

[
W � A+

1

N
(L� A+B)

]
ϕ̂ = f . (1.105)

The elements of f are the samples {f(tm)} of the driving function (1.89b), and the

elements of ϕ̂ approximate the samples {ϕ(tm)} of the actual solution (1.89a). The

circulant matrix W comprises the product-rule weights specified in (1.103). A, B,

and L are smooth matrices, meaning that their elements are the values of smooth

functions on a rectangular grid. In particular, those elements are

Amn = − i
4
A0(k2‖γ(tm)− γ(tn)‖2)‖γ′(tn)‖, (1.106)

Bmn = − i
4
B0(k2‖γ(tm)− γ(tn)‖2)‖γ′(tn)‖, (1.107)

Lmn =





log
‖γ(tm)− γ(tn)‖

2α sinπ|s− t| for m 6= n,

log
‖γ′(tm)‖

2πα
for m = n.

(1.108)

These three matrices originate from the smooth function leftovers of the kernel

splitting.

1.7 Why Multipole?

Solving (1.105) requires O(N 2) space and O(N 3) time, and these costs prohibit

solving the equations for many obstacles of interest to engineers.

For optically large boundaries, N is too large for (1.105) to be useful. Since the

product quadrature rule does not address the oscillations in the EFIE integrand, a

large number of quadrature nodes are necessary to sample the integrand. Aliasing

errors prevent the spectral accuracy of the discretization from engaging until the

oscillations are resolved.
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In lieu of solving a large dense linear system, asymptotic techniques such as ray

tracing are often brought to bear on large scattering problems. Unfortunately, those

methods are semiconvergent only as k → ∞. For a fixed obstacle and a fixed

illumination frequency, the methods are nonconvergent, and are consequently held

in slight regard by numerical analysts.

The fast multipole method can reduce the cost of solving the integral equation to

O(N logς N) space and time for a small integer ς. It is an algorithm for multiplying

a vector by the matrix K of (1.92). Since K does not appear in (1.105), FMM does

not help there. In Chapter 3, I modify the construction of the previous section to

generate an algebraic system compatible with multipole.
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Chapter 2

Three Fast Multipole Methods

In the original paper [116] on the fast multipole method, Rokhlin introduced a

new solution of the boundary value problem for the 2-D Laplace equation ∆u =

0. Components of Rokhlin’s approach include integral equations, quadrature rules,

and iterative solvers for linear systems. These mathematical objects are, however,

peripheral to the new ideas contained in the multipole algorithm. To understand

FMM, it is more expedient to start not with the Laplace equation but rather with

a discrete particle problem.

Problem 2.1 (Particle Interaction) Let a collection of N particles be located at

points {xn}. Particle n generates a field un(x), and individual particle fields are

added together to give the net field. At the location of each particle m, evaluate the

total field generated by all other particles n 6= m,

u(xm) =
∑

1≤n≤N
n6=m

un(xm) for 1 ≤ m ≤ N. (2.1)
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It is trivial to solve this problem in O(N 2) operations by evaluating all partial

interactions {un(xm)}, but for certain fields it is possible to construct an algorithm

that reduces this cost to O(N).

The fast solution of Problem 2.1 was addressed by Greengard and Rokhlin [64]

for the case of Newton–Coulomb potential interactions in two dimensions, and sub-

sequently by Greengard [66] for 3-D Newton–Coulomb interactions. These fields—

apart from a positive physical constant dependent on the chosen unit system—are

given by

un(x) = ∓qn log‖x− xn‖, x ∈ E2, (2.2a)

un(x) = ± qn
‖x− xn‖

, x ∈ E3, (2.2b)

where in Coulomb’s law of electricity, the upper sign is taken and qn stands for

particle charge. In Newton’s law of gravity, the lower sign is taken and qn is the

particle mass. In both cases the field u is a scalar potential, and the force on a test

particle with a tiny mass/charge δ at position x is −δ∇u(x).

Problem 2.1 is important in many applications, several of which are reviewed by

Greengard [67]. One example is the simulation of galactic dynamics [11], in which

each particle might represent a star. Actual galaxies contain as many as N = 108

stars, so reducing the O(N 2) complexity is critical. Another example is the study of

fluid dynamics using vortex methods [120], in which each particle might represent a

point vortex or a vortex blob.

The Coulomb potential is important to many problems in electrical engineering as

well. Examples include the modeling of electrostatic forces in low-speed solid-state

devices and the calculation of pairwise capacitances between interconnect wires in a

high-speed integrated circuit [111].
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The focus of this dissertation, however, lies with an oscillatory interaction that is

fundamentally more challenging than those in (2.2). This interaction was reviewed

in Chapter 1, and it is discussed again in the following section in connection with

Problem 2.1. Rokhlin has applied the multipole framework to this interaction as

well, in both two [117] and three [118] space dimensions.

A generalization of Problem 2.1 is important in some contexts. If we allow field

evaluation at points other than the particle locations, then we have the following

problem.

Problem 2.2 (Field Summation) Let a collection of N particles be located at

points {yn}. Particle n generates a field un(x). The total field u is the sum of the

individual particle fields, u(x) =
∑

n un(x). Evaluate the total field at the M points

{xm},

u(xm) =
N∑

n=1

un(xm) for 1 ≤ m ≤M, (2.3)

under the assumption that the sets {xm} and {yn} are disjoint.

A multipole treatment of a PDE such as the Laplace equation represents the solution

as a boundary integral. Problem 2.2 then finds application in the evaluation of that

integral at various points of interest. To conveniently graph the solution, the selected

points {xm} may form a rectangular grid.

2.1 The 2-D Helmholtz Interaction

Like the Coulomb interaction, the Helmholtz interaction assumes the form

um =
∑

1≤n≤N
n6=m

qnΦ(xm,xn) for 1 ≤ m ≤ N, (2.4)

55



which gives the fields {um} produced by N point sources with amplitudes {qn} at

locations {xn}. This interaction is linear in the amplitude vector q :=
[
qn
]
, and it

can be rewritten as a matrix-vector product,

u = Φq, (2.5)

in which u :=
[
um
]

is the vector of field values. The interaction matrix Φ has zeros

on its main diagonal, and its other elements are Φ(xm,xn).

Multipole methods provide an efficient way to both store Φ and compute the prod-

uct Φq. Rather than working directly with the matrix elements, they exploit certain

properties of the underlying function Φ(x,y) that defines the matrix elements.

For the Helmholtz interaction, the amplitudes {qn} are allowed to be complex

numbers, and the function Φ(x,y) is the radiating fundamental solution of the

Helmholtz equation,

Φ(x,y) := − i
4
H0(k‖x− y‖), (2.6)

where H0 is the first-kind Hankel function of order 0.

Hankel functions are solutions of Bessel’s ordinary differential equation [1, Ch. 9].

The Hankel function of the first kind is defined as Hν(z) := Jν(z) + iYν(z), a linear

combination of Bessel’s analytic solution Jν and Neumann’s singular solution Yν .

The function (2.6) has a logarithmic singularity at x = y. Away from the singularity,

it oscillates with spatial angular frequency k. The envelope of the oscillations decays

slowly, like ‖x− y‖−1/2, as the separation ‖x− y‖ increases. These properties are

illustrated in Figure 2.1.

The factor of − i
4

in (2.6) only clutters the multipole formulas. In Sections 2.2

through 2.5.3, we absorb it into the charge vector q.

56



PSfrag replacements

0 5 10 15 20 25 30
-2

-1

0

1

2

x

ImH0(x)
@@I ReH0(x)

6

|H0(x)|
��	

Figure 2.1: Hankel function H0(x) of the first kind and order zero.

2.2 Spectral Expansions

The function Φ is a solution of the Helmholtz equation, and this bestows on it certain

properties that are exploited by Rokhlin’s algorithm. This section begins a detailed

account of the fast multipole method.

Section 2.2.1 covers the ingredient that gives the method its name: a multipole

series representation of the field on a simple unbounded domain. On equal footing

are series representations on simple bounded domains, the subject of Section 2.2.2.

Both of these series result from a separation of variables solution of the Helmholtz

equation. Typically, the “simple” domains are the exteriors and interiors of disks

in E2 and spheres in E3, but other choices are possible. Recently, Greengard and

Rokhlin [70] have discovered advantages to expansions on half-spaces: unbounded

domains with a boundary of a line in E2 or a plane in E3.

57



2.2.1 On the Exterior of a Disk

Consider, as in Figure 2.2, the field generated by a collection of N oscillating point

sources contained in the disk G := {x : ‖x‖ < α} centered at the origin. If the

sources have amplitudes {qn} and locations {xn}, the net field is

v(x) =
N∑

n=1

qnΦ(x,xn), x ∈ E2. (2.7)

The objective is to avoid this field representation, since for large N it is too costly.

α

β

G

G′

Figure 2.2: Real part of the field generated by a random collection of 50
point oscillators located inside the disk G with radius α. The series (2.10)
represents the field outside the disk G′ with radius β.

A different series representation can be derived from the fact that the field (2.7)

is a radiating solution of the Helmholtz equation exterior to the disk G′ := {x :

‖x‖ < β} for any β ≥ α,

∆v(x) + k2v(x) = 0 for ‖x‖ > β ≥ α, (2.8a)
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∂v

∂r
(x)− ikv(x) = o(r−1/2) where r := ‖x‖ → ∞. (2.8b)

A separation of variables solution in polar coordinates gives a generalized Fourier

series expansion of v in the basis functions

ϕm(x) := Hm(k‖x‖)eimθ(x), m ∈ Z, (2.9)

where the function θ : E2 → (−π, π] returns the polar angle of its vector argument.

The generalized Fourier series is

v(x) =
∞∑

m=−∞
amϕm(x), (2.10)

where {am} are the Fourier coefficients.

This series is called a multipole expansion because an oscillating current dipole

located at the origin of coordinates generates a field a−1ϕ−1(x) + a1ϕ1(x) with

|a−1| = |a1|. In general, the two terms of order p correspond to a point source at

the origin with an internal structure of 2p oscillating poles.

The natural representation (2.7) is a finite series that taxes computer resources

when its length is too large. The Fourier representation is an infinite series, so at a

glance there appears to be no advantage to (2.10). Given an acceptable error level,

however, the infinite series may always be truncated to a finite number of terms.

Indeed, it may happen that many fewer than N terms are required, so that the

sequence {am} is a more efficient description of the field than the pair of sequences

({qn}, {xn}).

The Fourier coefficients can be computed in several ways. The standard approach

requires the values of the field v on the circle ‖x‖ = γ ≥ α concentric with the disk

G. Let x = (r, φ) in polar coordinates, so that v(x) ≡ v(r, φ). The Dirichlet data

on the circle is f(φ) := v(γ, φ). Inserting the basis (2.9) into the expansion (2.10),
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the function f has the Fourier series

f(φ) =
∞∑

m=−∞
amHm(kγ)eimφ. (2.11)

Since the Hankel function Hm has no real zeros, the coefficients {am} are easily

determined from the Fourier coefficients of f ,

am =
1

2πHm(kγ)

∫ 2π

0

f(φ)e−imφ dφ, m ∈ Z. (2.12)

Since f is analytic and 2π-periodic, this integral should be approximated by a trape-

zoidal rule, giving a sum in the form of a discrete Fourier transform. An FFT may

then be used to efficiently compute {am}.

Another way to compute the coefficients—the one we shall employ—instead uses

the natural expansion (2.7) together with an addition theorem for H0. In its simplest

form, the “addition” is a binary sum appearing in the function argument, and the

formula is

H0(z + w) =
∞∑

m=−∞
J−m(z)Hm(w) for |z| < |w|. (2.13)

More generally, the addition is a vector sum, as in

H0(‖z +w‖) =
∞∑

m=−∞
J−m(‖z‖)e−imθ(z)Hm(‖w‖)eimθ(w), ‖z‖ < ‖w‖, (2.14)

and this particular addition theorem appears commonly in texts on electromag-

netism [80, §5.8].

Addition theorems play a pivotal role in the fast multipole method, and we shall

soon need one not just for H0, but also Hν for any integer ν. Of critical importance

is the separation of w and z in the summand of (2.14): Each term is the product

of a function of w only and a function of z only.

The addition theorem (2.14) is applied to (2.7) by making the substitutions z→
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−kxn and w→ kx, giving

v(x) =
N∑

n=1

qnH0(k‖x− xn‖)

=

N∑

n=1

qn

∞∑

m=−∞
J−m(k‖xn‖)e−imθ(−xn)Hm(k‖x‖)eimθ(x).

(2.15)

Exchanging the summation order, and also using the facts J−m(z) = (−1)mJm(z)

and θ(−z) = θ(z)± π (pick the sign that puts the result in the range (−π, π]), we

arrive at the desired expression for the exterior coefficients,

am =

N∑

n=1

qnJm(k‖xn‖)e−imθ(xn), m ∈ Z. (2.16)

The coefficients {am} are clearly a linear transformation of the charges1 {qn}, and

(2.16) can be recast in vector form. Let the charge amplitudes be the elements

of a vector q, as in (2.5). Then computation of {am} for |m| ≤ p requires the

matrix-vector multiplication

a = V q, (2.17)

where aT :=
[
a−p, . . . , ap

]
and the matrix elements of V ∈ C(2p+1)×N are given by

vmn = Jm(k‖xn‖)e−imθ(xn). (2.18)

Here the row index m takes on the values −p, . . . , p.

For the multipole solution of the Helmholtz equation, Problem 2.1 must be solved

repeatedly for different charge vectors q. The charge locations {xn} do not change

from one iteration to the next, so it is advantageous to compute V once and store

it, saving the expense of recomputing the Bessel functions Jm(k‖xn‖). Using the

symmetry v−m,n = (−1)mvmn, only half of V needs to be stored, and the other half

1I use the terms “charge” and “field” broadly to describe the vectors q and u in (2.5).
If particle n is a point oscillator with complex-valued current In, then the “charge” qn =
−1

4kηIn has the units V/m of an electric field.
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can be quickly generated by applying a pattern of sign changes.

Truncation of the Infinite Series

The expression (2.16) can be used to determine a suitable truncation of the infinite

series (2.10). The terms of the series are bounded as

|amϕm(x)| =
∣∣∣∣
N∑

n=1

qnJm(k‖xn‖)Hm(k‖x‖)eim(θ(x)−θ(xn))

∣∣∣∣

≤
N∑

n=1

|qn||Jm(k‖xn‖)Hm(k‖x‖)|.
(2.19)

To further simplify this, it helps to know something about the qualitative behavior

of the functions Jm(z) and Hm(z) as both order m ∈ Z and argument z ∈ R are

varied [5].

While |Hm(z)| is monotone in either parameter, |Jm(z)| oscillates if |m| < |z|. For

fixed m, as in Figure 2.3(a), |Jm(z)| increases and |Hm(z)| decreases as |z| increases

from zero, until oscillations in |Jm(z)| appear for |z| > |m|. Thus, since ‖xn‖ < α

while ‖x‖ > β, the terms in the tails of the bilateral series can be bounded more

loosely as

|amϕm(x)| < ‖q‖1|Jm(kα)Hm(kβ)| for |m| > kα. (2.20)

The product |Jm(kα)Hm(kβ)| controls the rate of convergence. As |m| → ∞, |Jm(z)|

decreases to zero, while |Hm(z)| increases without bound [see Figure 2.3(b)]. Using

the fixed-argument asymptotic expansions [1, §9.3.1], we have

|Jm(kα)Hm(kβ)| = O

(
1

|m|

(
α

β

)|m|)
as |m| → ∞. (2.21)

Thus the tails of the multipole series (2.10) decay with exponential speed as long

as β > α. This is the same behavior exhibited by the Fourier series spectrum of a
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Figure 2.3: (a) Behavior of |J10(z)| and |H10(z)| as argument z changes.
(b) Behavior of |Jν(10)| and |Hν(10)| as order ν changes. Dots indicate
integer values of ν.
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periodic analytic function, and the adjective spectral is used to draw this connection.

For β > α, the multipole series converges with spectral accuracy.

Fast convergence is critical, since we want to truncate the series at a small number

of terms. For this purpose, the choice β > α is not strict enough, because it does

not rule out a slow exponential decay like (1 − δ)|m| for some tiny δ > 0. The

suitable amount of separation is rather arbitrary, but I typically take β = 2α, so

that the series converges at the quite respectable rate of o(2−|m|). With this choice,

an evaluation point x is well separated from the disk G if ‖x‖ > β.

Note that, while the terms rapidly decay as |m| → ∞, the upper bound in (2.20)

does not engage until |m| > kα. If kα is large, many terms may still have to be

kept.

In summary, given a permissible truncation error ε relative to ‖q‖1, we can choose

a cutoff p so that

v(x) =

p∑

m=−p
amϕm(x) +O(ε), ‖x‖ > β. (2.22)

The number of terms required, 2p+1, may be estimated as O(kα+log ε−1) as ε→ 0

and k →∞.

In my own multipole code, I pick p to satisfy the requirement

∑

|m|>p
|Jm(kα)Hm(kβ)| < ε. (2.23)

A simpler criterion is to find the smallest p so that

|Jp+1(kα)Hp+1(kβ)| < ε. (2.24)

Since the convergence is spectral, this works as well as (2.23) if ε is not too large. To

reduce the number of Bessel function evaluations, a production code might estimate
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p from a least-squares fit to the surface p(ε, kα) generated by the criterion (2.23). I

have not been particularly impressed by the accuracy of published formulas2 along

these lines, at least not when ε and kα are allowed to range over many orders of

magnitude. Furthermore, I have found that neither (2.23) nor (2.24) significantly

add to the total computation time.

If the number of particles N is much greater than kα + log ε−1, then the trun-

cated spectral expansion (2.22) is clearly more efficient than the exact finite expan-

sion (2.7). When applying multipole to an integral equation on a boundary Γ , this

behavior is observed for low frequency problems in which k diamΓ is small. It can

happen too for high frequency problems if the boundary Γ exhibits strong variations

on scales smaller than a wavelength, but that is not typical. Nevertheless, although

its length may not be smaller than N , the spectral expansion has other proper-

ties that facilitate an efficient solution to Problem 2.1 at high frequencies. Those

properties will be investigated in Section 2.3.

2.2.2 On the Interior of a Disk

In addition to a spectral expansion on a disk’s exterior, FMM also utilizes a spectral

expansion on the interior. Consider the same disk G as in Section 2.2.1. The

field v(x) was generated by charges inside G, but consider now a different field u(x)

produced by sources outside G, as in Figure 2.4. Let M oscillating point sources with

amplitudes {rm} be located at the points {zm} in the disk exterior. Let ‖zm‖ > β

2Coifman et al. [29] choose p = 2kα + d log(π + 2kα) in three dimensions, where d is
a constant that depends on ε. This formula is apparently used as well for 2-D problems.
More recently developed cutoff formulas [127] [113] have proved more accurate.

65



for some constant β ≥ α. The natural representation of the field is

u(x) =
M∑

m=1

rmΦ(x,zm), x ∈ E2, (2.25)

but for large M the spectral representation may be more efficient.

α

β

G

G′

Figure 2.4: Real part of the field generated by a random collection of 100
point oscillators located outside the disk G′ with radius β. The series (2.28)
represents the field inside the disk G with radius α.

Inside the disk, the field is bounded and satisfies the Helmholtz equation

∆u(x) + k2u(x) = 0 for ‖x‖ < α. (2.26)

A separation of variables solution in polar coordinates gives a generalized Fourier

expansion in the basis functions

ψn(x) := Jn(k‖x‖)einθ(x). (2.27)
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The representation of the field in this basis is

u(x) =
∞∑

n=−∞
bnψn(x), (2.28)

with Fourier coefficients {bn}.

As with the coefficients of the exterior expansion, Fourier analysis easily gives an

integral representation of the interior coefficients. Since Jn, unlike Hm, does have

real zeros, the formula is slightly more complicated. The integral (2.12) required

only the Dirichlet data on a circle, but for the interior coefficients we generally need

both Dirichlet and Neumann data on a circle ‖x‖ = γ ≤ β. In polar coordinates,

u(x) ≡ u(r, φ), so that the Dirichlet values are f(φ) := u(γ, φ) and the Neumann

data are the normal derivatives g(φ) := (∂u/∂r)(γ, φ). One possible formula for the

coefficients of the interior expansion is

bn =
1

2π
(
Jn(kγ) + ikJ ′n(kγ)

)
∫ 2π

0

(
f(φ) + ig(φ)

)
e−inφ dφ, n ∈ Z. (2.29)

Since the real zeros of Jn and J ′n interleave, the combination Jn+ikJ ′n cannot be zero

if k > 0. Given equally spaced samples of f and g, this integral may be computed

efficiently with the FFT.

The formula (2.29) is attractive because it is independent of the type of source

distribution that generates the field. Making use of an appropriate addition theorem,

however, we can obtain a more useful formula for our known distribution of point

sources. The addition theorem (2.14) for H0 works just as well for the interior

expansion as for the exterior expansion. A slight alteration of that formula, replacing

m with −n, gives

H0(‖z +w‖) =
∞∑

n=−∞
H−n(‖w‖)e−inθ(w)Jn(‖z‖)einθ(z), ‖z‖ < ‖w‖. (2.30)

Making the substitutions z→ kx and w→−kzm and applying this to (2.25), we
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have

u(x) =
M∑

m=1

rmH0(k‖x− zm‖)

=

M∑

m=1

rm

∞∑

n=−∞
H−n(k‖zm‖)e−inθ(−zm)Jn(k‖x‖)einθ(x).

(2.31)

Exchanging the summation order, and using the facts H−n(z) = (−1)nHm(z) and

θ(−z) = θ(z)± π, we obtain

bn =

M∑

m=1

rmHn(k‖zm‖)e−inθ(zm), n ∈ Z. (2.32)

The coefficients {bn} are a linear transformation of the charges {rm}, and (2.32)

can be written as a matrix-vector product. These transformations are used in the

adaptive FMM of Carrier, Greengard, and Rokhlin [19], but we will have no occasion

to use them. For our purposes, this development is important because it enables the

determination of the effective length of the interior expansion.

An analysis of the terms |bnψn(x)| of the absolute series, patterned after the

analysis of the exterior expansion, shows that the same bound (2.20) applies,

|bnψn(x)| < ‖r‖1|Jn(kα)Hn(kβ)| for |n| > kα. (2.33)

Consequently, if we again separate x and {zm} with the choice β = 2α, the number

of terms required for the expansion interior to the disk G is the same as the num-

ber of terms required for the expansion exterior to G′, and we have a computable

approximation

u(x) =

p∑

n=−p
bnψn(x) +O(ε), ‖x‖ < α. (2.34)

The expansion length scales asymptotically as 2p+ 1 = O(kα + log ε−1).

Now consider the evaluation of the truncated interior expansion at a set of M
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points {ym} inside G. We have, within a truncation error O(ε),

u(ym) =

p∑

n=−p
bnJn(k‖ym‖)einθ(ym), 1 ≤ m ≤M, (2.35)

or, in vector notation,

u = Ub, (2.36)

with bT :=
[
b−p, . . . , bp

]
. The matrix elements of U ∈ CM×(2p+1) are

umn = Jn(k‖ym‖)einθ(ym), (2.37)

where column index n takes on the values −p, . . . , p. If the evaluation points coincide

with the charge locations of Section 2.2.1, then U in (2.36) and V in (2.17) are an

adjoint pair: V = UH .

2.3 Flat Multipole

Once I describe the connection between interior and exterior expansions, we will have

all the elements in place for a rudimentary FMM implementation. That connection

is provided by an addition theorem for Hankel functions Hν of integer order,

Hn(‖z +w‖)einθ(z+w) =
∞∑

m=−∞
Jm(‖z‖)eimθ(z)Hn−m(‖w‖)ei(n−m)θ(w), ‖z‖ < ‖w‖.

(2.38)

This is a specialization of Graf’s addition theorem [1, §9.1.79].

2.3.1 Translation of Spectral Expansions

Consider the field, illustrated in Figure 2.5, generated by N oscillating charges in the

disk G and evaluated at a collection of M points in the disk H. Since each evaluation
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point is well separated from G, the exterior spectral expansion of Section 2.2.1

exhibits rapid exponential convergence. Choose an integer q so that discarding

terms with indices |n| > q produces an approximation û of the field u,

û(x) =

q∑

n=−q
anϕn(x) for x ∈ H, (2.39)

such that |u− û| = O(ε) in disk H.

G

H

d

x

x′

Figure 2.5: Real part of the field u(x) ≡ v(x′) generated by 50 point os-
cillators distributed randomly in disk G. The field is evaluated at another
random collection of 50 points inside disk H.

The tail of the vector x is attached to the origin of coordinates, which lies at

the center of disk G. Let the center of disk H lie at d in this coordinate system,

and introduce a new coordinate system in which the tail of a position vector x′ is

attached to the center of disk H. The coordinate systems are related by the simple

translation x = x′ + d. Let v(x′) := u(x′ + d) describe the field in the new

coordinates.
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Since each source point is well separated from the disk H, the interior spectral

expansion of Section 2.2.2 exhibits rapid exponential convergence. Choose an integer

p so that discarding terms with indices |m| > p produces an approximation,

v̂(x′) =

p∑

m=−p
bmψm(x′) for x′ ∈ H, (2.40)

such that |v − v̂| = O(ε) in disk H.

Clearly, since û(x) and v̂(x′) describe the same field, the coefficients of expansions

(2.39) and (2.40) are related. In fact, {bm} can be obtained from {an} through

a linear transformation called a translation operator. Assembling the respective

coefficients into the vectors b ∈ C2p+1 and a ∈ C2q+1, the translation operator has a

matrix representation T ∈ C(2p+1)×(2q+1), such that

b = Ta. (2.41)

Proof of this fact, together with a formula for the elements of T , can be obtained

from the addition theorem (2.38). Substituting that into (2.39), after making the

replacements z→ kx′ and w→ kd, gives

û(x′ + d) =

q∑

n=−q
anHn(k‖x′ + d‖)einθ(x′+d)

=

q∑

n=−q
an

∞∑

m=−∞
Jm(k‖x′‖)eimθ(x′)Hn−m(k‖d‖)ei(n−m)θ(d)

=
∞∑

m=−∞

(
q∑

n=−q
anHn−m(k‖d‖)ei(n−m)θ(d)

)
Jm(k‖x′‖)eimθ(x′).

(2.42)

The finite exterior expansion generates an infinite expansion in the interior of H,

with coefficients

bm =

q∑

n=−q
anHn−m(k‖d‖)ei(n−m)θ(d). (2.43)

Truncating the infinite series at m = ±p introduces an error of O(ε). The field v̂
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computed by substituting (2.43) into (2.40) has two sources of error: truncation

of {an} and truncation of {bm}. We shall forgo a detailed analysis of this error

combination.

Note that each interior coefficient bm depends on all the exterior coefficients {an}.

Since the sequence of exterior coefficients has been truncated, the values of bm com-

puted in (2.43) are not the same as those given by the exact formula (2.32). Never-

theless, when the series cutoffs p and q are selected according to the considerations

of Section 2.2.1, these two sets of interior coefficients produce fields v̂ that differ by

only O(ε).

The elements of the translation matrix T are evidently

tmn = Hn−m(k‖d‖)ei(n−m)θ(d)

= Hm−n(k‖d‖)e−i(m−n)θ(−d),

(2.44)

where the row index m takes on values −p, . . . , p while the column index n takes

values −q, . . . , q. Note that these elements depend only on the optical displacement

kd between the disk centers.

The formula (2.44) reveals the crucial structure that enables multipole to be fast

for a highly oscillatory interaction, when the set of particles of Problem 2.1 is many

wavelengths in diameter. Since the matrix elements are a function of the index

difference m− n, those elements are constant on any diagonal of the matrix: T is a

Toeplitz matrix.

That Toeplitz structure can be utilized to rapidly compute the matrix-vector

product (2.41). Instead of the O(pq) flops required for a general matrix T , the

Toeplitz product can be performed in O
(
(p+ q) log(p+ q)

)
flops, which is a tremen-

dous improvement when p and q are large.
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For low frequency problems, the spectral expansions are short, and it is un-

necessary to utilize the Toeplitz structure of the translation matrix. A standard

matrix-vector multiplication algorithm then suffices for the computation of (2.41).

2.3.2 Fast Toeplitz Matrix-Vector Products

The fast algorithm for computing y = Tx for an arbitrary vector x starts by

embedding the Toeplitz matrix T into a circulant matrix C [34]. Circulant matrices

are a subclass of square Toeplitz matrices with columns that are successive circular

downshifts of the first column.

The embedding T 7→ C is not unique. One choice puts T in the top left corner

of C. A simple example that embeds a 3× 2 Toeplitz matrix into a 4× 4 circulant

matrix is


a d

b a

c b


 7→




a d c b

b a d c

c b a d

d c b a


 . (2.45)

When the embedding is done in this manner, the vector y can be recovered from

the product of C with a vector z obtained by appending zeros to x,

[
y

×

]
=

[
T ×
× ×

] [
x

0

]
= Cz. (2.46)

The ×’s in the matrix stand for the entries added to complete the embedding. The

left-hand side entries symbolized by × are discarded after the product is computed.

Other embeddings are simple variations on this theme.
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Another way of expressing the product using the embedding of (2.45) is



a d

b a

c b


x =




1 0 0 0

0 1 0 0

0 0 1 0







a d c b

b a d c

c b a d

d c b a







1 0

0 1

0 0

0 0


x. (2.47)

In general, an m× n Toeplitz matrix may be uniquely represented as T = ET
mCEn,

where C is a circulant matrix of order N := m+ n− 1 and Ej :=
[
e1, . . . , ej

]
is the

rectangular matrix comprising the first j columns of the order-N identity matrix.

The rightmost factor En in the matrix product implements the zero padding, and

the leftmost factor ET
m implements the truncation.

Now we use the fact that the eigenvalue decomposition of any circulant matrix

C ∈ CN×N is C = F−1ΛF , where F is an N -point DFT matrix. The diagonal

matrix Λ holds the eigenvalues of C, which are the Fourier transform of C’s first

column. If this first column is c = Ce1, then Λ = diag(Fc) and the matrix-vector

product is computed as

y = ET
mCEnx

= ET
mF

−1 diag(Fc)FEnx

= ET
mF

−1(Fc� FEnx),

(2.48)

where � is the componentwise product operator. FFTs should be used to implement

the discrete Fourier transforms. If an FFT longer thanN points would be faster, then

the Toeplitz matrix may be embedded into an arbitrarily larger circulant matrix.

In summary, y can be computed with three FFTs and a single componentwise

vector product, and when T is large this is much faster than the standard matrix-

vector product Tx. The fast multiply requires O
(
(m+ n) log(m+ n)

)
flops, versus

O(mn) flops for the standard algorithm.
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The proof of the above eigenvalue decomposition is not difficult. The well-known

shift property of the FFT states that a circular shift of a vector x is equivalent

to a modulation—a componentwise product with a trigonometric function—of the

Fourier spectrum of x. Using the circular permutation matrix Z :=
[
e2, . . . , eN , e1

]
,

this property is expressed as FZx = DFx, where D = diag(1, ω, . . . , ωN−1) and

ω := e−i2π/N . Since x is arbitrary, FZ = DF . The main diagonal of D is evidently

the second column of F , so D = diag(Fe2). Generally, the powers of D are Dj =

diag(Fej+1).

Let C = [c, Zc, . . . , ZN−1c] be an N ×N circulant matrix. Premultiplying C by

F , we have

FC =
[
Fc, FZc, . . . , FZN−1c

]

=
[
Fc, DFc, . . . , DN−1Fc

]

=
[
Fc� Fe1, Fc� Fe2, . . . , Fc� FeN

]

=
[
diag(Fc)Fe1, diag(Fc)Fe2, . . . , diag(Fc)FeN

]

= diag(Fc)F,

(2.49)

so that C = F−1 diag(Fc)F is the desired diagonalization. Rewriting this as CF −1 =

F−1 diag(Fc) shows that the eigenvectors of C are the columns of F−1.

A standard topic in the undergraduate electrical engineering curriculum is the

application of the FFT to efficiently compute discrete convolutions. This is a special

case of the algorithm sketched here: In a convolution the Toeplitz matrix is also

banded. The circulant matrix embedding corresponds to a replacement of the linear

convolution with a circular convolution.

For example, the convolution of the length-2 sequences (a, b) and (w, z) may be
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written as the matrix-vector product



a 0

b a

0 b



[
w

z

]
=



a 0 b

b a 0

0 b a





w

z

0


 . (2.50)

Because of the zeros in the upper-right and lower-left corners of the Toeplitz matrix

on the left-hand side, the embedding is more compact than in example (2.45). The

equivalent circular convolution is computed as the inverse FFT of the componentwise

product of the FFTs of the zero-padded sequences (a, b, 0) and (w, z, 0). Naturally,

the fast convolution is unnecessary for these short sequences, but the same principles

apply to the general case.

2.3.3 Flat Multipole Algorithm

We are now prepared to describe an elementary multipole method for the solution

of Problem 2.1 for the Helmholtz potential (2.6). In its fullest expression, multi-

pole is a hierarchical method, with an organization that has much in common with

multigrid [8]. Section 2.5 contains a description of hierarchical multipole. Here, we

begin progress toward this goal under the simplifying assumption of a single-level

hierarchy. I call the resulting algorithm a flat multipole method.

Figure 2.6 illustrates a simple example in which N point oscillators are distributed

on the interval [0, L] of the x-axis. The location xn of each particle is a uniformly

distributed random variable, and the locations are independent of one another.

The interaction matrix Φ is uniquely defined only after an order has been assigned

to the particles. This order gives the row and column indices of each particle.

Shuffling the order with the permutation matrix P changes the interaction matrix to

PΦP T . (Problem 2.1 can be slightly redefined to allow a particle to have different row
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G1 G2 G3 G4 G5

Figure 2.6: Real part of the field generated by 25 point oscillators uniformly
distributed on the interval [0, L] of the x-axis. The particles are grouped
into 5 clusters.

and column indices, generalizing the equivalence to PΦQT for distinct permutation

matrices P and Q.) For our simple problem, we choose the natural order of the real

numbers {xn}: The particles are numbered from left to right.

If the particles were equally spaced, occupying the sites xn/L = (n− 1)/(N − 1)

for 1 ≤ n ≤ N , then the interaction matrix Φ would be Toeplitz, and the technique

of Section 2.3.2 would give a solution in O(N logN) flops. Multipole is capable of

handling more general distributions such as the one in Figure 2.6.

Partition the interval into s subintervals of equal length, each circumscribed by

a circle as shown in Figure 2.6. Since the particles are uniformly distributed, the

expected number of particles in each disk is N/s. Any particle that happens to lie

on the boundary of two disks may be arbitrarily assigned to one or the other.

The particles inside a single disk constitute a particle cluster. Each particle

belongs to one of s distinct clusters. This terminology is somewhat forced, since

two particles in adjacent clusters may be arbitrarily close to one another. The

characteristic of this particle classification important to a multipole algorithm is

that the particles within a cluster may not be separated by large distances. An ideal
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automatic clustering algorithm maximizes the number of well-separated cluster pairs,

while allocating the same number of particles to each cluster.

The concept of well-separated clusters is introduced by generalizing the definition

on page 64 of a point that is well separated from a disk. Given two disjoint disks

G and H of radius α and β, respectively, we may call H well separated from G if

every point in H is well separated from G, so that

‖x− y‖ > α for all x ∈ G, y ∈ H. (2.51)

This definition is unsymmetric: If H is well separated from G, it is not necessarily

true that G is well separated from H. We symmetrize the definition and call the

pair of disks (G,H) well separated if

‖x− y‖ > max(α, β) for all x ∈ G, y ∈ H. (2.52)

The definition may be further extended to two general planar sets G and H by

considering the smallest disks that enclose G and H. Thus, two point clusters are

well separated if their minimum enclosing disks are well separated.

Referring again to Figure 2.6, any two disks Gi and Gj are well separated if and

only if |i− j| > 1, so there are altogether 6 well-separated pairs. The interactions

between particles in these disk pairs shall be approximated with the multipole tech-

nique described in Section 2.3.1, translating a spectral expansion exterior to Gi to a

spectral expansion interior to Gj, and translating a spectral expansion exterior to Gj

to a spectral expansion interior to Gi. The remaining interactions, those between

particles in the same disk or in adjacent disks, are to be computed directly from

the corresponding entries of the interaction matrix Φ. Multipole algorithms do not

change the way in which short-range interactions are computed.

In our example, the particles in each cluster are indexed with a range of consec-
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utive integers. An ordering with this property is not necessary, but it does improve

vectorization of the FMM code. It also induces a block partitioning of the interaction

matrix Φ that facilitates a description of the algorithm.

With s = 5 clusters, partition the charge vector as qT =
[
qT1 , . . . , q

T
5

]
, where qi

are the charge amplitudes of the particles in disk Gi. If the field vector is partitioned

in the same way, uT =
[
uT1 , . . . ,u

T
5

]
, then the interaction matrix Φ has the 5 × 5

block structure

Φ =




D11 D12 U1T13V3 U1T14V4 U1T15V5

D21 D22 D23 U2T24V4 U2T25V5

U3T31V1 D32 D33 D34 U3T35V5

U4T41V1 U4T42V2 D43 D44 D45

U5T51V1 U5T52V2 U5T53V3 D54 D55




+O(ε). (2.53)

A submatrix Dij on the block tridiagonal gives the field at the particle locations in

disk Gi due only to the charges in nearby disk Gj. Nominally, Dij is an (N/s)×(N/s)

matrix, but since we do not require the disks to contain exactly N/s particles, the

off-diagonal blocks may be rectangular. The blocks {Dij} are treated by multipole

as dense unstructured matrices. Using the spectral approximations of the interaction

law, the remaining blocks have the structure UiTijVj indicated.

The matrix Ui was introduced in Section 2.2.2. It maps the coefficients of a

spectral expansion on the interior of disk Gi to field values at the particle positions

in that disk. Each of these matrices has exactly 2p+ 1 columns, and approximately

N/s rows. The matrix Vj = UH
j maps charge amplitudes of the particles in disk

Gj to the coefficients of a spectral expansion on the exterior of a concentric disk G′j

with twice the radius. That operation was covered in Section 2.2.1.

The Toeplitz matrix Tij ∈ C(2p+1)×(2p+1) maps the exterior coefficients of disk

Gj to interior coefficients of disk Gi, the operation treated in Section 2.3.1. These

interior coefficients describe the field in disk Gi due only to those charges in disk
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Gj. In this example, the expansion lengths 2p + 1 are the same for each disk, since

the disks are all the same size. In general the disks will have different sizes, the

expansions will have different lengths, and the matrices {Tij} will be rectangular.

A block factorization of (2.53) is suggested by the observation that, excluding

the block tridiagonal, all blocks in row i are premultiplied by Ui while all blocks in

column j are postmultiplied by Vj. The factorization is

Φ = tridiag(Dij) + diag(Ui)




0 0 T13 T14 T15

0 0 0 T24 T25

T31 0 0 0 T35

T41 T42 0 0 0

T51 T52 T53 0 0




diag(Vj), (2.54)

and it exposes another main idea of the algorithm: The interior expansions for disk

Gi that are generated by a collection {Gj} of well-separated disks should be added

together before applying the evaluation operator Ui. Note that the truncation error

term O(ε) of (2.53) has been dropped from the equation, and it will be suppressed

in all subsequent equations.

If the translation matrices {Tij} are large, then their Toeplitz structure must be

utilized. Following Section 2.3.2, each of these matrices can be embedded into a

circulant matrix with order P ≥ 4p + 1, and each circulant matrix is diagonalized

by a discrete Fourier transform. The factorization becomes

Φ = tridiag(Dij) + diag(UiE
TF−1)




0 0 Λ13 Λ14 Λ15

0 0 0 Λ24 Λ25

Λ31 0 0 0 Λ35

Λ41 Λ42 0 0 0

Λ51 Λ52 Λ53 0 0




diag(FEVj),

(2.55)

where F is the DFT matrix of order P , and the matrices Λij = diag(λij) are all

diagonal. If the embedding is done following the example (2.45), then the rectangular

matrix E comprises the leading 2p+ 1 columns of the order-P identity matrix, and
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the eigenvalue vector λij is

λij = Fhij, (2.56)

where

hTmn :=
[
H0(k‖dmn‖), H1(k‖dmn‖)e−iθ(−dmn), . . . , H2p(k‖dmn‖)e−i2pθ(−dmn),

0, . . . , 0,︸ ︷︷ ︸
P−4p−1

H−2p(k‖dmn‖)ei2pθ(−dmn), . . . , H−1(k‖dmn‖)eiθ(−dmn)
]
. (2.57)

The vector dmn in this definition is the displacement vector from the center of disk

Gn to the center of disk Gm.

A step-by-step description of the algorithm for Φq implied by this matrix factor-

ization is:

1. Compute exterior expansion coefficients for the charge in each disk:

aj = Vjqj.

2. Zero-pad each coefficient vector and take its FFT: ãj = FEaj.

3. Translate exterior coefficient spectra to interior coefficient spectra for

all well-separated pairs of disks: b̃ij = λij � ãj.

4. Add interior coefficient spectra for each disk: b̃i =
∑

j b̃ij.

5. Truncate the inverse FFT of the interior coefficient spectrum for each

disk: bi = ETF−1b̃i.

6. Evaluate the interior expansion for each disk at the locations of the

particles contained in the disk: ui = Uibi.

7. Add the near interactions: u← u+ tridiag(Dij)q.

Each step in this high-level description loops over all disks. The loops of steps 1–4 can

be fused into a single loop, as can the loops of steps 5–7, giving an implementation

that requires two passes over the collection of disks.
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Some pseudocode suggesting this program structure is presented in Algorithm 2.1.

The function calls fft and ifft implement the forward and inverse FFT, respectively.

For the details of the zero pad in line 4 and the truncation in line 8, refer to Sec-

tion 2.3.2. The elements of the input matrices {Ui} are given by (2.37), and the

vectors {λij} are computed from (2.56). The critical parameters are p, the cutoff

for the spectral expansions, and the number of clusters s. The latter affects the

algorithm efficiency, while the former affects accuracy and numerical stability.

Algorithm 2.1: Flat Multipole

Input: Charge amplitudes {qi},
Representation ({Dij}, {Ui}, {λij}) of Φ,
Set of disks {Gi} containing particle clusters

Output: Field values {ui}

1 b := 0
2 for each disk Gi

3 ai := UH
i qi

4 ai← fft(ai with appended zeros)
5 for all disks Gj well separated from Gi

6 bj ← bj + λj`� a`
7 for each disk Gi

8 bi← leading elements of ifft(bi)
9 ui := Uibi
10 for all disks Gj not well separated from Gi

11 ui← ui +Dijqj

The principal message that should be conveyed by this pseudocode segment is

that a multipole algorithm is not necessarily difficult to implement. A simple code

can capture the essential ideas, exhibit the expected performance, and invite exper-

imentation and further development. The code does become more complicated if

we must allow more general particle distributions, but the same sort of code infla-

tion attends other algorithms for the numerical solution of PDEs when the problem
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domain does not have a simple shape.

Unfortunately, this advertisement for multipole is flawed, since

Algorithm 2.1 is numerically unstable.

In fact, any algorithm that relies on the basis {ϕm} in (2.9) or {ψm} in (2.27) is

bound to run into trouble. This behavior will be explored further—and corrected—

in Chapter 5. I have decided against inserting that discussion here, since it would

obscure the basic multipole algorithm. But numerical stability is certainly not op-

tional, and you should retain a healthy skepticism until the instability is addressed.

Implementation difficulty aside, the merits of the algorithm should be judged

from its time and space complexities. A tabulation of the computational cost of

each step in the above list is:

1. N particles× O(p) flops

particle
= O(pN) flops

2. s disks× O(p log p) flops

disk
= O(sp log p) flops

3. O(s2) well-separated disk pairs× O(p) flops

pair
= O(s2p) flops

4. s disks× O(sp) flops

disk
= O(s2p) flops

5. s disks× O(p log p) flops

disk
= O(sp log p) flops

6. N particles× O(p) flops

particle
= O(pN) flops

7. N particles× O(N/s) flops

particle
= O(N 2/s) flops

The total is O(s2p+ sp log p+ pN +N 2/s) flops.

The parameter p is the cutoff of the spectral expansions. Given a relative accuracy

goal ε, we previously estimated it to be p = O(kα + log ε−1), where α is the disk

radius. The particles here are distributed on a line segment of length L, so α =
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L/(2s) and p = O(kL/s+ log ε−1).

If the number of particles N , optical length kL, and accuracy ε are prescribed,

then the only remaining parameter is the number of disks s, and it should be selected

to minimize the total cost. Steps 3 and 4 favor a small number of disks, s =

O(1), while the other steps become faster as the number of disks increases to s =

O(N). The best choice lies between these extremes, but that choice depends on the

relationship between N , kL, and ε. Two of the most common situations are:

• Scaling for high accuracy: kL is frozen while N →∞ and ε→ 0

• Scaling for high frequency: N and kL grow at equal rates, so kL/N =

O(1) while N →∞

These scaling laws will be called accuracy scaling and frequency scaling, respectively.

The growth of N under accuracy scaling reflects the connection of the particle

problem to an underlying differential equation. In addition to the multipole trun-

cation error, governed by ε, a convergent approximation of the continuous problem

introduces a discretization error that decays to zero as N →∞. If these two errors

are forced to be the same size, then a relationship is established between N and ε.

For instance, if the discretization scheme has order ν, then ε = O(N−ν).

If the number of disks is an increasing function of N , then under accuracy scaling

the optical size of the disks approaches zero. The spectral cutoff is p = O(log ε−1).

For a fixed ε, the total cost is O(s2 +N +N 2/s) flops. This expression achieves its

minimum of O(N 4/3) flops when s = O(N 2/3). With this choice of s, and freeing the

parameter ε, the complexity is O(N 4/3 log ε−1) operations. (By allowing s to depend

on ε as well as N , this complexity can be further reduced to O(N 4/3 log1/3ε−1). But

this freedom also causes the time and space complexities to be optimal at different

values of s. To simplify matters, we restrict s to be a function of N only.)
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The frequency scaling law reflects the Nyquist criterion. To avoid aliasing errors,

a continuous signal must be sampled at a rate exceeding twice the frequency of the

Fourier component that oscillates most rapidly. The restriction of a plane wave with

wavenumber k to a line is a sinusoidal function with an angular frequency of at most

k, and the corresponding Nyquist requirement is k/π samples per unit length. On

a segment of the line with length L, there must be N > kL/π samples.

Scaling the parameters according to the Nyquist criterion gives a more useful

measure of an algorithm’s capability to solve large problems. The growth in N

accommodates a greater optical diameter, rather than decreasing the approximation

error. With ε fixed, the expansion cutoff is p = O(N/s), giving a total cost of

O(sN + N log(N/s) + N 2/s) flops. The asymptotic minimum of O(N 3/2) flops is

achieved for s = O(
√
N) disks.

In Algorithm 2.1, the interaction matrix Φ is represented with the triple ({Dij},

{Ui}, {λij}), and we should estimate the cost in both time and space of computing

this representation. The storage required by each of these components is:

1. Space for {Dij} = O(s) matrices×O
(
(N/s)2

)
words

matrix
= O(N 2/s) words

2. Space for {Ui} = s matrices× O(pN/s) words

matrix
= O(pN) words

3. Space for {λij} = O(s2) vectors× O(p) words

vector
= O(s2p) words

The total memory requirement is O(s2p + pN + N 2/s) words, and this complexity

is minimized by the same choices of s that minimize the execution time.

The work required to generate the representation is at least O(1) flops per word.

In addition, each vector λij requires an FFT for its construction, yielding a total

computational requirement of O(s2p log p+ pN +N 2/s) flops. The term s2p log p is

new, and it contributes a factor log log ε−1 of very slow growth to the cost of accuracy
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scaling. It also raises the total cost under frequency scaling to O(N 3/2 logN) flops.

(The optimum choice of s actually changes slightly, and as few as O(N 3/2 log1/2N)

flops are possible, but we will ignore the small difference between time and space

minimization.)

Table 2.1: Flat Multipole Complexity

Scaling s p Flops Memory

Accuracy O(N 2/3) O(log ε−1) O(N 4/3 log ε−1 log log ε−1) O(N 4/3 log ε−1)

Frequency O(N 1/2) O(N 1/2) O(N 3/2 logN) O(N 3/2)

Table 2.1 summarizes the time and space complexities of Algorithm 2.1. When N

is large, these are substantial improvements on the standard matrix-vector multiply

Φq, which costs O(N 2) flops and O(N 2) storage. Even greater cost reduction can

be realized by extensions of the flat multipole algorithm. Section 2.4 concerns an

improvement quite specific to the geometric arrangement of particles in Figure 2.6.

Greater flexibility is possible with a multilevel generalization of Algorithm 2.1, to

be carried out in Section 2.5.

2.4 Multipole–Grid

The simple pattern of cluster disks in our example produces additional structure in

the factorization (2.54). Since they are collinear and separated by equal distances,

the centers of disks {Gi} compose a uniform 1-D grid. This grid imposes more

Toeplitz structure on the factorization.

As shown in (2.44), the elements of the translation matrix Tij depend only on

kdij, where dij is the displacement vector from the center of disk Gj to the center
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of disk Gi. Since d13 = d24 = d35, it follows that T13 = T24 = T35. In general,

dij = di+1,j+1 implies Tij = Ti+1,j+1. So the blocks Tij repeat along the diagonals of

the block translation matrix

T :=




0 0 T13 T14 T15

0 0 0 T24 T25

T31 0 0 0 T35

T41 T42 0 0 0

T51 T52 T53 0 0




=




0 0 T13 T14 T15

0 0 0 T13 T14

T31 0 0 0 T13

T41 T31 0 0 0

T51 T41 T31 0 0



.

(2.58)

T has two layers of Toeplitz structure: It is block Toeplitz, and each block is itself

a Toeplitz matrix.

This double Toeplitz structure occurs throughout the field of image processing.

It is a property shared by all matrix representations of linear shift-invariant filters

that operate on 2-D images. More generally, a matrix with d levels of Toeplitz

structure represents a linear shift-invariant transformation of a uniformly sampled

d-dimensional signal.

Algorithm 2.1 made use of the fine-grained Toeplitz structure in T , but not of

the coarse-grained Toeplitz structure at the block level. This extra structure can,

however, be utilized by extending the procedure for a fast Toeplitz matrix-vector

product.

Just as any scalar Toeplitz matrix T1 can be embedded into a scalar circulant

matrix C1, any two-level Toeplitz matrix T2 can be embedded into a two-level cir-

culant matrix C2. For example, let A, B, C, and D be m × n Toeplitz matrices,

and let Ã, B̃, C̃, and D̃ be their respective M ×M circulant matrix embeddings.
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Then

T2 :=



A D

B A

C B


 7→



Ã D̃

B̃ Ã

C̃ B̃


 7→




Ã D̃ C̃ B̃

B̃ Ã D̃ C̃

C̃ B̃ Ã D̃

D̃ C̃ B̃ Ã


 =: C2 (2.59)

achieves a double circulant embedding of the double Toeplitz matrix on the left-

hand side. The embedding is not quite as simple as for scalar Toeplitz matrices:

Although T2 is a submatrix of C2, it is not a contiguous block in C2. In (2.59), if

the circulant embedding of each block has been patterned after (2.45), then T2 is

recovered from C2 by keeping only rows {i + qM : 1 ≤ i ≤ m, 0 ≤ q ≤ 2} and

columns {j + rM : 1 ≤ j ≤ n, 0 ≤ r ≤ 1}. This can be compactly expressed as

T2 = (ET
3,4 ⊗ ET

m,M)C2(E2,4 ⊗ En,M ), (2.60)

where ⊗ is the Kronecker product3 and Eq,r is composed of the first q columns of

the r × r identity matrix.

A double circulant embedding is useful because C2 is diagonalized by a 2-D Fourier

transform. Let C2 ∈ CMN×MN be partitioned into N ×N blocks of shape M ×M .

Its eigenvalue decomposition is

C2 = (FN ⊗ FM )−1 diag(λ)(FN ⊗ FM), (2.61)

where the eigenvalue vector is the 2-D DFT of the first column,

λ = (FN ⊗ FM )C2e1. (2.62)

The 2-D DFT matrix FN ⊗ FM is the Kronecker product of 1-D DFT matrices FN

3If A ∈ Cm×n and B ∈ Cp×q, then the matrix elements of A ⊗ B ∈ Cmp×nq are the
products aijbk` for all index combinations (i, j, k, `). If A⊗B is partitioned into blocks of
size p×q, the block in position (r, s) is arsB. This is a matrix representation of the rank-4
tensor product of rank-2 tensors with components aij and bk`.
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and FM with orders N and M , respectively.

An efficient way of computing the product of FN ⊗ FM with an arbitrary vector

x starts by partitioning x into N subvectors of length M , so xT =
[
xT1 , . . . ,x

T
N

]
.

Next, construct the M ×N matrix X that has xi in its ith column. (In a fast image

filtering application, X is the M ×N image.) Then

(FN ⊗ FM )x = vec(FMXF
T
N )

= vec(FMXFN ),

(2.63)

where the linear operator vec(·) concatenates the columns of its matrix argument

into a single vector. In this way the 2-D DFT can be implemented with 1-D FFTs,

and its complexity is O(MN logMN) flops.

This fast product is applied to the multipole algorithm by starting from the

factorization

Φ = tridiag(Dij) + diag(Ui)T diag(Vj). (2.64)

For any P ≥ 4p + 1 and Q ≥ 2s − 1, the aggregate translation matrix T can be

embedded into a Q×Q block circulant matrix with P × P circulant blocks. Using

the diagonalization (2.61), T is factored as

T = (EQ ⊗ EP )T (FQ ⊗ FP )−1 diag(λ)(FQ ⊗ FP )(EQ ⊗ EP )

= (ET
QF
−1
Q ⊗ ET

PF
−1
P ) diag(λ)(FQEQ ⊗ FPEP ).

(2.65)

The embedding is accomplished by the tensor product of matrices EP and EQ. EP

is the first 2p+1 columns of the P ×P identity matrix, and EQ is the first s columns

of the Q×Q identity matrix. The eigenvalue vector is

λ = (FQ ⊗ FP )h, (2.66)
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where the vector h is defined as

hT :=
[
0, . . . , 0,︸ ︷︷ ︸

2P

hT31,h
T
41, . . . ,h

T
s1, 0, . . . , 0,︸ ︷︷ ︸

P (Q−2s+1)

hT1s, . . . ,h
T
14,h

T
13, 0, . . . , 0︸ ︷︷ ︸

P

]T
. (2.67)

The subvectors hij in this definition are taken from (2.57).

Algorithm 2.2 applies the new factorization to compute Φq. The functions fft2

and ifft2 implement the 2-D Fourier transform and its inverse. Each takes a matrix

argument of shape P × Q. Thus in line 4, A is placed in the upper-left corner of a

P ×Q zero matrix, and in line 6 the same upper-left corner of B is kept to form the

vector b.

For clarity, new variables are defined in lines 3, 5, and 6, but clearly no new

storage need be allocated at any of these points.

The eigenvalue vector λ is passed to Algorithm 2.2 as a P × Q matrix Λ. That

matrix is formed by slicing the length-PQ vector λ into subvectors of length P , each

of which becomes a column of Λ. Equivalently, (2.66) can be rewritten as

Λ = FP
[
0,0,h31, . . . ,hs1,0, . . . ,0,︸ ︷︷ ︸

Q−2s+1

h1s, . . . ,h13,0
]
FQ. (2.68)

The eigenvalue decomposition of the block matrix T has been used in place of

steps 2–5 of the flat multipole algorithm on page 81. These steps perform the

matrix-vector product b = T a, which translates exterior expansions to interior

expansions. Using 2-D FFTs in the multipole–grid algorithm, this computation

requires O(sp log sp) flops, instead of the O(s2p + sp log p) operations required by

flat multipole, or the O(s2p2) operations of the standard matrix-vector product.

The complexity of Algorithm 2.2, including its set up, is O(sp log sp+pN+N 2/s)

time and O(sp+ pN +N 2/s) space.
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Algorithm 2.2: 1-D Multipole–Grid

Input: Charge amplitudes {qi},
Representation ({Dij}, {Ui}, Λ) of Φ,
Set of s disks {Gi} on a uniform 1-D grid

Output: Field values {ui}

1 for each disk Gi

2 ai := UH
i qi

3 A :=
[
a1, . . . ,as

]

4 A← fft2(A with appended zero rows and columns)
5 B := ifft2(A� Λ)
6 b := vec(leading submatrix of B)
7 for each disk Gi

8 ui := Uibi
9 for all disks Gj not well separated from Gi

10 ui← ui +Dijqj

With a choice of s different from that in Table 2.1, a faster algorithm results.

With frequency scaling, for which kL/N = O(1), choosing s = O(N) disks produces

an algorithm that costs a total of only O(N logN) flops and O(N) memory. This

choice of s corresponds to a fine-grained classification of the particles in which each

disk contains only a small cluster. This choice is also appropriate to accuracy scaling,

and Table 2.2 summarizes the costs in either case.

Table 2.2: Multipole–Grid Complexity

Scaling s p Flops Memory

Accuracy O(N) O(log ε−1) O
(
N log ε−1 log(N log ε−1)

)
O(N log ε−1)

Frequency O(N) O(1) O(N logN) O(N)

Ignoring the influence of the accuracy parameter ε, these costs are asymptotically

identical to the case of equally spaced particles, in which the interaction matrix Φ

itself is Toeplitz.
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The multipole–grid algorithm extends to regular grids of higher dimension. Pic-

tured in Figure 2.7 is a uniform distribution of charged particles on a rectangle.

With a lexicographic ordering applied to the clusters, the block translation matrix

T has three levels of Toeplitz structure, and a fast algorithm for b = T a uses 3-D

FFTs.

PSfrag replacements

363534333231

302928272625

242322212019

181716151413

121110987

654321

Figure 2.7: Particles are distributed uniformly inside a square in the plane.
The particles are classified into clusters by dividing the square with a regu-
lar grid. If the particles in each cluster are labeled with consecutive integers,
and if the clusters are enumerated as shown here, then T will have three
levels of Toeplitz structure.

The complexity analysis changes for a 2-D particle distribution. If the particles

fill a square with side length L, and the square is divided into s square cells of the

same size, then the radius of each cluster is α = L/
√

2s. The Nyquist criterion is

(kL)2/N = O(1). Combining these two relations, the spectral expansion cutoff is

p = O(kα) = O(
√
N/s). For the 1-D distribution, the cutoff was determined to be

p = O(N/s).

If a flat multipole method is applied to the configuration of Figure 2.7, the op-

92



timal choice of the number of clusters is s = O(N 3/5), giving the costs displayed in

Table 2.3. For a multipole–grid solution, the optimal choice is s = O(N), the same

choice made in the 1-D case. The asymptotic cost of the multipole–grid algorithm

is independent of the number of space dimensions.

Table 2.3: High Frequency Complexity for Uniform 2-D Distributions.

Method s p Flops Memory

Flat multipole O(N 3/5) O(N 1/5) O(N 7/5 logN) O(N 7/5)

Multipole–grid O(N) O(1) O(N logN) O(N)

If the particle distribution is not uniform on a rectangle in Ed, then the multipole–

grid algorithm loses its effectiveness. For instance, in Figure 2.8, the particles are

arranged on an ellipse in E2. A regular 2-D array of disks could be superimposed

on this curved distribution, enabling the application of a multipole–grid method.

Again we should choose s = O(N), but most disks will contain no particles. The

cost of the algorithm grows to O(N 3/2 logN) time and O(N 3/2) space.

The flat multipole algorithm can, however, be extended in another way that

performs well even for highly nonuniform particle distributions.

2.5 Hierarchical Multipole

In flat multipole, particles are collected into disjoint clusters. The guiding principle

now will be to organize the particles into a cluster hierarchy. Figure 2.9 is a simple

example of such a construction.

The spatial hierarchy is represented with a forest, a collection of trees. The trees

that map the cluster of hierarchy of Figure 2.9 are shown in Figure 2.10. In this
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Figure 2.8: Particles are distributed uniformly on an ellipse in the plane. A
square grid overlays the ellipse, to facilitate the application of a multipole–
grid method. The particles inside each grid cell constitute a single cluster.
Because most cells are empty, a hierarchical multipole method is more
efficient.

Figure 2.9: Real part of the field generated by 100 point oscillators uni-
formly distributed on the interval [0, L] of the x-axis. The particles are
grouped into a three-level hierarchy of clusters, with 5 large clusters at the
top of the hierarchy and 20 small clusters at the bottom.
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example the forest consists only of balanced binary trees, but that is not required.

For nonuniform particle distributions, some trees may be shallow, with only a few

leaves, while others may be deep, with many levels of branching and many leaves.

For the moment we will not dwell on the construction of the forest from a given

particle distribution, but the usual approach in 2-D problems is to use adaptive

quadtrees [19] [110].

As indicated in Figure 2.10, each node in a tree stands for a single cluster of the

hierarchy. Each tree is composed of nested particle clusters. With each node is also

associated a disk that contains its cluster. This disk, typically the smallest disk that

encloses the cluster, is the entity central to an analysis of the multipole expansion

of the field generated by the cluster.

20 leaves

5 roots

Figure 2.10: Nesting relationships of the particle clusters are described by
a set of binary trees. The tree roots correspond to the largest clusters. The
tree leaves correspond to the smallest clusters.

The forest of trees can always be merged into a single tree by adding one or more

levels to connect the individual roots. Sometimes it is convenient to do this, but

typically a hierarchical multipole algorithm is more efficient if the top of a single

cluster tree is truncated, creating a forest. Distinguishing the case of a single tree
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from the case of multiple trees is unnecessary. Henceforth, I use the word “tree”

loosely, understanding it to mean a collection of one or more trees.

In a hierarchical multipole method, the leaves of the tree should be small clusters.

Any large leaf cluster would benefit from further division. In our simple example, the

leaf disks are all the same size. If the spectral expansions belonging to each leaf disk

have length 2p+ 1, then each leaf cluster should contain O(p) particles. For general

particle distributions, adaptive quadtrees conveniently allow the specification of an

upper bound on the number of particles in each leaf.

It is also desirable to impose a lower bound on the number of particles in each

leaf. If a leaf cluster were to contain fewer than 2p+ 1 particles, then the multipole

expansion would be a more complex description of the exterior field than the natural

expansion (2.7). Unfortunately, adaptive quadtrees cannot ensure a lower bound.

The adaptive FMM of Carrier, Greengard, and Rokhlin [19] uses adaptive quadtrees,

but automatically switches to the natural representation when it is more efficient.

Another possible solution is abandon adaptive quadtrees for another spatial data

structure, such as a binary space partition, that accommodates both upper and

lower bounds.

We shall assume that each leaf cluster contains at least—but not many more

than—2p + 1 particles. There are a total of s = O(N/p) leaves.

The hierarchy enables a reduction in the number of spectral expansion transla-

tions. Consider the flat particle classification consisting only of the leaf clusters.

There are O(s2) well-separated pairs of leaf disks, and computing the interactions

among these pairs is too expensive. The solution in the flat multipole method is to

make the clusters larger, so that s takes on the values in Table 2.1. Unfortunately,

that approach also increases the work required to compute the interactions among
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disk pairs that are not well separated.

The hierarchical multipole method reduces the number of translations in a dif-

ferent way. If two groups of disks are separated by a large gap, then it will be more

efficient to represent the interactions among their constituent particles with spec-

tral expansions on a coarser level of clustering. Applying this idea repeatedly to a

uniform particle distribution, the number of translations can be reduced from O(s2)

to O(s). Unlike flat multipole, this approach avoids inflating the cost of computing

short-range interactions.

The complication introduced by the hierarchy is that new translation operators

are needed. The exterior expansions belonging to sibling nodes in the tree must

be merged into a single exterior expansion belonging to their parent. Furthermore,

the interior expansion of a parent must be split into separate interior expansions for

each of its children.

2.5.1 Branch Translations

The new translations link parent disks with their descendants. For every branch in

the cluster tree, there is one translation up the tree, from child to parent, and one

translation down the tree, from parent to child. As with the translations between

well-separated disks (Section 2.3.1), Graf’s addition theorem will be used to derive

the matrix elements of the new translation operators.

First consider the translation of an exterior spectral expansion up the tree. Fig-

ure 2.11 illustrates the relationship between an expansion with origin at the center

of disk G,

u(x) =
∞∑

n=−∞
anHn(k‖x‖)einθ(x), (2.69)
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H

H ′

G

G′

d

x
x′

Figure 2.11: Real part of the field generated by 25 point oscillators dis-
tributed randomly in the disk G. The spectral expansion (2.10) represents
this field in the exterior of G′. Now shift the expansion origin by the dis-
placement vector d to the center of disk H ⊃ G. A new spectral expansion
represents the same field in the exterior of H ′.

and the equivalent expansion referenced to an origin at the center of the enclosing

disk H ⊃ G. Let the point x lie in the exterior of H. If x = d+ x′, where d is the

displacement vector from the center of G to the center of H, then we seek a new

representation

u(d+ x′) =

∞∑

n=−∞
anHn(k‖d+ x′‖)einθ(d+x′)

=
∞∑

m=−∞
a′mHm(k‖x′‖)eimθ(x′),

(2.70)

of the same field u(x) in (2.69).

Since ‖d‖ < ‖x′‖, the addition theorem (2.38) can be applied. After making the
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substitutions z→ kd, w→ kx′, and m→ n−m, the formula becomes

Hn(k‖d+ x′‖)einθ(d+x′) =
∞∑

m=−∞
Jn−m(k‖d‖)ei(n−m)θ(d)Hm(k‖x′‖)eimθ(x′). (2.71)

Inserting this into (2.69), we have

u(d+ x′) =
∞∑

n=−∞
an

( ∞∑

m=−∞
Jn−m(k‖d‖)ei(n−m)θ(d)Hm(k‖x′‖)eimθ(x′)

)

=
∞∑

m=−∞

( ∞∑

n=−∞
anJn−m(k‖d‖)ei(n−m)θ(d)

)
Hm(k‖x′‖)eimθ(x′),

(2.72)

so the new coefficients are revealed to be

a′m =
∞∑

n=−∞
anJn−m(k‖d‖)ei(n−m)θ(d). (2.73)

The coefficients {a′m} are a linear shift-invariant transformation of the coefficients

{an}.

In an actual implementation, the infinite series must be approximated by finite

sums. Let an = 0 for |n| > q, so that the expansion coefficients belonging to G

form a vector a =
[
a−q, . . . , aq

]T
. If we confine our interest to the coefficients a′m

for |m| ≤ p, also organized as a vector a′ =
[
a′−p, . . . , a

′
p

]T
, then the translation

operation assumes the form of a matrix-vector product,

a′ = Sa, (2.74)

where S is the Toeplitz matrix with elements

smn = Jn−m(k‖d‖)ei(n−m)θ(d)

= Jm−n(k‖d‖)e−i(m−n)θ(−d),

(2.75)

where the row index ranges over −p, . . . , p and the column index over −q, . . . , q.

As with the translation matrix T in (2.41), it is critical to utilize the Toeplitz
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structure of S when k is large.

The analysis for the translation of an interior expansion down the tree is nearly

identical. Refer to Figure 2.12. The expansion inside H is

u(x′) =
∞∑

n=−∞
b′nJn(k‖x′‖)einθ(x′), (2.76)

and it must be connected to an interior expansion referenced to the center of disk

G,

u(d+ x) =
∞∑

m=−∞
bmJm(k‖x‖)eimθ(x), (2.77)

where d is the displacement vector from the center of H to the center of G. The

coefficients {bm} are a linear transformation of the coefficients {b′n}.

H

H ′

G

G′
d

x′x

Figure 2.12: Real part of the field generated by 3 point oscillators in the
exterior of H ′. The spectral expansion (2.28) represents this field in the
interior of H. Now shift the expansion origin by the displacement vector
d to the center of disk G ⊂ H. A new spectral expansion represents the
same field inside G.

To determine the matrix elements of this transformation, we need an addition
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theorem that is slightly different from (2.38). That formula remains valid if all Han-

kel functions Hν are replaced with Bessel functions Jν . Furthermore, the restriction

‖z‖ < ‖w‖ may be dropped, giving

Jn(‖z +w‖)einθ(z+w) =
∞∑

m=−∞
Jm(‖z‖)eimθ(z)Jn−m(‖w‖)ei(n−m)θ(w) (2.78)

for arbitrary vectors z,w ∈ E2. This is another specialization of Graf’s addition

theorem.

After making the same substitutions as for the exterior translation, (2.78) is

inserted into (2.76), yielding

u(d+ x) =
∞∑

n=−∞
b′n

( ∞∑

m=−∞
Jn−m(k‖d‖)ei(n−m)θ(d)Jm(k‖x‖)eimθ(x)

)

=
∞∑

m=−∞

( ∞∑

n=−∞
b′nJn−m(k‖d‖)ei(n−m)θ(d)

)
Jm(k‖x‖)eimθ(x),

(2.79)

and a comparison with (2.77) shows that the new coefficients are

bm =
∞∑

n=−∞
b′nJn−m(k‖d‖)ei(n−m)θ(d). (2.80)

After truncation, the translation operation assumes the form of a matrix-vector

product,

b = Rb′, (2.81)

where the matrix R has elements

rmn = Jn−m(k‖d‖)ei(n−m)θ(d)

= Jm−n(k‖d‖)e−i(m−n)θ(−d).

(2.82)

Since rmn is a function of the index displacement m− n, R is a Toeplitz matrix.

For any parent–child pair in the tree, the translation from parent to child, with

matrix elements (2.82), is closely related to the translation from child to parent,
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with matrix elements (2.75). Let dGH be the displacement vector from the center of

disk G to the center of its parent disk H. If the cutoffs of the interior and exterior

spectral expansions for disks H and G are p and q, respectively, then the elements

of the translation matrix S ∈ C(2p+1)×(2q+1) are

smn = Jn−m(k‖dGH‖)ei(n−m)θ(dGH), (2.83)

and the elements of the translation matrix R ∈ C(2q+1)×(2p+1) are

rmn = Jn−m(k‖−dGH‖)ei(n−m)θ(−dGH)

= Jm−n(k‖dGH‖)e−i(m−n)θ(dGH)

= snm,

(2.84)

so R and S are mutually adjoint: R = SH .

2.5.2 The Multipole Dag

The flat multipole and multipole–grid algorithms follow from different factorizations

of the interaction matrix Φ. It is possible to take the same approach with hierarchical

multipole. For the uniform linear particle distribution of Figure 2.9, the result is a

coherent and illuminating factorization (which I shall not give here). For nonuniform

distributions, the factorization is hopelessly cluttered. [But see (4.13).]

Instead of a matrix block partition, a graph can give an alternative description of

the same computation. With its added flexibility, the computational graph for hier-

archical multipole is easier to digest than the matrix structure. Most importantly,

the graph structure is not appreciably different for uniform and nonuniform particle

distributions.
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The multipole graph is a signal flow dag4 in which data vectors flow from vertex

to vertex, following the edges. Each edge has an associated matrix weight, and on

traversing the edge, a data vector is multiplied by this matrix. Thus each edge in

the graph stands for a linear system connecting the signals at two vertices.

The dag vertices are data synchronization points. Multiple data vectors incident

upon a single vertex are added together, and a copy of this sum is issued to each

edge leaving the vertex. Since the graph is a dag, there are no feedback loops in the

signal flow.

The vertices and edges of the graph are labeled. The unlabeled graph shows the

pattern of data flow, and the labels specify the precise nature of each computation.

All necessary computational components have already been assembled.

A vertex label describes the type of data distributed from the vertex. There are

four kinds of vertices:

• Particle charges qi (§2.1)

• Field values ui (§2.1)

• Exterior expansion coefficients ai (§2.2.1)

• Interior expansion coefficients bi (§2.2.2)

The subscript i in each case refers to a specific node in the cluster tree. Each node

in the tree has exterior and interior coefficient vectors, but only the leaf nodes have

charge and field vectors.

The edge labels are the matrix weights. There are six kinds:

4A graph G = (V,E) consists of a set V = {vi} of vertices and a set E of edges that
connect the vertices. In a directed graph, the edges are ordered pairs of vertices, so the
edge (vi, vj) is distinct from the edge (vj , vi). In a directed acyclic graph (dag), for each
vertex vi there can be no directed paths that both originate and terminate at vi.
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• Short-range interactions Dij : qj 7→ ui (§2.3.3)

• Interior expansion evaluations Ui : bi 7→ ui (§2.2.2)

• Interior–interior translations Rij : bj 7→ bi (§2.5.1)

• Exterior–interior translations Tij : aj 7→ bi (§2.3.1)

• Exterior–exterior translations Sij : aj 7→ ai (§2.5.1)

• Exterior expansion generations Vi : qi 7→ ai (§2.2.1)

If the subscripts i and j are allowed to stand for any node in the cluster tree, then

these operator sequences are sparse. In particular,

Dij 6= 0 ⇔ i, j are leaf nodes that are not well separated,

Ui, Vi 6= 0 ⇔ i is a leaf node,

Rji, Sij 6= 0 ⇔ node i is node j’s parent,

and a partial characterization of the sparsity pattern of {Tij} is

Tij 6= 0 ⇒
: i, j are well-separated nodes.

To the extent that all of these sequences are sparse, the multipole graph itself is

sparse.

With the vertices and edges defined in terms of mathematical objects already

covered, it is not difficult to finish the graph specification. We consider various

sections of the graph before exhibiting the entire dag for the example of Figure 2.9.

Figure 2.13 shows the edges {Dij} that give the fields produced by particles

in a leaf cluster j at the locations of particles contained in a leaf cluster i not well

separated from j. Each leaf cluster appears as two graph vertices here, one associated

with the input data qi and another associated with the output data ui.
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{ui}

{qj}

Source Points

Destination Points

Figure 2.13: Interactions between leaf clusters that are not well separated.
For each interior leaf cluster, there are three such interactions: one self-
interaction among the cluster’s particles and two between the cluster’s par-
ticles and those in the two adjacent clusters. Each edge, directed from top
to bottom, takes a vector input of charges qj and left-multiplies that vector
by the matrix Dij to give an output vector that is accumulated with others
to form the field values ui. To emphasize the connection between dag and
particles, the source points and their disk hierarchy appear above the input
vertices of the dag. The destination points and their disk hierarchy appear
below the output vertices of the dag.

Two copies of the cluster tree appear in Figure 2.14. In the bottom half of the

figure, node i is labeled with the interior expansion coefficients bi. The branches are

labeled with the translation matrices {Rij} that split a parent’s interior expansion

into a separate interior expansion for each of its children. In the top half of the figure,

node i is labeled with the exterior coefficients ai, and the branches are labeled with

the translation matrices {Sij} that merge sibling exterior expansions into a single

exterior expansion for the parent.

To avoid edge cycles, the cluster tree must appear twice in the multipole graph.

Moreover, in Problem 2.2 the source and destination points are not the same, and

separate cluster trees may be constructed for these two sets of points. At the top of
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{ai}

{bi}

Source Trees

Destination Trees

Figure 2.14: Branch translations {Rij} and {Sij}. An edge in the source
tree takes a vector aj of exterior expansion coefficients for node j, premul-
tiplies it by Sij , and outputs a vector that is accumulated with its sibling
into the exterior expansion coefficients ai of j’s parent node i. An edge in
the destination tree takes a vector bj of interior expansion coefficients for
node j, premultiplies it by Rij , and outputs a vector that is accumulated
into the interior expansion coefficients bi of j’s child node i. For further
illustration, the nested disks that produce the source and destination trees
are shown here as well.

the figure is the source tree, and at the bottom of the figure is the destination tree.

We are mainly concerned with Problem 2.1, and the source and destination trees

are identical.

Clearly the source and destination trees need to be connected, and those edges

are drawn in Figure 2.15. These are the interactions {Tij} that map an exterior

expansion at node j of the source tree to an interior expansion at node i of the des-

tination tree. This web of connections is the most complicated part of the multipole

graph.

In the work of Greengard and Rokhlin [64], the set of clusters j(i) for which
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Figure 2.15: Translations between well-separated clusters. The vertices
shown are the same as those in Figure 2.14, and the edge topology is the
interaction list. Each edge, directed from top to bottom, multiplies the
vector aj at its source vertex by the translation matrix Tij , producing a
vector at its destination vertex that is accumulated with the output vectors
of all other incident edges to form bi.

Tij 6= 0 is called the interaction list of node i. More generally, the sparsity pattern

of {Tij} is the interaction list of the entire tree. The only requirements that these

connections must satisfy are

• Any edge between source and destination trees must connect well-

separated clusters.

• After including the tree branches, there must be exactly one path

connecting any pair of well-separated leaf clusters.

There are many interaction lists that satisfy these conditions, and a good choice will

minimize the cost of the algorithm.

The interaction list constructed by Greengard and Rokhlin proved that, for a

uniform distribution of s leaf clusters, only O(s) edges are needed. The length of

each node’s interaction list is bounded by a constant independent of s. In their
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construction,

Tij 6= 0 ⇔
i, j are well-separated nodes, at the same level of
the cluster tree, whose parents are not well sepa-
rated.

Without the cluster hierarchy, O(s2) edges would be needed to connect the well-

separated leaf clusters.

In the Greengard–Rokhlin interaction list, Tij 6= 0 if and only if Tji 6= 0. The

sparsity pattern of {Tij} is symmetric. In contrast, the interaction list of Figure 2.15

is clearly nonsymmetric.

Given the source and destination trees, an interaction list that is optimal un-

der accuracy scaling will have the fewest possible edges. The Greengard–Rokhlin

construction is suboptimal. The interaction list displayed in Figure 2.15, which

was computed by another heuristic algorithm, contains 64 edges. The Greengard–

Rokhlin interaction list, which only connects clusters at the same level of the tree,

contains 66 edges.

With frequency scaling, the optimal solution is harder to characterize, since not all

translations require the same work. If each edge connecting source and destination

trees is weighted by (p + q) log(p + q), where p and q are the expansion cutoffs of

the connected disks, then an optimal interaction list minimizes the sum of the edge

weights.

In Figure 2.16, the graph pieces in Figures 2.13–2.15 are assembled into the entire

multipole dag. The only added edges are the simple connections {Ui} between the

field vertices and the leaves of the destination tree, and {Vi} between the charge

vertices and the leaves of the source tree.
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2.5.3 Multilevel Multipole Algorithm

The multipole representation of the interaction matrix Φ is the dag and the six se-

quences of edge weights ({Dij}, {Ui}, {Rij}, {Tij}, {Sij}, {Vi}). The matrices {Dij},

{Ui}, and {Vi} are unstructured, and slow matrix-vector multiplications will have

to suffice when those edges are traversed. But since the matrices {Tij}, {Rij}, and

{Sij} are all Toeplitz, the algorithm of Section 2.3.2 speeds up the computation for

those edges.

Recall that an arbitrary Toeplitz matrix T ∈ Cm×n has a factorization

T = ET
mF

−1
r diag(λ)FrEn, r ≥ m+ n− 1, (2.85)

where Fr is an order-r DFT matrix and En is the first n columns of the r×r identity

matrix.

Applying the pattern (2.85) to each type of Toeplitz matrix, we introduce the

following notation for the diagonal forms:

T λ

Tij λij
Rij µij
Sij νij

In lieu of the full matrices on the left-hand side of this table, only the vectors on

the right-hand side are stored. The computation of each of these vectors requires an

FFT. The formula for λij has already been given in (2.56) under the assumption

that m = n = 2p + 1. If the expansion lengths in (2.85) are m = 2p + 1 for node i

and n = 2q + 1 for node j, then the formula for µij is

µij = Fjij, (2.86)
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where

jTij :=
[
J−p+q(k‖dij‖)e−i(−p+q)θ(−dij), . . . , Jp+q(k‖dij‖)e−i(p+q)θ(−dij),

0, . . . , 0,︸ ︷︷ ︸
r−m−n+1

J−(p+q)(k‖dij‖)ei(p+q)θ(−dij), . . . , J−(p−q+1)(k‖dij‖)ei(p−q+1)θ(−dij)]. (2.87)

This equation uses the symbol i both as subscript index and as
√
−1, but there

should be no confusion.

The formula for λij simply exchanges all Bessel functions Jν in (2.87) for Hankel

functions Hν .

The formula for ν ij is the same as (2.86), but the sparsity patterns of {µij} and

{νij} are different. The vector µij is defined by (2.86) only if in the destination tree

a branch connects child node i to parent node j. The vector ν ij is defined only if in

the source tree a branch connects parent node i to child node j.

If the source and destination trees are identical, then ν ij is defined if and only if

µji is defined as well. To find the relationship between ν ij and µji, swap subscripts

i and j in (2.86). The expansion cutoffs p and q must also be exchanged. Using

dji = −dij and well-known properties of the discrete Fourier transform, it can be

shown that

νij = µji, (2.88)

reflecting the relationship Sij = RH
ji derived in (2.84).

Algorithm 2.3 is a pseudocode encapsulation of the operations in the multipole

dag. It relies on two types of depth-first tree traversals. As indicated by the topo-

logical sort of the dag in Figure 2.16, child nodes of the source tree have a higher

priority than their parents. This is a postordering of the nodes: Parent nodes occur

only after their children. The nodes of the destination tree are visited in a pre-
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order, in which a parent occurs before any of its children. Although Algorithm 2.3 is

iterative in style, these tree traversals also have a simple recursive implementation.

Algorithm 2.3: Hierarchical Multipole

Input: Charge amplitudes q,
Representation ({Dij}, {Ui}, {Vi},
{λij}, {µij}, {νij}) of Φ

Source tree Ts,
Destination tree Td

Output: Field values u

1 a := 0, b := 0
2 for every leaf i ∈ Ts
3 ai← Viqi
4 for every node j in a postorder traversal of Ts
5 if j is not a root
6 i := j’s parent
7 ai← ai + fftconv(ν ij,aj)
8 for i ∈ {k : λkj 6= 0}
9 bi← bi + fftconv(λij,aj)
10 for every node j in a preorder traversal of Td
11 for each child i of node j
12 bi← bi + fftconv(µij, bj)
13 for every leaf i ∈ Td
14 ui := Uibi
15 for every leaf j ∈ Ts not well separated from i
16 ui← ui +Dijqj

The pseudocode issues three calls to the function fftconv, which implements

a fast discrete convolution using the FFT. The first argument passed to fftconv

is assumed to already have been padded and transformed by an FFT. The fast

convolution algorithm has already been given in Section 2.3.2, and the pseudocode

is listed in Algorithm 2.4.

Algorithm 2.3 encapsulates all the operations in the multipole dag. Dividing the

work according to edge type, an equivalent description is:
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Algorithm 2.4: Fast Convolution

y = fftconv(λ,x)

1 r := length(λ)
2 n := length(x)
3 y := fft(x with r − n appended zeros)
4 y← leading r − n+ 1 elements of ifft(λ� y)

1. Construct the exterior expansion belonging to each leaf cluster in the

source tree: ai = Viqi.

2. Traverse the source tree from bottom to top, merging sibling exterior

expansions into the parent’s exterior expansion: ai =
∑

j Sijaj.

3. For each node in the destination tree, accumulate into the interior

expansion the translations of exterior expansions from the source tree

nodes in the interaction list: bi =
∑

j Tijaj.

4. Traverse the destination tree from top to bottom, accumulating into

sibling interior expansions the splitting of the parent’s interior expan-

sion: bi← bi +
∑

j Rijbj.

5. Evaluate the interior expansion belonging to each leaf cluster in the

destination tree: ui = Uibi.

6. For each leaf cluster in the destination tree, accumulate into the field

vector the contribution of charged particles in neighboring leaf clusters

of the source tree: ui← ui +
∑

j Dijqj.

The sums are in every case sparse. The sum in step 4 has at most a single nonzero

term, since a node can have no more than one parent.

For a uniform linear distribution of particles, a cost analysis of the method is
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straightforward. Let the cluster hierarchy consist of t balanced binary trees with

s leaves in total, so that there are 2(s − t) branches. As in previous sections, two

scalings of the algorithm parameters are interesting. In both, growth of t penalizes

the performance. Instead of adding new trees, the existing trees should grow deeper.

If t = O(1), then there are O(s) branches, and for an asymptotic analysis it suffices

to assume a single balanced binary tree.

Consider the work required in traversing the source tree in Figure 2.16. The

number of nodes in level `+1 is twice the number of nodes in level `. The number of

dag edges leaving any node is bounded by a small constant. Under accuracy scaling,

all clusters in the tree have the same cutoff p = O(log ε−1). Since the expansion

lengths do not change and the translations are spread uniformly throughout the

tree, any given node contributes about the same work as any other node. There

is therefore about twice as much work on level ` + 1 as on level `, and the total

amount of work in performing all translations is about twice the work required on

the bottom level alone.

Following the algorithm description given above, the cost of each step is:

1. N particles× O(p) flops

particle
= O(pN) flops

2. O(s) branches× O(p log p) flops

branch
= O(sp log p) flops

3. O(s) translations× O(p log p) flops

translation
= O(sp log p) flops

4. O(s) branches× O(p log p) flops

branch
= O(sp log p) flops

5. N particles× O(p) flops

particle
= O(pN) flops

6. N particles× O(N/s) flops

particle
= O(N 2/s) flops

The sum of these costs is O(sp log p + pN + N 2/s) flops. To this sum should be

added the expense of generating the data input to the algorithm.
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The memory required to store the hierarchical representation of Φ is:

1. Space for {Dij} = O(s) matrices ×O(N 2/s2) words

matrix
= O(N 2/s) words

2. Space for {Ui} = O(s) matrices× O(pN/s) words

matrix
= O(pN) words

3. Space for {Vi} = O(s) matrices× O(pN/s) words

matrix
= O(pN) words

4. Space for {λij} = O(s) vectors× O(p) words

vector
= O(sp) words

5. Space for {µij} = O(s) vectors× O(p) words

vector
= O(sp) words

6. Space for {ν ij} = O(s) vectors× O(p) words

vector
= O(sp) words

The computational requirement is O(1) flops per word, plus an additional O(p log p)

flops each for the FFTs needed to form the vectors {λij}, {µij}, and {ν ij}. The

cost of computing the representation is therefore O(sp + pN + N 2/s) words and

O(sp log p+ pN +N 2/s) flops.

The computational complexity of constructing the input data for Algorithm 2.3 is

the same as the computational complexity of executing the algorithm. The asymp-

totic minimum of O(pN) space and time is achieved at s = O(N/p), a fact that was

anticipated on page 96. Note that we have neglected the cost of constructing the

cluster tree and the interaction list. Suboptimal trees and interaction lists may be

constructed quite rapidly.

With accuracy scaling, fast translations are actually unnecessary. Using slow

matrix-vector products, each factor of p log p in the flop count is replaced with p2.

The full translation matrices {Rij}, {Tij}, and {Sij} are also stored, and each one

requires O(p2) words. So if the Toeplitz structure of the translation matrices is

ignored, the algorithm requires O(sp2 +pN+N 2/s) time and space. Again, choosing

s = O(N/p) achieves the minimum complexity O(pN).

With frequency scaling, the analysis changes considerably, because the spectral
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expansion lengths are not constant but increase in proportion to cluster diameter.

For the clusters of Figure 2.9, the expansion length of a parent cluster is twice the

expansion length of each of its children. In traversing the source tree, the amount

of work per node increases as we ascend the tree. Since the expansion lengths are

doubled while the number of nodes is halved, the work required at level ` is nearly

equal to the work required at level ` + 1. With log2 s levels, the total amount of

work in performing all translations is a factor of log2 s times the work required on

the bottom level alone. Since the expansion cutoff at the leaves is p = O(1) under

frequency scaling, with the above choice of s we have s = O(N/p) = O(N), and this

argument estimates the complexity at O(N logN) flops.

A more careful analysis shows that the amount of work per node on level ` is

slightly more than twice the amount of work per node on level `+ 1. The reduction

in the number of nodes in going from level ` + 1 to level ` is not quite enough to

compensate this increase, and the total amount of work per level increases as the

tree is ascended. The work per level grows slowly, however, and the complexity

increases only by an additional factor of logN .

Adding together the work for each of log2 s levels, starting at the leaves, a total

of

O(sp log p) +O( s
2
· 2p log 2p) +O( s

4
· 4p log 4p) +

· · ·+O(1 · sp log sp) = O
(
(sp log sp)(log s)

)

operations are required in step 2. The same estimate applies to steps 3 and 4. Since

p = O(1), the work required to carry out Algorithm 2.3 is O(s log2s + N + N 2/s)

flops.

The lengths of the vectors {λij}, {µij}, and {ν ij} increase as the cluster tree is
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ascended, and a similar argument shows that we need to allocate O(s log s) words

and expend O(s log2s) flops to prepare these vectors. To set up Algorithm 2.3, a

total of O(s log s+N +N 2/s) words and O(s log2s+N +N 2/s) flops are required.

Again, the latter is identical to the algorithm’s cost of execution.

By choosing s = O(N), both time and space requirements are minimized. Ta-

ble 2.4 summarizes the complexities.

Table 2.4: Hierarchical Multipole Complexity

Scaling Law s p Flops Memory

Accuracy O(N/ log ε−1) O(log ε−1) O(N log ε−1) O(N log ε−1)

Frequency O(N) O(1) O(N log2N) O(N logN)

All these estimates are for a specific distribution of particles—a random but

uniform arrangement on a line segment. The strength of the hierarchical multipole

method is that the same estimates hold for a uniform distribution on a rectangle,

as in Figure 2.7, or on any sufficiently smooth curve, as in Figure 2.8. A cluster

hierarchy for the latter example is shown in Figure 2.17.

2.6 Dipole Interactions

The multipole methods in this chapter have so far been developed only to solve

Problems 2.1 and 2.2 for the monopole Helmholtz interaction (2.6). The methods

readily generalize, however, to allow derivatives with respect to either x or y in the

fundamental solution Φ(x,y).

The treatment of derivatives with respect to y allows the introduction of point

dipoles, and point multipoles of any higher order, into the particle system. In Chap-
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Figure 2.17: A cluster hierarchy for particles distributed uniformly on an
ellipse. The cluster disks have been generated automatically for a larger
number of particles than shown here. The tree construction code does not
require an arc length parametrization of the boundary, and the effect is
to generate slightly unbalanced trees of unequal depth. The cluster tree
produced by an adaptive quadtree code will have the same character.

ter 3 we discuss a discretization of the EFIE that generates a system of monopoles

that lie on the boundary Γ . An analogous discretization of the CSIE generates a par-

ticle system that includes both monopoles and dipoles. (The discretization does alter

the interaction law over short distances. That modification has little consequence,

since multipole does not speed up the computation of short-range interactions any-

way.)

The treatment of derivatives with respect to x allows the computation of not

only the field but also its derivatives. Particle discretizations of the MFIE and

CFIE generate systems of point monopoles, but both the field and its directional

derivative must be evaluated at each particle location.
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The generalization is possible because derivatives of Φ(x,y) are still radiating

solutions of the Helmholtz equation. The same spectral expansions can be used, and

the translation operators {Rij}, {Tij}, and {Sij} are unchanged. For derivatives with

respect to x, the leaf operators {Ui} must be altered. Similarly, the leaf operators

{Vi} require adjustment if one or more derivatives are taken with respect to y.

Consider a collection of N dipoles at the locations {xn} inside a disk with radius α

centered on the origin. The dipoles have complex amplitudes {χn} and orientations

{d̂n}. The field generated by the dipoles is

u(x) =

N∑

n=1

χnd̂n ·∇xnΦ(x,xn) for x ∈ E2. (2.89)

Following Section 2.2.1, we wish to represent u outside the disk with the infinite

series

u(x) =

∞∑

m=−∞
amHm(k‖x‖)eimθ(x) for ‖x‖ > β, (2.90)

where β > α.

With ‖x‖ > ‖y‖, Graf’s addition theorem gives

Φ(x,y) = − i
4

∞∑

m=−∞
Jm(k‖y‖)e−imθ(y)Hm(k‖x‖)eimθ(x), (2.91)

and inserting this into (2.89) reveals an expression for the expansion coefficients,

am = − i
4

N∑

n=1

χnd̂n ·∇
(
Jm(k‖xn‖)e−imθ(xn)

)
, m ∈ Z. (2.92)

The gradient in (2.92) can be simplified using the recurrences

2m

x
Jm(x) = Jm+1(x) + Jm−1(x), (2.93a)

J ′m(x) = 1
2

(
Jm−1(x)− Jm+1(x)

)
, (2.93b)

for the Bessel function and its derivative. The rectangular components of the gra-
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dient are

∂

∂x

(
Jm(kr)e−imφ

)
=
k

2

(
Jm−1(kr)e−i(m−1)φ − Jm+1(kr)e−i(m+1)φ

)
, (2.94a)

∂

∂y

(
Jm(kr)e−imφ

)
= − ik

2

(
Jm−1(kr)e−i(m−1)φ + Jm+1(kr)e−i(m+1)φ

)
, (2.94b)

where both rectangular coordinate (x, y) and polar coordinate (r, φ) representations

of the same position vector x have been used.

Substituting (2.94) into (2.92), the spectral expansion coefficients are

am = − ik
8

N∑

n=1

χnd̂n ·
(

(x̂− iŷ)Jm−1(k‖xn‖)e−i(m−1)θ(xn)

− (x̂+ iŷ)Jm+1(k‖xn‖)e−i(m+1)θ(xn)
)
. (2.95)

After truncating the series, discarding all terms with index |m| > p, (2.95) is conve-

niently expressed as a block matrix-vector product,

a =
[
V− V+

] [ χ−
χ+

]
, (2.96)

where χ± :=
[
χnd̂n · (x̂± iŷ)

]
and the matrix elements of V± ∈ C(2p+1)×N are

(V±)mn = ± ik
8
Jm±1(k‖xn‖)e−i(m±1)θ(xn), (2.97)

where the row index m assumes successive values −p, . . . , p.

Starting from (2.91) and using the recurrence relations (2.93), similar formulas

for the leaf operator V can be derived for quadrupoles and multipoles of any higher

order.

The same procedure will produce formulas for the leaf operator U if field deriva-

tives are needed.
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2.7 Multipole with Far Fields

The development in this chapter deviates from standard practice and terminology

in several respects. In this section, I highlight the following difference: While I use

the spectral expansion coefficient vectors a and b as the intermediate variables, the

common practice instead uses samples of far fields.

Using polar coordinates (r, φ), let us implicitly define5 the far field pattern u∞ :

[0, 2π]→ C of the radiating field u by

lim
r→∞

u(r, φ) = u∞(φ)
eikr√
r
. (2.98)

At infinity, all radiating fields are nonuniform cylindrical waves. Any point in the

plane can serve as the center of the cylindrical wave. The far field pattern expresses

the angular variation of complex amplitude if the wave center is taken to be the

origin of coordinates.

Reproducing the formula (2.73) for the transformation {am} 7→ {a′m} of exterior

expansion coefficients under a coordinate system displacement d,

a′m =
∞∑

n=−∞
anJn−m(k‖d‖)ei(n−m)θ(d), m ∈ Z, (2.99)

we ought to immediately recognize this as the discrete convolution of two infinite

sequences {am} and {jm}, after the identification

jm := J−m(k‖d‖)e−imθ(d), m ∈ Z, (2.100)

is made.

The approach taken in Section 2.5.1 is to truncate the sequences {am} and {a′m}
5There does not seem to be a standard definition of far field pattern, but all def-

initions differ only by a constant multiplier. Another definition [15] is u∞(φ) :=√
iπk/2 limr→∞

√
re−ikru(r, φ).
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into the finite vectors a and a′. Because (2.99) is a convolution, the translation

matrix S is Toeplitz. Because S is Toeplitz, a fast algorithm to compute the matrix-

vector product a′ = Sa is available.

An alternative to that algebraic approach is to perform further analysis of (2.99).

In particular, Fourier analysis is well-known to simplify convolutions. Define the

Fourier transform ã : [0, 2π]→ C of the infinite sequence {an} as

ã(φ) :=
∞∑

n=−∞
ane

−inφ. (2.101)

Under this Fourier transform, (2.99) becomes the pointwise multiplication

ã′(φ) = ã(φ)̃(φ). (2.102)

Moreover, the Fourier transform of (2.100) is

̃(φ) = eik‖d‖ sin(θ(d)+φ), (2.103)

a simple result obtained from the generating function for the Bessel functions Jn [1,

§9.1.41].

The transform ã is essentially the far field pattern of the exterior wave expansion

u(r, φ) =
∞∑

n=−∞
anHn(kr)einφ. (2.104)

After substituting into (2.104) the large-argument asymptotic form [1, §9.2.3]

lim
|z|→∞

Hn(z) =

√
2

iπz
ei(z−nπ/2), (2.105)

a comparison with (2.98) shows that the far field pattern is

u∞(φ) =

√
2

πk
e−iπ/4ã

(π
2
− φ
)
. (2.106)
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The simplicity of (2.102) and (2.103) forms the motivation to work with the

function ã(φ) instead of the infinite sequence {an}.

Like (2.99), the other translations {am} 7→ {bm} and {bm} 7→ {b′m} are also

convolutions, and the Fourier transform (2.101) will formally diagonalize them as

well.

Unlike ã, the Fourier transform of {bm} cannot be interpreted as a far field,

because the interior expansion (2.28) is not a radiating field. It represents a field

only in a bounded source-free region, and if that field is smoothly extended to all

of E2, then at infinity it is the sum of two nonuniform cylindrical waves. One of

those waves, u+(φ)r−1/2eikr, is receding from the origin. The other, u−(φ)r−1/2e−ikr,

is traveling toward the origin, and is not present in a radiating field.

The absence of a familiar physical interpretation for b̃ is not much cause for

concern. There is, however, the following serious defect: b̃ diverges for general

charge distributions. So too does the Fourier transform of the convolution factor

hm := H−m(k‖d‖)e−imθ(d), m ∈ Z, (2.107)

that translates an exterior expansion to an interior expansion. The Fourier analysis

cannot be sustained unless the sequences {bm} and {hm} are either truncated or else

weighted for large |m| by window sequences that decay sufficiently rapidly.

If the coefficient sequences have to be truncated anyway, then I think that the

algebraic approach is easier to grasp.
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Chapter 3

Iterative Multipole for
Inverse Particle Problems

The main objective of this chapter is to apply the fast multipole method to the

following problem:

Problem 3.1 (Inverse Helmholtz Interaction) A collection of N particles with

charge amplitudes {qn} generates a field u(x). At the location xm of particle m, the

field is

um =
∑

n6=m
Φ(xm,xn)qn, (3.1)

where the Helmholtz interaction law is Φ(x,y) = − i
4
H0(k‖x− y‖). Given the po-

sitions {xm} and the field samples {um}, determine the set of charges {qn} that

produced the field.

This is the inverse problem for the Helmholtz interaction. The direct problem

(Problem 2.1) is to compute the matrix-vector product u = Φq, given a charge

vector q. In the inverse problem it is u rather than q that is known. Assuming Φ is
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nonsingular, q = Φ−1u is the unique solution.

In Chapter 2 we developed three multipole algorithms for the fast computation

of Φq. With an iterative solver we can use the same algorithms to compute Φ−1u.

Although the diagonal entries of Φ are zero, its condition number κ = ‖Φ‖2‖Φ−1‖2
is usually modest. A typical rate of growth is κ = O(N) as N → ∞. That slow

growth makes Problem 3.1 numerically well posed, in contrast to many other inter-

esting inverse problems [93].

The good behavior of this inverse problem is a beneficial side effect of the singu-

larity in Φ(x,y). If Φ(x,y) were smooth at x = y instead of being unbounded there,

then the inverse problem would be poorly conditioned. Sometimes singularities make

a problem easier to solve!

Interest in inverse particle problems is not confined to the Helmholtz interaction.

A suitable discretization, such as Nyström’s method, can convert any integral equa-

tion into an inverse particle problem. The particle interaction law is influenced by

both the kernel function and the discretization scheme.

If we are to utilize a fast multipole method tailored to the kernel, then the dis-

cretization must not be allowed to spoil things by creating an interaction law that

differs too much from that kernel. In the next section we consider how that can be

accomplished for a scattering integral equation.

3.1 Particle Discretizations

In Chapter 1 we transformed the elliptic PDE of an obstacle scattering problem

into an integral equation on the obstacle boundary. A whole collection of integral
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equations can be constructed, but the simplest in form is the EFIE, an integral

equation of the first kind,

∫

Γ

Φ(x,y)σ(y) dΓ (y) = (ikη)−1uinc(x) for x ∈ Γ, (3.2)

where the function σ on the boundary must be found.

A spectral discretization of the EFIE was developed in Section 1.6. That dis-

cretization does not, however, produce algebraic equations that look like (3.1). The

spectral product rule splits the kernel apart into several pieces. Unfortunately, the

multipole algorithms of Chapter 2 cannot deal with those pieces. The spectral expan-

sions and translation operators have all been derived from the Helmholtz interaction,

rendering the algorithms quite specific to the kernel Φ(x,y).

In this section we construct another high-order discretization that does not so

badly disrupt the kernel. The correspondence between our discretization and Prob-

lem 3.1 is not exact. The difference is that the particles, which lie at specified points

on the boundary Γ , have short-range interactions that obey a different law than the

Helmholtz interaction Φ(x,y). At long ranges, though, the Helmholtz interaction

law is preserved.

After the discretization, (3.2) will assume the form

(Σ + Φ)q = u, (3.3)

where Σ is a sparse matrix that corrects the long-range interaction law over small

distances ‖x− y‖. Bounded self-interactions are now permissible, and those terms

lie on the main diagonal of Σ. The product Σq can be computed with sparse matrix

arithmetic, and the product Φq can be computed with a multipole algorithm.

It is possible—for instance by applying a trapezoidal rule to (3.2) but dropping

126



the node at the kernel singularity—to eliminate Σ from (3.3), yielding Problem 2.1

exactly. But such a discretization has poor accuracy, and the computed solution will

converge to the exact solution very slowly as N is increased. We are interested in

singular quadrature rules that exhibit higher performance. The perturbation Σ is

tolerable as long as it is sufficiently sparse.

Even if Σ = 0, recall that the fast multipole method already uses block sparse

matrix arithmetic to compute the interactions between particles in leaf clusters that

are not well separated. The high-order discretization constructed here will only

change some of those interactions. Therefore, at least after it has been filled, the

nonzero Σ does not add to the workload.

3.1.1 Fejér Rules

In Section 1.6 the parametrization x = γ(s) and y = γ(t) is substituted into (3.2),

and after relabeling functions using the definitions

ϕ(t) := σ
(
γ(t)

)
, (3.4a)

f(s) := (ikη)−1uinc

(
γ(s)

)
, (3.4b)

K(s, t) := Φ
(
γ(s),γ(t)

)
‖γ′(t)‖, (3.4c)

the EFIE is recast into the standard form

∫ 1

0

K(s, t)ϕ(t) dt = f(s), s ∈ [0, 1]. (3.5)

Then the kernel is broken into more manageable pieces. The quadrature rules, both

singular and nonsingular, are global rules that approximate every smooth piece of the

integrand with a trigonometric function of N harmonic tones. That trigonometric

approximation is easiest if the integrand is sampled at quadrature nodes distributed
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uniformly in [0, 1).

The new quadrature rules are local rules that partition the boundary into a mesh

of M arcs. On each arc, any smooth piece of the integrand is approximated by a

polynomial of degree P − 1. The quadrature nodes are not equally spaced. On

each arc, they are an affine transformation of the zeros of the Chebyshev polynomial

TP (z) := cos(P cos−1 z). The P zeros of TP are, in increasing order,

zn = − cos
π

P

(
n− 1

2

)
, 1 ≤ n ≤ P. (3.6)

If the arc covers the parametric interval t ∈ [a, b], then the affine transformation is

ζ(z) :=
b− a

2
z +

a+ b

2
, z ∈ [−1, 1], (3.7)

which simply maps [−1, 1] to [a, b]. The quadrature nodes in [a, b] are tn = ζ(zn).

Figure 3.1 compares the node distributions of the global and local rules.

(a) (b)

Figure 3.1: In rectangular coordinates, this boundary Γ has parametriza-
tion γ(t) = (cos 2πt + 0.65 cos 4πt − 0.65, 1.5 sin 2πt). (a) Grid for the
64-point spectral rule, with nodes at ti = (i− 1)/64, 1 ≤ i ≤ 64. (b) Grid
for 8 panels of 8-point Fejér rules. The break points, at the center of the
small squares, lie at ti = (i− 1)/8, 1 ≤ i ≤ 9.
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If the interval [0, 1] is partitioned into M subintervals by the points 0 = a1 <

a2 < · · · < aM < aM+1 = 1, then the integral in (3.5) is split into M pieces,

∫ 1

0

K(s, t)ϕ(t) dt =
M∑

m=1

∫ am+1

am

K(s, t)ϕ(t) dt, (3.8)

and we may apply a different quadrature rule to each piece. The quadrature weights

may be a function of s, but the locations of the quadrature nodes are not allowed

to change as s varies.

If the boundary is analytic, then K(s, t) is an analytic function of t on any

subinterval that does not contain s. On those subintervals, the kernel does not need

to be processed further, and a nonsingular quadrature rule can be applied. The

remainder of this section is devoted to that nonsingular rule.

A quadrature rule on [−1, 1] using the points (3.6) was studied by Fejér [35],

who also considered a rule with nodes at the P local extrema of TP−1. The latter

rule is more well-known as a Clenshaw–Curtis rule. Its main advantage is that the

local extrema of TP are also local extrema of T2P−1. An adaptive integration routine

that applies a sequence of Clenshaw–Curtis rules with {P, 2P−1, 4P−3, . . . } points

can at each step reuse all the integrand evaluations from previous steps. This node

recycling offers no advantage, however, for the solution of an integral equation.

The Clenshaw–Curtis rule is closed: It includes nodes at the end points z = −1

and z = 1. I prefer to use open Fejér rules because then adjacent boundary arcs do

not share a node at their end points. Node sharing adds a bookkeeping overhead to

the code.

Furthermore, if the boundary Γ has any corners, then I insist that those corners

always lie at an arc end point. The open rules then conveniently avoid the singularity

in the integrand at the corner. Avoiding the singularity, of course, leads to a low
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order of solution accuracy. Rather than trying to incorporate the solution singularity

into a high-order singular quadrature rule, I follow the widespread practice of refining

the boundary mesh near corners.

The main attraction of a closed rule for the solution of an integral equation by

piecewise collocation is that it gives a continuous approximate solution. Using open

rules, the approximate solution has jump discontinuities where the arcs join. Those

discontinuities are not particularly troubling, however, if the discretization has a

high order of accuracy. The magnitude of each jump rapidly falls to O(eps), and

they are not noticeable in graphs of the computed solution except when P is small.

With a proper choice of basis, the method of undetermined coefficients is a nu-

merically stable way to compute the weights {ωn} of the Fejér rule,

∫ 1

−1

g(z) dz ≈
P∑

n=1

ωng(zn). (3.9)

Forcing the rule to be exact for each member of the basis {T0(z), T1(z), . . . , TP−1(z)}

for the polynomial space PP−1[−1, 1], a linear system

P∑

n=1

ωn cos
( π
P

(m− 1)(n− 1
2
)
)

= (−1)m−1

∫ 1

−1

Tm−1(z) dz, 1 ≤ m ≤ P, (3.10)

is generated for the unknown weights. In vector form, this is Cω = b, where C is a

P -point discrete cosine transform (DCT) matrix and the elements of the right-hand

side vector b are

bm := (−1)m−1

∫ 1

−1

Tm−1(z) dz

=





1

m
− 1

m− 2
if m is odd,

0 if m is even.

(3.11)
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The inverse of C is C−1 = (1/P ) diag(1, 2, . . . , 2)CT , so the weight vector ω is

ω = (1/P ) diag(1, 2, . . . , 2)CTb. (3.12)

Using a fast DCT algorithm, this can be computed in O(P logP ) flops.

In exact arithmetic, the weights have the even symmetry ωn = ωP+1−n. That

property can also be applied as a constraint to (3.10), shrinking the linear system

by a factor of 2. A fast DCT can be applied to the smaller system as well.

After the change of variable t = ζ(z) given by (3.7), the integral of any smooth

function g on the interval [a, b] can be expressed as

∫ b

a

g(t) dt =
b− a

2

∫ 1

−1

g
(
ζ(z)

)
dz, (3.13)

so the weights {ωn} are scaled by (b− a)/2 to give the rule

∫ b

a

g(t) dt ≈ b− a
2

P∑

n=1

ωng(tn), (3.14)

with node locations tn = ζ(zn).

Concatenating the Fejér rules for each arc, the weights are collected into the

vector ξ of length N = MP ,

ξT :=

[
a2 − a1

2
ωT , . . . ,

aM+1 − aM
2

ωT
]
. (3.15)

The nodes are collected into the vector τ ,

τ T :=

[
a2 − a1

2
zT +

a1 + a2

2
, . . . ,

aM+1 − aM
2

zT +
aM + aM+1

2

]
, (3.16)

where zT :=
[
z1, . . . , zP

]
is the vector of Chebyshev polynomial zeros (3.6).

We can now exhibit the product Φq in (3.3). Particle n is located at xn =

γ(τn) and carries the charge qn = ξn‖γ′(τn)‖ϕ(τn). The function ϕ is the unknown
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continuous charge density, and the weight ξn and metric coefficient ‖γ ′(τn)‖ are

absorbed into the discrete charge qn. The charge and field vectors of the particle

discretization are

q =
[
ξn‖γ′(τn)‖ϕ(τn)

]
, (3.17a)

u = (ikη)−1
[
uinc(γ(τn))

]
. (3.17b)

Next, we construct a sparse matrix Σ of short-range interactions that achieves a

high order of accuracy.

3.1.2 Product Fejér Rules

Now we return to the partitioned integral (3.8) to consider the numerical treatment of

the arc containing the singularity at t = s. Since we have discretized each subintegral

with an open quadrature rule, after collocation s cannot lie at any of the subinterval

end points {am}. Therefore, for each of the N equations in the collocation system,

precisely one of the M subintegrals in (3.8) has a singular kernel.

We begin the treatment of the kernel exactly as in Section 1.6, by splitting the

kernel apart to expose the singularity in its most elementary form. The Hankel

function H0 is the source of the singularity in K(s, t). That function can be expressed

as

H0(z) = (log z)A0(z2) +B0(z2), (3.18)

where A0 and B0 are entire functions.

Substitution of (3.18) into the singular subintegral splits it into two pieces. The

piece containing B0 is smooth, and is treated with the standard Fejér rule of the

previous section. The piece containing A0 has a logarithmic singularity, and we are
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faced with designing a quadrature rule to approximate the integral

(Lh)(s) :=

∫ b

a

log(k‖γ(s)− γ(t)‖)h(t) dt (3.19)

for an arbitrary smooth function h. The difference between (3.19) and its counterpart

(1.96) is that here the domain of integration is [a, b] ⊂ [0, 1], and the integrand does

not have a smooth extension with period b− a.

Continuing to parallel the development in Section 1.6, we split the kernel again

because we cannot afford to construct a different product rule for each vector function

γ in (3.19). The global splitting (1.104) that worked in Section 1.6 made use of a

product rule developed for a circular boundary. Using a circle makes no sense—and

does not work—for the local product rule here. Instead, I choose to split the kernel

to expose the deviation of the boundary arc from a straight line segment.

The relationship of the line segment to the boundary Γ is illustrated in Figure 3.2.

For the global spectral rule, a single circle informed the splitting for all s. The

geometry underpinning the local splitting here changes with s. The segment is cut

from the line tangent to Γ at the singularity. It is the Taylor approximation

γ̂(t) = γ(s) + (t− s)γ ′(s), t ∈ [a, b], (3.20)

so ‖γ(s)− γ̂(t)‖ = O
(
(s − t)2

)
. The right end point of the segment extends a

distance (b − s)‖γ ′(s)‖ from the point of tangency, and the left end point is a

distance (s− a)‖γ ′(s)‖ away.

The distance between two points on the tangent line is

R̂(s, t) := ‖γ̂(s)− γ̂(t)‖

= ‖γ′(s)‖ |s− t|.
(3.21)
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γ(s)
��	
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6

4
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Figure 3.2: When s = τ5, arc 1 contains the singularity γ(s). The singular
quadrature rule for that arc is a simple modification of a product Fejér
rule for the line segment tangent to Γ at the singularity. On arcs 2–8, the
integrand is smooth and the nonsingular rule of Section 3.1.1 is applied.

Inserting this into (3.19), the singular product rule for the tangent line segment is

∫ b

a

log(k‖γ′(s)‖ |s− t|)h(t) dt ≈
P∑

n=1

wn(s)h(tn). (3.22)

The method of collocation requires the weights {wn(s)} for each s ∈ {tm}, and those

weights form a P × P matrix W with elements wmn = wn(tm).

The left-hand side of (3.22) still contains parameters that will only be known at

run time. The weights must have a simple dependence on the end points a and b

and on the function k‖γ ′(s)‖. To verify that, let s = tm in (3.22), and use the affine

transformation (3.7) to map the interval [a, b] to the standard domain [−1, 1] of the

Chebyshev polynomials. Under that transformation, the left-hand side of (3.22)
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becomes

∫ b

a

log(k‖γ′(tm)‖ |tm − t|)h(t) dt =

b− a
2

∫ 1

−1

log|zm − z|h
(
ζ(z)

)
dz +

b− a
2

αm

∫ 1

−1

h
(
ζ(z)

)
dz, (3.23)

where αm is defined by

αm := log
(
k
b− a

2
‖γ′(tm)‖

)
. (3.24)

Now if we compute the weight matrix Υ =
[
υn(zm)

]
for the product Fejér rule

∫ 1

−1

log|y − z| g(z) dz ≈
P∑

n=1

υn(y)g(zn), (3.25)

at the singularity locations y ∈ {zm}, then the weight matrix W is

W =
b− a

2

(
Υ +αωT

)
, (3.26)

where ω is the vector of standard Fejér weights (3.12) and α =
[
αm
]
. Judging from

(3.26), once we have obtained Υ , the weights of the more general rule (3.22) follow

easily.

The weights {υn(zm)} can be determined by the same procedure used to find the

weights {ωn} in Section 3.1.1. If the rule is forced to be exact for each member of

the basis {T0(z), T1(z), . . . , TP−1(z)} of PP−1[−1, 1], then

Υ T = (1/P ) diag(1, 2, . . . , 2)CTB, (3.27)

where C is the DCT matrix and B is a P × P matrix with elements

bmn :=

∫ 1

−1

log|zn − z|Tm−1(z) dz. (3.28)

Given B and a fast DCT, Υ can be constructed in O(P 2 logP ) flops.
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Unlike the situation in Section 1.6, however, the integrals (3.28) apparently do

not simplify. I evaluate them with an adaptive integration routine. Since Matlab

does not supply one, I wrote a routine designed to efficiently handle unbounded

integrands. Still, the time required to fill B is much greater than the time required

for P DCTs.

Since the weights Υ do not depend on Γ , they can be computed in advance and

stored on disk. I have done this for various values of P , but I most frequently

use the rules for P = 16 and P = 32. Note that restricting ourselves to only those

values of P stored on disk is not a significant limitation, because we can still increase

N = MP by dividing the boundary into a finer mesh. There are no restrictions on

the number of arcs M .

I have computed the weights Υ for rules as large as P = 288. Even at that high

order, ‖Υ‖2 ≈ 2.5, so the weights are well-behaved. In fact, Sloan and Smith [124]

proved that a large class of product Fejér rules, of which rule (3.25) is a member,

are numerically stable and convergent.

Now we apply this product rule to the integral (3.19) for an arbitrary smooth

boundary curve. Split the kernel like

log kR = log
(
kR̂× R

R̂

)

= log kR̂ + log
R

R̂
,

(3.29)

which exactly follows (1.104). The second term is smooth for the same reasons listed

in Section 1.6, and it is treated by a standard Fejér rule. The first term is treated

by the product Fejér rule (3.22).

Let Z = Σ+Φ be the sum of the short-range and long-range interaction matrices,

so that the discretization of the EFIE produces the system Zq = u. The charge
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vector q was specified in (3.17a), and the field vector u in (3.17b).

Since the boundary Γ is partitioned into M arcs, the coefficient matrix Z inherits

an M×M block partition. Each block Zmn is a square matrix of order P . The charge

vector has a conforming partition qT =
[
qT1 , . . . , q

T
M

]
. The same partition is applied

to the quadrature weight vector ξ of (3.15), the quadrature node vector τ of (3.16),

and the vector α of (3.24).

The discretization of this section fills the diagonal blocks {Zmm}. The structure

of those blocks is

Zmm =
(
Wm diag

(
(ξm)−1

1 , . . . , (ξm)−1
P

)
+ Lm

)
� Am +Bm, (3.30)

where Wm is the product-rule weight matrix W of (3.26), after making the substi-

tutions a → am, b → am+1, and α → αm. The matrices Am, Bm, and Lm have

elements

(Am)pq = − i
4
A0

(
k2
∥∥γ
(
(τm)p

)− γ((τm)q
)∥∥2)

, (3.31a)

(Bm)pq = − i
4
B0

(
k2
∥∥γ
(
(τm)p

)− γ((τm)q
)∥∥2)

, (3.31b)

(Lm)pq =





log

∥∥γ
(
(τm)p

)− γ((τm)q
)∥∥

∥∥γ′
(
(τm)p

)∥∥ ∣∣(τm)p − (τm)q
∣∣ if p 6= q,

0 if p = q,

(3.31c)

for 1 ≤ p ≤ P and 1 ≤ q ≤ P .

This discretization is a block spectral discretization. If the boundary is an analytic

Jordan curve, the discretization exhibits spectral accuracy ifN is increased by adding

more grid points to each arc. For some positive constant ζ < 1, the error is ε = O(ζP )

as P →∞. If, on the other hand, N is increased by refining the arc partition, then

the discretization has an accuracy of order P , so ε = O(M−P ) as M →∞.
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3.1.3 Product Rules for Nearly Singular Kernels

The discretization remains deficient in one respect. We have used standard Fejér

rules to integrateK(s, t)ϕ(t) on an interval [a, b] whenever s lies outside that interval.

If, however, s = b + δ for a tiny positive number δ, then the integrand is nearly

singular. It will display rapid variation at the end point b, and it will be poorly

approximated by a low-degree polynomial there.

For a fixed s arbitrarily near the interval [a, b], the P -point nonsingular rule does

exhibit spectral convergence, so that a positive constant ζ < 1 exists such that

ε = O(ζP ) as P →∞. The problem is that the exponential decay might not be fast

enough. As s approaches either a or b, the constant ζ approaches 1.

The solution to this problem is to use a product rule whenever s lies inside an

interval (a − ρ, b + ρ) that contains [a, b]. The product rules for nearly singular

integrands are constructed in exactly the same way as the product rules for singular

integrands. The kernel is split, using the line tangent to the boundary at s as a

guide.

Let s ∈ (b, b+ ρ), and let [b, c] be the subinterval in the partition that follows the

subinterval [a, b]. The weights for the nearly singular product rule applied at this

value of s depend on the ratio (c− b)/(b− a). Since we can only compute and store

a finite number of rules, we must constrain the partition so that this ratio always

assumes one of a small set of values. In my code, I require that (c − b)/(b − a) ∈

{1
2
, 1, 2}. For each value of P , I compute and store one singular product rule and

three nearly singular product rules.

The constraint on how Γ may be partitioned appears to be a burden. If the

constraint were that adjacent arcs of the partition have arc length ratios in the set

{1
2
, 1, 2}, then it would in fact be intolerable. An arc length parametrization of Γ
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would have to be computed by solving a nonlinear ordinary differential equation.

But the parametrization here is not required to be an arc length parametrization. It

can be any convenient, nonsingular parametrization whatsoever, and ensuring that

adjacent arcs have parametric length ratios in the set { 1
2
, 1, 2} is easy.

In my code, I also always allocate P Chebyshev points to each arc of the boundary

partition. If adjacent arcs were allowed to have unequal point allocations, then more

nearly singular quadrature rules would have to be computed. Again, the constraint

that each leaf arc have the same number of nodes is a mild one.

Now let us turn to the proper selection of ρ. Given a desired convergence param-

eter ζ, we can appeal to the theory of approximation for analytic functions [55] [135]

to choose the smallest ρ necessary to ensure that ε = O(ζP ) as P →∞.

Let a function g : C → C be analytic on a domain R of the complex plane that

contains the cut C := {z ∈ C : −1 ≤ Re z ≤ 1, Im z = 0}. If ĝ is the polynomial of

degree P that interpolates g at the P real zeros of the Chebyshev polynomial TP ,

then on C the approximation ĝ converges to g with spectral accuracy as P → ∞.

In particular, there exists a positive constant ζ < 1 such that

max
z∈C
|g(z)− ĝ(z)| = O(ζP ) as P →∞. (3.32)

Approximations that interpolate g at certain other sets of points, such as the Gauss–

Legendre points or the extrema of Chebyshev polynomials, also have this property.

The rate parameter ζ depends on the shape and size of the domain R. Let E be

the largest ellipse with foci at z = ±1 that fits into R. Then ζ−1 equals the average

of the major and minor diameters of E. For example, the ellipse E1/2 with foci at

z = ±1 and eccentricity 4/5 has a major diameter of 5/2 and a minor diameter

of 3/2, and the Chebyshev interpolation of any function analytic within E1/2 will
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converge with a spectral rate parameter of ζ ≤ 1/2.

In Section 2.2.1 we selected a separation parameter to ensure that the multipole

expansions converge at a rate o(2−|p|) as the series cutoff p increases. Although

p and P are not connected, we may as well also insist that ζ ≤ 1/2, so that the

discretization error decays in the worst case like O(2−P ).

For the nonsingular quadrature rule of Section 3.1.1, the spectral rate parameter

is governed by the singularities of the kernel K(s, t) in (3.4c) with s ∈ [0, 1] \ [a, b]

fixed and t ∈ C variable. A singularity exists at t = s, and if no other singularities

lie within the ellipse of major diameter (5/4)(b − a) with foci at t = a and t = b,

then choosing ρ = (b−a)/8 ensures that ζ ≤ 1/2. With this choice of ρ, the interval

(a− ρ, b+ ρ) is 5/4 as long as the interval [a, b], just as the major diameter of E1/2

is 5/4 of the distance between its foci.

The point t = s is not necessarily the dominant kernel singularity. All poles

and zeros of the function ‖γ(s)− γ(t)‖, as well as all poles of the function ‖γ ′(t)‖,

are kernel singularities. It is impractical, however, to search the complex t-plane

for all such points at each value of s. Moreover, when the point t = s is not

the controlling singularity, the kernel splitting modeled on the tangent line at γ(s)

cannot be expected to perform well.

The product rules here are also not designed to handle nearly singular behavior

in the kernel when t = b is a corner. The solution ϕ(t) is singular at corner points, so

treating nearly singular behavior in the kernel alone is insufficient anyway to ensure

rapid spectral convergence. To improve the solution accuracy near corners, I rely

on mesh refinement. An example is given in Section 4.4.2, where we compute the

scattering of a plane wave from a triangular cylinder.
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3.1.4 Particles from Equations of the Second Kind

The discussion has so far been restricted to first-kind integral equations such as the

EFIE, which after suitable discretization have the same algebraic structure as the

mutual interactions of a collection of point monopoles. Equations of the first kind

have a reputation as poorly conditioned problems, but in this case the singularity

of Φ(x,y) typically restrains the condition number to grow like κ(Φ) = O(N) as

N →∞.

For smooth closed curves Γ , a second-kind integral equation such as the CFIE

or the CSIE is a better option. It can be shown [98] that the condition number of

the discrete problem is bounded as the discretization is refined, so κ(Φ) = O(1) as

N →∞. This property suits the application of a broad class of iterative solvers.

The CSIE is transformed into a particle problem in which both monopoles and

dipoles are present. The field at point x generated by a unit dipole that has orien-

tation d̂ and location y is d̂ ·∇yΦ(x,y). For the CSIE the dipoles are all oriented

in the direction of the boundary normal, so d̂ = n̂(y). At each boundary grid point

xn there is both a monopole with charge qn and a normally directed dipole with

amplitude λqn, where λ is a coupling constant. The interaction (3.1) is changed to

um =
∑

n6=m

(
Φ(xm,xn) + λn̂(xn) ·∇xnΦ(xm,xn)

)
qn. (3.33)

We still have a particle problem, but the interaction law is more complicated.

The CFIE is transformed into a particle system consisting of monopoles only,

but directional derivatives of the generated field must be computed as well as the

field values themselves. The derivative in the direction d̂ of the field at point x

generated by a unit monopole at location y is d̂ · ∇xΦ(x,y). For the CFIE the

required derivatives are in a direction normal to the boundary, so d̂ = n̂(x). The
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data um is the linear combination u+ λ(∂u/∂n) at the point xm, and

um =
∑

n6=m

(
Φ(xm,xn) + λn̂(xm) ·∇xmΦ(xm,xn)

)
qn. (3.34)

This potential is slightly different from the CSIE potential in (3.33).

Section 2.6 describes how the fast multipole method for the monopole interaction

Φ(x,y) can be modified to accommodate the interaction laws (3.33) and (3.34).

3.2 Iterative Multipole Solvers

Since multipole algorithms give a fast matrix-vector product Φq, it is natural to

embed them into iterative solvers that compute a solution to Φq = u using a

sequence of matrix-vector products.

If Φ−1 is well-approximated by a matrix polynomial p(Φ) of degree r, then q̂ =

p(Φ)u is a good approximation of the solution q = Φ−1u. If ‖Φ−1 − p(Φ)‖ < ε,

then ‖q− q̂‖ < ε‖u‖. The Cayley–Hamilton theorem ensures that Φ−1 is exactly

represented by a polynomial p(Φ) of degree at most N − 1, but an iterative solver is

really only attractive if r � N .

If p(x) =
∑r

j=0 cjx
j, then the approximate solution

q̂ =
r∑

j=0

cjΦ
ju (3.35)

requires r + 1 left multiplications of a vector by Φ. Each of those products can be

computed with a fast multipole method.

Krylov solvers begin with r = 0 and sequentially increase r, implicitly construct-

ing a new set of good polynomial coefficients {cj} at each step.
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3.2.1 Krylov Iterations

We restrict our attention to a family of iterative solvers that select an approximate

solution from a nested sequence K1 ⊆ K2 ⊆ K3 ⊆ · · · of Krylov subspaces Ki :=

span{u, Φu, Φ2u, . . . , Φi−1u}. Just such a strategy is suggested by (3.35), where

clearly q̂ ∈ Kr+1. (If the user is able to supply a nonzero initial guess of the

solution, this structure changes slightly [122].)

The conjugate gradient method (CG) is the oldest member of this family, but it

requires that the matrix Φ ∈ CN×N be Hermitian positive definite, a condition not

satisfied by discretizations of scattering integral equations. Many Krylov solvers have

been designed for matrices without that structure. In solving scattering problems

I have found the greatest success with the generalized minimal residual method

(GMRES) [121].

GMRES picks at iteration i an approximate solution vector q̂i ∈ Ki that is the

least squares solution of the overdetermined system Φq̂i ≈ u. Like CG, GMRES

finds the exact solution in at most N iterations in exact arithmetic, but typically

the iteration is stopped when the residual norm ‖u− Φq̂i‖ falls below a specified

threshold.

The principal deficiency of GMRES is that an orthogonal basis {kj} of the Krylov

subspaces must be accumulated, so that Ki = span{k1,k2, . . . ,ki}. The basis vector

ki+1 is computed by extracting the part of Φki that is orthogonal to Ki. Usually

this computation is carried out by a modified Gram–Schmidt process, a recurrence

involving all kj for j ≤ i. Consequently, each iteration requires a growing amount of

work and storage. In contrast, CG is neatly described by a three-term recurrence,

with a constant stepwise complexity.

One approach to a short-recurrence Krylov solver for nonsymmetric systems is to

143



apply CG to the normal equations (CGN). The system Φq = u is equivalent to the

normal equations ΦHΦq = ΦHu, which for nonsingular Φ is a Hermitian positive

definite system.

The required number of CG iterations has an upper bound proportional to the

square root of the condition number κ(Φ) = ‖Φ‖2‖Φ−1‖2. Since κ(ΦHΦ) = κ2(Φ),

CGN is apparently a good choice for very well conditioned systems. An integral

equation of the second kind typically generates a matrix with bounded condition

number, so that the number of CGN iterations is bounded as well. (The bound may,

however, depend on the wavenumber k. Under frequency scaling, in which N and k

both increase while N/k is held constant, the condition number typically increases

like O(logN).)

On the other hand, CGN has the following undesirable properties:

• It requires a computational routine for evaluating ΦHq in addition to

one for Φq.

• It requires two matrix-vector products per iteration, while CG and

GMRES require only one.

If, as for the EFIE, the particles are all monopoles, implementation of the conjugate

transpose operation is trivial: All occurrences of the imaginary unit i in the com-

putational routine for Φq should be replaced with −i. If the particles are a mixture

of monopoles and dipoles, as in the case of the CSIE, then the implementation is

somewhat more complicated. Nevertheless, it is the latter property that is most

unreasonable. Even if a fast multipole method is used, these dense matrix-vector

multiplications are expensive, and the expense of an additional product usually

dwarfs the expense of a long GMRES recurrence.

The prohibitive cost of a matrix-vector product actually makes the choice of a
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Krylov solver a bit easier for dense systems than for sparse systems. For a sparse

matrix, the matrix-vector product may be cheap, and a short recurrence can yield

a significant speed improvement. For these systems, in addition to CGN there is

the method of biconjugate gradients (BCG), as well as a collection of more recently

developed solvers like CGS [128], QMR [58], and BiCGSTAB [138].

It is worth noting that there exist specializations [56] of BCG and QMR to com-

plex symmetric systems that require only one matrix-vector product per iteration.

Moreover, unlike GMRES, they use short recurrences. While Φ is complex symmetric

if the particles are all monopoles, the symmetry is broken if dipoles are allowed, or if

the short-range interactions in the perturbed particle problem (3.3) are not complex

symmetric. Generally, a complex symmetric system is obtained in electromagnetic

scattering problems only for certain low-order discretizations of the EFIE. Low-order

discretizations are not unusual in practice, however, and complex symmetric QMR

is commonly encountered in computational electromagnetics work.

The small condition number of discretized integral operators of the second kind

favors the use of CGN. Generally, GMRES will also converge rapidly in such cases,

but counterexamples can be constructed. While the convergence behavior of CGN

depends on the singular value spectrum of Φ, for GMRES it is the eigenvalues that

matter. CGN is likely to do much better only if the eigenvalues are not clustered,

but instead occupy an area of the complex plane that covers a large arc of the unit

circle [136]. Such distributions appear to be atypical for scattering problems.

3.2.2 Preconditioning

Sometimes a large condition number is unavoidable, and the Krylov iteration con-

verges slowly. Open curves, for instance, do not lend themselves to a second-kind
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integral equation. Although a weakly singular integral equation of the first kind for

such a boundary may produce a condition number that grows only as O(N), the dif-

ference in performance for open and closed curves can be striking. This performance

gap can, however, be partially closed.

The best way to speed up a Krylov solver is to construct a cheap and effective

preconditioner. The idea is to replace the linear system Φq = u with an equivalent

system Φ̂−1Φq = Φ̂−1u for which

• Φ̂−1y is easy to compute for any y.

• The iteration for Φ̂−1Φ requires fewer steps than the iteration for Φ.

The name “preconditioner” suggests that the condition number of Φ̂−1Φ should be

smaller than the condition number of Φ, but many effective preconditioners do not

improve the condition number at all. Instead, compared to the eigenvalue spectrum

of Φ, the spectrum of Φ̂−1Φ may consist of fewer and tighter clusters of eigenvalues.

Preconditioners of several types have been used in conjunction with multipole

methods. A common starting point is to let Φ̂ be a sparse approximation of Φ. In

Section 3.2.4, I take advantage of Matlab’s luinc built-in function to compute an

incomplete LU factorization of Φ̂. The approximate solution of the preconditioner

system using that factorization requires sparse forward and backward substitutions.

Other investigators have applied sparse approximate inverse preconditioners to

scattering problems [2] [18]. Those preconditioners approximate the inverse Φ̂−1

explicitly as a sparse matrix, so that the product Φ̂−1y requires a one sparse matrix-

vector product instead of two sparse triangular solves. The chief motivation for

studying these preconditioners is that the data flow of a sparse matrix-vector product

is, for implementation on a distributed parallel computer, more favorable than a

sparse triangular solve.
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3.2.3 Example: Scattering from a Smooth Jordan Curve

To demonstrate the capabilities of multipole, consider the scattering of a plane wave

from the analytic curve pictured in Figure 3.3. Since the curve is closed, we choose

to solve the CSIE, and we measure the time and memory required for a sequence

of problems that increase in size. There are various ways to increase N , but here

we choose a frequency scaling that increases the wavenumber k while keeping fixed

the number of grid points per wavelength. The data reported in Table 3.1 was

measured for the geometric sequence k ∈ {16, 16
√

2, 32, 32
√

2, . . . }, where powers of
√

2 have been used instead of powers of 2 simply to generate more measurements

before exhausting memory.
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Figure 3.3: A plane wave uinc(x, y) = eikx illuminates the impenetrable
obstacle defined in Figure 3.1, and borrowed from Colton and Kress [31].

Figure 3.4 shows a cluster hierarchy generated automatically for k = 64 with

at least 5 grid points per wavelength. There are four levels, with 10 roots at the

topmost level. At higher values of k, the tree will have more levels. On each leaf

arc, the particle locations are an affine transformation of the zeros of the Chebyshev
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polynomial T32(z). The Chebyshev points have been prescribed by the high-order

discretization developed in Section 3.1.1. With 32 points, the order of the discretiza-

tion is 32. If N is increased for fixed k by leaf subdivision, the discretization error

decays to zero at the asymptotic rate O(N−32).

(a)

(b)

(c)

Figure 3.4: (a) Cluster hierarchy for the kite-shaped boundary. (b) Close-
up of the interior of the rectangle in (a). The particle locations on the curve
are now visible. Each leaf cluster contains 32 particles. (c) Zooming in still
further, the increased particle density at the cluster boundaries becomes
more clearly visible.

Another parameter under user control is the multipole truncation error. Here the

relative accuracy is ε = 10−6. At an order of 32, the discretization needs only 5 points

per wavelength to meet this specification. The spectral expansion lengths for each

disk are determined automatically so that the truncation error is also smaller than

ε. The iterative solver, unpreconditioned and unrestarted GMRES, is terminated
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when the relative residual norm falls below ε.

The combination of GMRES and multipole is contrasted with Gaussian elimina-

tion in Figure 3.5. Gaussian elimination is only able to cope with relatively small

problems before memory is exhausted. For sufficiently small problems, however,

Gaussian elimination is faster. The performance crossover is measured for this ex-

ample to lie below N = 1000. At larger values of N , the iterative multipole solver

plainly exhibits its superiority.

Only the solve time has been graphed in Figure 3.5(a), so as not to obscure the

O(N 3) complexity of Gaussian elimination with the O(N 2) fill time. In Table 3.1,

the total time is separated into fill and solve times for each algorithm. The fill time

for Gaussian elimination is the time required to form the matrix Φ, while the fill

time for the iterative solver is mostly the time needed to compute the translation

operators and the sparse matrix of local interactions.

Gaussian elimination timings enclosed in parentheses have been extrapolated from

the times at N = 3200. Note that, for problems that fit into memory, the fill time for

Gaussian elimination dominates the solve time. Including the fill time in Figure 3.5

only makes the performance of multipole more impressive.

The memory requirements are graphed in Figure 3.5(b). At N = 4416 there is not

enough memory to hold the dense matrix Φ. The reduced storage requirement of mul-

tipole allows it to solve a problem of size N = 35,520, an increase of almost an order

of magnitude. More than 20 GB of memory is needed to store a complex double-

precision matrix of that size. Multipole fails at the next problem in the sequence, for

k = 223/2, which has a size of N = 50,880. The failure is due to a lack of sufficient

memory to hold the multipole operatorsM :=
(
{Dij}, {Ui}, {Ri}, {Tij}, {Si}, {Vi}

)
.

At the point of failure, the solve time is still only a few minutes. For this par-
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Figure 3.5: Performance comparison of iterative multipole and Gaussian
elimination. The dashed lines extrapolate Gaussian elimination’s perfor-
mance beyond its point of failure. (a) Time spent. (b) Memory used.
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Table 3.1: Comparing Multipole to Gaussian Elimination

Fill Time (s) Solve Time (s)

k N Multipole Gauss Multipole Gauss

28/2 320 0.99 1.22 0.66 0.13

29/2 448 1.11 2.13 0.92 0.33

210/2 576 1.28 3.37 1.28 0.68

211/2 832 1.97 6.72 2.08 1.81

212/2 1152 2.65 12.49 3.02 4.34

213/2 1600 3.68 23.39 4.76 10.40

214/2 2240 5.22 44.88 6.96 26.16

215/2 3200 7.53 89.52 11.00 71.25

216/2 4416 10.60 (1.7× 102) 17.42 (1.9× 102)

217/2 6400 15.69 (3.6× 102) 27.77 (5.7× 102)

218/2 8960 22.46 (7.0× 102) 43.69 (1.6× 103)

219/2 12672 33.07 (1.4× 103) 72.75 (4.4× 103)

220/2 17792 48.66 (2.8× 103) 121.47 (1.2× 104)

221/2 25472 73.41 (5.7× 103) 197.12 (3.6× 104)

222/2 35520 110.01 (1.1× 104) 330.80 (9.7× 104)

ticular boundary, memory is the limiting resource for both multipole and Gaussian

elimination. To tackle even larger problems, we can trade time for memory in the

multipole implementation. Rather than computing M once and storing it, some

or all of the operators can be recomputed as they are needed at each step of the

iteration.

Now let us examine the performance of the iterative solver. Figure 3.6 shows

the number of steps required to produce a residual norm of the specified tolerance.

The most important thing to notice is that the number of iterations is a small

fraction of N , a consequence of the fact that we are solving a well-conditioned

problem originating from an integral equation of the second kind. At the same time,

the number of required steps is an increasing function of N , which provides some

evidence that the spectral condition number of the matrix Φ is also an increasing
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function of N .
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Figure 3.6: Semilogarithmic graph of the number of steps taken by un-
restarted GMRES as the problem size N increases.

For a circular boundary of radius α, the condition number can be shown [114] to

be proportional to log k. Under frequency scaling, N itself is proportional to k, so

the condition number is proportional to logN . Since Figure 3.6 is a semilogarithmic

plot, growth linear in logN should appear as a straight line. The observed growth

is faster, at least over the range of N displayed. It appears to be slower than log2 N ,

but we will not pursue a more detailed analysis.

In Chapter 2 we estimated the complexity of the hierarchical multipole algorithm

to be O(N logN) flops under frequency scaling. Here we execute the multipole algo-

rithm for the matrix-vector product at each GMRES iteration. Assuming O(logN)

iterations are required for convergence, the solution complexity is O(N log2 N) flops.

We should also consider the other vector operations entailed by the GMRES
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algorithm. They have a cost of O(mN) flops at step m. The cost increases for

successive iterations because of the long Gram–Schmidt recurrence that generates

orthonormal bases for the nested Krylov subspaces. After O(logN) iterations, this

overhead totals O(N log2 N) flops, which matches the time complexity of the fast

matrix-vector products. The memory requirement of the Gram–Schmidt recurrence

is O(N logN), which also matches the space complexity of hierarchical multipole.

No other Krylov solver, when used in conjunction with multipole, can give a better

asymptotic complexity.

In practice, the cost of the long GMRES recurrence is negligible in comparison

with the cost of the multipole computations. A detailed analysis to reveal the con-

stant multipliers hidden by the “big oh” notation would bear this out. Experimental

evidence is provided in Figure 3.7, which shows the time that GMRES devotes to

each iteration for the largest problem of Table 3.1.
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Figure 3.7: The fractional increase in work at each step is small. The area of
the rectangle on bottom is the total time spent in the multipole algorithm.
The triangle on top is the iteration overhead of GMRES.
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The time is indeed an increasing function of step number, but the bulk of the

time needed for each step is consumed by the matrix-vector multiplication. The last

iteration is only about 20 percent more expensive than the first.

If this added cost becomes too great, one solution is to restart GMRES. Another

is to try a Krylov solver that does not incur a growing overhead, but the next figures

illustrate that this might not be a good idea.

Figure 3.8 displays the convergence curves of various Krylov solvers applied to

the problem with wavenumber k = 64. I have experimented with all six of the

nonsymmetric Krylov solvers available in Matlab. Three of these—CGN, BCG,

and QMR—require a computational routine to apply the conjugate transpose ΦH .

Since I have not yet built this capability into my multipole code, for this experiment

the Krylov solvers all use standard matrix-vector products.

It is perhaps more common to see such curves as plots of relative residual norm

versus step number, but that is not the right comparison to make, since different

solvers incur different costs at each step. We care about the total computation time,

and the number of steps taken in that time is irrelevant.

Figure 3.8(a) confirms that GMRES is a good choice for this boundary, but it

also shows that CGS may be an even better selection. The CGS residuals do exhibit

a more erratic behavior, and this behavior is commonly observed for CGS. It is not

difficult to find boundaries for which this phenomenon renders the performance of

CGS quite poor in comparison with GMRES.

Furthermore, the timings graphed in Figure 3.8(a) suffer from an inefficiency in

the M-file implementations provided in the Matlab distribution. With the excep-

tion of lsqr, the function that implements CGN, all the others compute the residual

at each step with a matrix-vector product. The standard implementations [12] up-
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Figure 3.8: Relative residual norm at each step of six Krylov solvers. (a)
CGS appears to converge faster than GMRES, but the convergence is more
erratic. CGN is clearly the loser. (b) After compensating the timings
for Matlab’s inefficient implementation, GMRES is clearly the winner.
BiCGSTAB also performs better than CGS.
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date the residual at each step through a cheaper computation. Using a matrix-vector

product gives a more reliable residual estimate, but when the matrix is dense this

extra work can hardly be justified.

I revised the Matlab function gmres to fix this. The new function, mygmres,

requires only a single matrix-vector product per iteration, while gmres requires two.

I have not removed this inefficiency from the remaining solvers, but the possible

improvement may be judged from Table 3.2.

Table 3.2: Matrix-Vector Products per Krylov Iteration

Matlab function Is Now Could Be

bicg 3 2

bicgstab 4 2

cgs 3 2

gmres 2 1

lsqr 2 2

qmr 3 2

The numbers in Table 3.2 can be used to adjust the curves in Figure 3.8(a),

assuming that operations other than matrix-vector products can be neglected. For

instance, it is plausible that a new implementation of bicgstab would be 4/2 = 2

times as fast.

Figure 3.8(b) shows that adjustment of the measurements in Figure 3.8(a). It pre-

dicts that GMRES is in fact the clear favorite, while the performance of BiCGSTAB

and CGS are quite close. Since the residual behavior of BiCGSTAB is smoother, it

may be preferred to CGS.

One Krylov solver missing from this brief study is TFQMR [57], a variation of

QMR likely to be more competitive with BiCGSTAB. Like CGS and BiCGSTAB,
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TFQMR requires two matrix-vector multiplies at each step, and it does not use ΦH .

TFQMR has not been included here simply because Matlab does not currently

provide this function.

3.2.4 Preconditioners for Less Hospitable Boundaries

All of the above iterative solutions have been computed without the aid of a pre-

conditioner. Their demonstrated effectiveness is one of the distinguishing traits of

integral equations of the second kind. The growing iteration count in Figure 3.6 sug-

gests, however, that even smooth closed curves may benefit from preconditioning.

When the fast multipole method is used to perform the matrix-vector products

at each stage of the iteration, the obvious candidate for a preconditioner Φ̂ is a

sparsification of the interaction matrix Φ that explicitly gives the short-range in-

teractions among leaf clusters that are not well separated. By the time the Krylov

solver is called, that sparse matrix has already been constructed, since it is needed

in the multipole computation. The nonzero entries of Φ̂ occupy the blocks {Dij} of

Section 2.5. Those locations also contain all nonzero entries of the perturbation Σ

produced by the discretization. The remaining entries of Φ are represented implic-

itly as a product of translation matrices, and are not readily available for use in a

preconditioner.

The LU factorization of Φ̂ can be computed before the Krylov iteration starts.

Then the product of Φ̂−1 and an arbitrary dense vector of length N reduces to two

sparse triangular solves. The factorization need not be repeated at each step.

The complete LU factorization usually produces too much fill-in. As the rows of

Φ̂ are combined during Gaussian elimination, new nonzero positions are introduced

in the triangular factors. This phenomenon can make iterative sparse solvers more
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attractive than sparse LU factorization, and such subsidiary iterations applied to Φ̂

form an important class of preconditioners. If the factorization is preferred, usu-

ally the rows and columns of Φ̂ will be reordered in a way that tries to minimize

the amount of fill-in. Another strategy is to perform an incomplete factorization,

discarding some of the nonzero entries in the computed factors.

The preconditioner that I have applied most successfully is the drop tolerance

incomplete LU factorization of Φ̂. Its performance is controlled by the discard tol-

erance, which I usually take to be 10−2 or 10−3. In computing a solution to an

accuracy of ε < 10−6, it may pay off to tighten the tolerance to about
√
ε.

Figure 3.9 compares some preconditioner choices, all of which start with Φ̂. The

sparsity pattern of Φ̂ is shown for the curve of Figure 3.3 with wavenumber k = 64.

The pattern is nearly the same one produced by a circular boundary, and a similar

pattern can be expected for all boundaries that do not differ too much from a circle.

(a) (b) (c)

Figure 3.9: (a) Sparsity pattern of Φ̂ ∈ C1152×1152 is colored blue. The
complete LU factorization produces the green fill-in. The resulting factored
preconditioner has 182,272 nonzeros. (b) Nonzero elements of Φ̂ outside the
main band of width 32 are discarded. The LU factorization of the banded
approximation generates no fill-in. The resulting factored preconditioner
has 110,656 nonzeros. (c) Sparsity pattern of the incomplete LU factoriza-
tion of Φ̂, with a drop tolerance of 10−3. Nonzero elements in the strict
lower triangle belong to the factor L, and nonzeros in the upper triangle
belong to U . The resulting factored preconditioner has 117,583 nonzeros.
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It turns out that none of these preconditioners significantly reduces the compu-

tation time. The measurements, including the time required for the preconditioner

factorization, are given in Table 3.3.

Table 3.3: Solution Time with Three Preconditioners

Preconditioner Steps Time (s)

None 24 3.11

Full LU 13 2.50

Band 13 3.92

Incomplete LU 13 2.29

In each case, GMRES has been stopped at a relative residual norm of 10−6. The

drop threshold for the incomplete factorization is 10−2. Since the unpreconditioned

solver is already fast, there is little incentive to further expand our search for a better

preconditioner.

For analytic curves not too different from a circle, preconditioners are unnecessary

if a suitable integral equation has been selected. But the class of boundaries for which

the standard preconditioners are either unnecessary or else ineffective is small. For

boundaries more characteristic of engineering problems, preconditioning is broadly

regarded as a worthwhile effort.

I have investigated the following boundary classes, testing the hypothesis that

each requires some special care:

1. Curves with corners (e.g., polygons)

2. Curves with a high aspect ratio (e.g., ellipses of high eccentricity)

3. Open curves

4. Closed curves supporting interior resonant modes

5. Small curves (k diamΓ � 1)

6. Large curves (k diamΓ � 1)
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7. Curves supporting multiple reflections

While it is true that a preconditioner can be of some benefit in each of these cases, it is

also true that unpreconditioned iterations often perform well in every instance except

one. In my experience, class 7 is clearly the most difficult. That is the case of a curve,

either open or closed, that can reflect an incident ray many times before it escapes

to infinity. For such curves, unpreconditioned iterations do poorly. Unfortunately,

standard preconditioners such as those in Figure 3.9 do little to improve matters.

Before describing this further, let us dispose of the remaining cases.

In Section 3.2.3 we treated an optically large obstacle (case 6). The last line of

Table 3.1 reports timings for a curve with a diameter of more than 975 wavelengths.

Figure 3.6 provides evidence that for smooth curves the growth in condition number

is sublinear in the wavenumber, κ(Φ) = o(k) as k →∞. So under frequency scaling

the condition number grows without bound at the rate κ(Φ) = o(N) as N →∞.

Figure 3.10 displays curves of types 1, 3, and 7. Table 3.4 shows the corresponding

performance of GMRES both with and without preconditioning. In order to compute

the spectral condition number κ(Φ) = ‖Φ‖2‖Φ−1‖2, the matrix size is kept small in

each case by limiting the wavenumber k. Since the matrices are small enough to

store in physical memory, dense matrix arithmetic has been used instead of fast

multipole arithmetic.

Table 3.4: Preconditioning Four Curves

No Preconditioner ILU Preconditioner

Boundary N κ(Φ) Steps Time (s) Steps Time (s)

(a) square 1024 21.4 29 1.68 10 1.06

(b) astroid 1280 7.27× 104 126 9.45 12 1.99

(c) segment 1024 936 68 4.33 25 2.24

(d) spiral 1568 895 319 40.46 281 45.88
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Figure 3.10: Plane wave scattering from four curves Γ . (a) Γ is a
square with unit side. (b) Γ is an astroid, a curve with the rectangular
parametrization γ(t) = 1

2(cos3 2πt, sin3 2πt). (c) Γ is a straight line seg-
ment. (d) Γ is a spiral with a parametrization in polar coordinates (r, φ)
of r = φ/12π for φ ∈ [3π/2, 6π].

Consider first the scattering from the polygon in Figure 3.10(a). Unlike the

boundary in Figure 3.3, this boundary is nonanalytic. In fact, the presence of the

corners spoils the compactness of the scattering integral operators. The existence

proof contained within the Riesz–Fredholm framework can be repaired [96], but

the spectral condition number of the discretized equations is no longer uniformly

bounded. Instead, κ(Φ) grows without bound as N increases.

At N = 1024, unpreconditioned GMRES requires 29 iterations and 1.68 s to

converge to a relative residual norm of ε = 10−6. With a drop tolerance of 10−2,

an incomplete LU preconditioner improves those figures to 10 iterations and 1.06 s.
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The solution time has been reduced by 40 percent, and for larger values of N the

absolute savings will be significant.

Note that the improvement in the number of iterations is more impressive: It has

been slashed by a factor of three. The disparity between these performance measures

exists because construction and application of the preconditioner is not free. The

effectiveness of a preconditioner should never be judged solely on the reduction of

the number of steps taken by the Krylov method.

The effect of the preconditioner on the eigenvalue distribution of Φ is shown in

Figure 3.11. The factored preconditioner is L̂Û ≈ Φ̂, and clearly the eigenvalues

of Û−1L̂−1Φ are clustered more tightly than those of Φ. True to its name, the

preconditioner also improves the condition number by a factor of 10, from κ(Φ) ≈

21.40 to κ(Û−1L̂−1Φ) ≈ 1.98. Table 3.4 shows, however, that that does not translate

into a factor of 10 improvement in performance.
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Figure 3.11: Eigenvalues of Φ for the square. Φ is the discretization of
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2I − D − i(k + 1)S. (a) Before preconditioning. (b) After
preconditioning.

As the boundary smoothness is reduced, the preconditioner becomes more valu-
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Figure 3.12: Eigenvalues of Φ for the line segment. Φ is the discretization
of the operator −S.

able. Figure 3.10(b) shows a boundary with four cusps, which are corners with

vanishing interior angle. For this curve, the preconditioner gives almost a factor of

5 improvement in solution time.

An integral equation of the second kind is unavailable for open boundaries such

as the straight line segment of Figure 3.10(c). Like the solution at corners in Fig-

ure 3.10(a), the solution is singular at the segment end points. If we apply the EFIE

to this problem, then the convergence of GMRES is expected to be aided by a pre-

conditioner. That is true, as indicated in Table 3.4, but unpreconditioned GMRES

also performs quite well. Figure 3.12 shows the eigenvalues of Φ for this case.

Note that the condition number of the discretized EFIE is not nearly as large as

it would be if the kernel were smooth. The condition number of the CSIE for the

astroid is much larger than the condition number of the EFIE for either open curve

in Figure 3.10. Its condition number is larger because the particles (not shown) on
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adjacent sides of each cusp are so close together.

Figures 3.13 and 3.14 show the variation of condition number as N increases.

The rate of growth appears to be linear for the open curves, and sublinear for the

closed curves. Higher growth rates are certainly tolerated when second-order PDEs

are discretized with finite differences or finite elements.
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Figure 3.13: Growth of condition number for square and line segment. If
the growth were linear in N , then on this logarithmic plot the data points
would fall on a line with slope 1. The measured data points are nearly
collinear, but the slopes are smaller than 1, indicating sublinear growth.
Fitting a line to each data set by least squares, the recorded growth rates
are N0.42 and N0.49 for (a) and (c), respectively.

The last line of Table 3.4 shows that, among these curves, the spiral is most

resistant to preconditioning. In spite of the moderate condition number, the iterative

solver performs poorly. The reduction in the number of iterations is not enough to

compensate the cost of the preconditioner, so even more time is required for the

preconditioned iteration. GMRES does much better with the astroid, which has a
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frequency problem is poorly conditioned, but the growth occurs slowly.
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condition number two orders of magnitude larger than the spiral’s.

Figure 3.15 compares the eigenvalue distributions for these curves, and it perhaps

indicates why GMRES prefers the astroid. Outliers in the eigenvalue spectrum of

the astroid’s Φ inflate its condition number, but those eigenvalues are found in

the beginning of the Arnoldi iteration that underpins GMRES [136]. Furthermore,

if most of the eigenvalues of each problem are collected into a disk, the astroid’s

eigenvalue disk subtends a smaller angle from the origin than the spiral’s eigenvalue

disk.
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To understand why curves like the spiral are particularly challenging, consider

a ray tracing analysis of the scattering. The ray approximation of high frequency
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electromagnetic fields often can quickly yield valuable insights into the behavior of

solutions to the Maxwell equations. The ray path drawn in Figure 3.16 suggests two

conclusions.

First, a small change in the incidence angle of the ray will substantially alter the

locations of the specular reflection points deep inside the spiral. A small deformation

of the boundary at any specular reflection point will have a similar effect. The

solution of the integral equation, which can be determined from the total field in a

neighborhood of the boundary, is therefore sensitive to perturbations in the problem

data. Even if the grid points are placed uniformly along the curve, we expect the

condition number to be large.

Second, the multiple reflections show how well-separated sections of the boundary

can interact strongly. A preconditioner that accounts only for the interactions of

neighboring pieces of the curve is not likely to be effective. Since Φ̂, the starting

point for all preconditioners in Figure 3.9, contains only local interactions, it is

ineffective. In Chapter 4, I introduce a preconditioner that accounts for strong

long-range interactions.

Referring back to the list on page 159, we have yet to consider boundary classes of

type 2, 4, or 5. It turns out that if large condition numbers are encountered in these

instances, they are almost certainly a result of a poor selection of integral equation

or discretization scheme.

Interior resonances of closed curves only cause difficulties for certain integral

equations such as the MFIE. Picking the CFIE or CSIE eliminates the problem.

Other solutions have been proposed as well [114], but neither CFIE nor CSIE has

any serious defect.

Application of the EFIE to small 3-D obstacles has a bad reputation [114], but
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that is because of a poor choice of basis in the method of moments. With a poorly

chosen basis, the condition number of the algebraic system can always be made

arbitrarily large [98]. By changing the basis, this artificial inflation of the condition

number can be avoided.

In the absence of poor user decisions, my numerical experiments show that the

condition number depends only weakly on either the diameter or the aspect ratio of

the boundary.

For example, consider an ellipse with an axial ratio β of minor diameter to major

diameter. For a fixed wavenumber k, there exists a number β0 > 0 such that an

interior mode cannot exist if β < β0. For small frequencies or small axial ratios, the

EFIE will not suffer from nonuniqueness difficulties. Under those circumstances, a

tabulation of condition numbers for both EFIE and CSIE discretizations is given in

Table 3.5.

While keeping the number of variables N fixed, the condition number can be
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increased by decreasing either k or β. But the growth is sublinear in the reciprocal

of either parameter: κ(Φ) = o(1/k) as k → 0 and κ(Φ) = o(1/β) as β → 0.

Table 3.5: Low Frequencies and High Eccentricities

EFIE

β = 1/16, N = 512 k = 100, N = 1024

k κ(Φ) β κ(Φ)

1/4 2.17× 105 1/4 2.48× 103

1/8 2.67× 105 1/8 5.59× 103

1/16 3.18× 105 1/16 14.5× 103

1/32 3.70× 105 1/32 34.9× 103

1/64 4.24× 105 1/64 76.4× 103

CSIE

β = 1/16, N = 512 k = 100, N = 1024

k κ(Φ) β κ(Φ)

1/4 15.55 1/4 10.48

1/8 17.80 1/8 11.79

1/16 20.45 1/16 15.70

1/32 23.40 1/32 24.16

1/64 26.55 1/64 38.08
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Chapter 4

A Direct Multipole Solver

A need exists for a solver able to effectively treat boundaries, such as the spiral of

Figures 3.10(d) and 3.16, that resist preconditioning. In this chapter, I introduce a

direct solver created in an effort to meet that need.

A direct solver is a noniterative solver, one that reaches its solution in a prede-

termined finite number of operations. Gaussian elimination is the direct solver of

choice for unstructured dense linear systems, but its O(N 3) complexity is prohibitive

when N is large, as in high frequency scattering problems. But, like nearly all dis-

cretizations of continuous problems, those scattering problems do have structure.

Chapter 2 identified the structure utilized by multipole methods. The challenge

here lies in incorporating the multipole structure into a fast and stable direct solver.

Direct multipole solvers have been developed for other problems, and some of

them are mentioned in Chapter 6. To the best of my knowledge, no solver of this

type has been reported for the general obstacle scattering problem. Jones, Ma, and

Rokhlin [88] designed a direct multipole solver for Newton–Coulomb interactions
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among particles that lie on 2-D Cantor sets. Among the reported solvers, theirs is

closest in its domain of application to Problem 1.1.

Compared to the work of Rokhlin and his colleagues, the solver presented here

takes a completely different approach. It uses the same well-developed sparse matrix

methods that are applied to finite element discretizations of elliptic PDEs. The

construction turns any multipole method for a fast matrix-vector product into a

direct solver. It is not limited to any particular interaction law, nor is it limited to

two dimensions.

4.1 Sparse Matrix Representation

of the Multipole Dag

We begin by reviewing the signal flow dag introduced in Section 2.5.2 and pictured

in Figure 2.16. The signal at each graph vertex is a vector. Listed in the order of

their priority, the vertices fall into four consecutive groups:

1. Leaf charge vectors {qi}
2. Exterior expansion coefficient vectors {ai}
3. Interior expansion coefficient vectors {bi}
4. Leaf field vectors {ui}

Each directed edge is weighted by a matrix. There are six types of edge matrices,

all of them dense:

1. Matrices {Dij} that evaluate the field ui at points of leaf cluster i

produced by the charge qj in leaf cluster j, where i and j are not well

separated

2. Matrices {Vi} that construct exterior expansion coefficients ai from
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the charge qi contained in leaf cluster i

3. Matrices {Si} that translate the origin of an exterior expansion from

the center of disk i to the center of its parent disk

4. Matrices {Tij} that translate an exterior expansion with origin at the

center of disk j to an interior expansion with origin at the center of

disk i, where i and j are well separated

5. Matrices {Ri} that translate the origin of an interior expansion from

the center of disk i’s parent to its own center

6. Matrices {Ui} that evaluate the field ui with interior expansion coef-

ficients bi at the points of leaf cluster i

The edge matrices {Si}, {Tij}, and {Ri} are Toeplitz, and this structure is utilized

to reduce the work associated with those edges. No useful structure is extracted

from the edge matrices {Dij}, {Ui}, and {Vi}.

The multipole dag suggests an approach to a direct solver. The main idea is to

augment the linear system Φq = u by letting all vertices in the dag—not just {ui}

and {qi}—be variables.

The new variables are the spectral series coefficients {ai} and {bi}. The same

number of new equations can be appended to the original system, giving a block

linear system that encapsulates all the operations in the dag,



D U

V S

T R





q

a

b


 =



u

a

b


 . (4.1)

The vector a is formed by concatenating the vertex signals {ai}, where i iterates

over each node of the source tree. The vector b is formed by concatenating the

vertex signals {bi}, where i iterates over each node of the destination tree.
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The submatrix labeled D is the composition of all the short-range interaction

edge matrices {Dij}, where i iterates over each leaf of the destination tree and j

iterates over each leaf of the source tree. Since Dij = 0 if the clusters belonging to

the leaves i and j are well separated, D is sparse. It is identical to the matrix Φ̂

used in Section 3.2.2 to generate a preconditioner for Φ.

The sparsity pattern of D depends on the ordering assigned to the variables and

equations. To illustrate a typical pattern, Figure 4.1 labels the vertices of the dag

taken from Figure 2.16. With this vertex order, in which adjacent leaf clusters are

numbered consecutively, D is a block tridiagonal matrix.

Like D, each of the other five nonzero submatrices in (4.1) is block sparse. That

sparsity reflects the sparsity of the multipole graph. Ordering vertices as in Fig-

ure 4.1, the submatrices U and V are block diagonal. The submatrices R, T , and S

have the more interesting sparsity patterns shown in Figure 4.2.

In an inverse particle problem, we must determine the charge amplitudes q re-

sponsible for generating a given field u. The obvious deficiency of (4.1) is that we

do not know in advance the subvectors a and b of the right-hand side.

But those unknowns appear in the vector on the left-hand side of (4.1) as well.

Subtracting the block column vector
[
0;a; b

]
from both sides of the equation gives



D U

V S

T R





q

a

b


−




0

a

b


 =



u

0

0


 , (4.2)

which further simplifies to



D U

V S−I
T R−I





q

a

b


 =



u

0

0


 . (4.3)
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Figure 4.2: Sparsity patterns generated by the numbered dag in Figure 4.1.
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Now all elements of the right-hand side vector are known, and we can solve the

system for
[
q;a; b

]
. In addition to finding the charges q, this method simultaneously

determines the coefficients a and b.

With the definitions

Ξ :=



D U

V S−I
T R−I


 , (4.4a)

x :=
[
q;a; b

]
, (4.4b)

y :=
[
u; 0; 0

]
, (4.4c)

the system (4.3) is Ξx = y, to be solved in lieu of Φq = u. The effectiveness

of working with Ξ instead of Φ remains to be demonstrated. The sparsity of Ξ

is its asset, but Ξ is also larger in shape than Φ. These properties influence the

computational burden in opposing directions.

I apply a direct sparse solver to (4.3). Matlab has a built-in sparse solver [60],

and several well-regarded libraries offer alternatives [36]. While this strategy is

certainly convenient, its efficiency depends strongly on the ordering of the rows and

columns of Ξ. Some row and column permutations are investigated in Section 4.2.

One major deficiency of this approach is that a generic sparse solver sacrifices

important structure in Ξ. For high frequency scattering problems, iterative multi-

pole must capitalize on the Toeplitz structure of the nonzero blocks of T , S, and

R. The sparse solver treats those blocks as unstructured dense matrices. Clearly,

a specialized sparse solver that does not ignore the Toeplitz structure is potentially

more efficient in space and time.

The neglect of the Toeplitz block structure does not necessarily ensure that the

direct solver will be uselessly slow. In the case of a matrix-vector product, the
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Toeplitz structure is pivotal to the work reduction from O(N 2) flops to O(N logN)

flops. Ignoring this structure would make multipole a slow O(N 2) algorithm. In

contrast, Gaussian elimination requires O(N 3) flops, so there is more room for im-

provement. Ignoring the Toeplitz structure in Ξ may not be ideal, but it does not

prevent a reduction of the complexity from O(N 3) to, say, O(N 2).

As an alternative to a direct sparse solver, we could apply an iterative sparse solver

to (4.3), and that would allow us to utilize all of the Toeplitz structure present. Such

an approach is different from the multipole solvers of Chapter 3, because the Krylov

space now captures approximations of the coefficients a and b as well as the charges

q.

Most intriguing is that, compared to the multipole matrix-vector product, the

product on the left-hand side of (4.3) is better suited to a scalable implementation

on a distributed parallel architecture. Assignment of the dag vertices in Figure 4.1

to processors is a typical scheduling problem, and balancing the load among the

available processors is challenging. By introducing the intermediate variables a and

b into the solution space, however, the dag collapses, giving all vertices the same

scheduling priority.

The system (4.3) may benefit from preconditioning. The preconditioners for

Φ in Chapter 3 were based on D, and those preconditioners can be reused in a

preconditioner for Ξ. Moreover, if either U or V is erased from Ξ, then full advantage

may be taken of the Toeplitz blocks in S, T , and R during the factorization of the

remaining matrix. If V is deleted, then (4.3) becomes



D U

S−I
T R−I





x1

x2

x3


 =



y1

y2

y3


 , (4.5)
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which is solved in two stages. First, solve

[
S−I 0

T R−I

] [
x2

x3

]
=

[
y2

y3

]
(4.6)

by block forward substitution. The block substitution encourages the use of fast

Toeplitz matrix-vector products. Second, solve

Dx1 = y1− Ux3 (4.7)

using x3 from (4.6). An approximate solution should suffice for the preconditioner,

so we might use an incomplete factorization of D. Another approach is to solve (4.7)

with a subsidiary iteration.

If U is deleted instead of V , a similar method can be devised, and it is tempting

to alternate between these two preconditioners at each step of the Krylov iteration.

4.2 Row and Column Permutations

We are free to rearrange the order of variables and equations in (4.3). With permu-

tation matrices P and Q, an equivalent system is

(PΞQT )(Qx) = Py. (4.8)

If sparse Gaussian elimination is used to compute a triangular factorization of

PΞQT , then a careful choice of P and Q is essential, because these permutations

have a strong influence on the amount of fill-in that occurs during the elimination

process. If poor permutations are chosen, the sparse factorization can cost more

than the dense factorization of Φ.
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To see that, consider the symmetric block permutation

P = Q =




0 I 0

0 0 I

I 0 0


 (4.9)

After this circular shift of both equations and variables, (4.3) becomes



S−I V

T R−I
U D





a

b

q


 =




0

0

u


 . (4.10)

We have so far specified only that all the variables {ai} occur before any of the

variables {bi}, and all of the variables {bi} occur before any of the variables {qi}.

Next we specify partial orderings within each block, maintaining the symmetry of

the permutation.

Assemble {ai} into the vector a by following a postorder of the source tree. A

postorder is a topological order in which every child node must occur before its

parent. The ordering of the source tree in Figure 4.1 is an example. With this order,

S − I is a sparse lower triangular matrix. Since S alone is strictly lower triangular,

each diagonal element of S − I is −1.

Assemble {bi} into the vector b by following a preorder of the destination tree.

A preorder is a topological order in which every parent node must occur before any

of its descendants. The ordering of the destination tree in Figure 4.1 is an example.

With this order, R− I is a sparse lower triangular matrix. Since R alone is strictly

lower triangular, each diagonal element of R− I is −1.

Since S − I and R − I are triangular matrices with nonzero diagonal elements,
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they are nonsingular. The following block factorization of PΞP T is thus possible:



S−I V

T R−I
U D


 =




I

T (S−I)−1 I

U(R−I)−1 I





S−I V

R−I −T (S−I)−1V

D̃


 , (4.11)

where D̃ := D+U(R− I)−1T (S− I)−1V is the Schur complement of the block 2×2

leading principal submatrix
[
S−I 0
T R−I

]
.

After substituting this factorization, (4.10) reduces to the equivalent block trian-

gular linear system,



S−I V

R−I −T (S−I)−1V

D̃





a

b

q


 =




0

0

u


 . (4.12)

The first step in solving this system by block backward substitution is to solve

D̃q = u. Compare this to the original dense system Φq = u. Clearly, (D̃−Φ)q = 0.

If we exclude the trivial right-hand side u = 0, then q 6= 0 and D̃ = Φ.

We conclude that block Gaussian elimination with the chosen row and column

permutation is inefficient. Partway through the computation, we are led back to the

system Φq = u, so the sparse augmented system has only generated more work for

us.

An artifact of this analysis is a factorization of the interaction matrix:

Φ = D̃ = D + U(I −R)−1T (I − S)−1V. (4.13)

Since R and S are nilpotent, simple formulas exist for the two inverses in (4.13). If

the source tree has µ levels, then Sµ = 0 and

(I − S)−1 = I + S + S2 + · · ·+ Sµ−1. (4.14)
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Likewise, if the destination tree has ν levels, then Rν = 0 and

(I −R)−1 = I +R +R2 + · · ·+Rν−1. (4.15)

Using (4.13) to compute Φq for a known charge vector q reproduces precisely those

steps performed by the fast multipole algorithm.

We have so far considered only two orderings of the rows and columns. Another

symmetric permutation that leads to a smaller amount of fill-in is



D U

R−I T

V S−I





q

b

a


 =



u

0

0


 , (4.16)

where variables a are preordered and variables b are postordered on their respective

multipole trees. Let Π be the permutation that transforms (4.3) into (4.16). With

this ordering, R and S are strictly upper triangular matrices.

I have experimented with various other “natural” orderings and with elaborations

on this theme, for instance by interleaving the elements of a and b. All other hand-

picked permutations have proved inferior to (4.16). That may be due to lack of

imagination on my part, and a more inspired choice may embarrass this one.

The sparsity pattern in (4.16) is strongly nonsymmetric—look ahead to Fig-

ure 4.6(a)—which suggests that distinct row and column permutations may pro-

duce superior orderings. Some sparse solvers capitalize on near structural symme-

try [43] [51]. If, however, Ξ originates from an integral equation of the second kind,

then another observation suggests that the permutation should be symmetric.

The element of largest modulus in each column of Ξ typically sits on the main

diagonal. (Since any Toeplitz structure in R, T , and S is ignored anyway, I use

the stabilized basis of Chapter 5, which does not produce large elements in T .) We

probably do not want to move these large elements off the main diagonal, because
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to ensure numerical stability the solver’s pivoting algorithm will tend to move them

back. Indeed, for general sparse systems a preliminary computation may be carried

out to permute large elements to the main diagonal [44].

Symmetric permutations PΞP T always exchange one diagonal element for an-

other. Unfortunately, the restriction P = Q does not much simplify the choice of

permutation.

For a general sparse N ×N matrix, no algorithm of polynomial complexity in N

is known for the determination of row and column permutations that minimize the

fill-in generated by Gaussian elimination [42]. All codes for the automatic reordering

of general sparse matrices are based on suboptimal heuristics.

Nevertheless, the heuristics are sophisticated and can be quite effective. Two

common approaches are approximate minimum degree (AMD) [4] [37] and nested

dissection [59] [100], and either technique substantially improves on the permutation

expressed in (4.16). Matlab has several AMD implementations, including colamd,

but it has no function to perform nested dissection. I have used, with much success,

the freely available C library METIS [91]. The public-domain Matlab toolbox

MESHPART includes an interface to METIS. It also has routines that implement

several other nested dissection methods.

4.2.1 Example: Scattering from a Spiral

To demonstrate the direct multipole solver, we apply it to the scattering problem

illustrated in Figure 4.3. The obstacle is a spiral segment, which, as we saw in

Chapter 3, is intractable to an iterative multipole solver. This spiral has one more

turn than the spiral of Figures 3.10(d) and 3.16, so it is expected to pose an even

greater challenge.
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Figure 4.3: A plane wave uinc(x, y) = e−iky illuminates a section of an
Archimedes spiral. The boundary is described in polar coordinates (r, φ)
by r = φ/8π for φ ∈ [2π, 8π].

The EFIE is discretized by a piecewise product rule of order 32, everywhere

maintaining a local boundary grid density of at least 4 points per wavelength 2π/k.

For smooth curves, those specifications are sufficient to limit the discretization error

to ε ≈ 10−3.

With k = 100, the spiral is automatically partitioned into the cluster hierarchy

shown in Figure 4.4. The hierarchy is deep only at the boundary end points. The

current density is singular at those points, but the quadrature rule is not designed

to accommodate such solution singularities. A common way to improve the solution

accuracy is to force the grid density to be higher near the singularities. In this case,

after the initial tree generation is finished, the arcs contained in the two leaf disks

at the spiral end points are each divided into two child subarcs. Then the new end

leaves are divided again, and then again.
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Figure 4.4: Cluster hierarchy generated for the spiral of Figure 4.3 with
k = 100. The boundary mesh is refined to an extra three levels of depth at
the spiral end points.

The dense interaction matrix Φ ∈ C1856×1856 is displayed in Figure 4.5(a). Note

that the matrix appears stretched along its four borders, a consequence of the mesh

grading at the end points.

The task of constructing a fast solver is made formidable by the rapid oscillations

in the matrix elements. Although Matlab’s entire jet colormap has been utilized,

the contrast in Figure 4.5(a) is poor because the deep reds and blues that mark the

real elements of largest absolute value are packed into a thin band surrounding the

main diagonal. To improve the contrast, the jet colormap has been reapplied to a

submatrix of Φ in Figure 4.5(b), and the oscillations are more clearly visible.

Instead of working with Φ, the approach of (4.16) is to work with ΠΞΠT . Its

sparsity pattern is plotted in blue in Figure 4.6(a). Also shown is a green pattern
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of fill-in produced by Gaussian elimination. The triangular factors of ΠΞΠT have

4,176,522 more nonzero elements than ΠΞΠT itself.

The unknown currents q have been ordered consecutively along the spiral. In

the block D of short-range interactions, two fringing bands of nonzero elements run

nearly parallel to the main band. That sparsity pattern resembles the one produced

by a low-order finite difference discretization of the Helmholtz equation on a domain

containing the spiral, assuming the domain is filled with a uniform rectangular grid

and the grid points are enumerated in a natural lexicographic order. With respect

to the structure of D, this boundary is more nearly two-dimensional than one-

dimensional. As k is increased, though, the optical distance between the spiral

turns increases. The numerical dimension of the boundary decreases to match its

true dimension, and the fringes disappear.

Figure 4.6(b) shows the improvement possible with automatic reordering of the

rows and columns of Ξ. It shows the sparsity pattern of PΞP T and its triangular

factors, where P has been computed by passing Ξ+ΞT to a nested dissection routine

in the METIS library. Now the factors consume only 2,062,574 additional nonzero

elements, a 50 percent reduction of the fill-in generated by the “natural” ordering

of Figure 4.6(a).

The flexibility of choosing a good permutation for the larger sparse system turns

out to be sufficient to produce a superior direct solver. Before showing some timings,

however, I describe in the next section a compression technique designed to make Ξ

as small as possible. That compression has already been applied to Figure 4.6, and

it can dramatically speed up the computation.
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Figure 4.5: (a) Real part of 1856 × 1856 interaction matrix Φ at k = 100.
(b) Real part of the outlined 400× 200 submatrix.
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(a)

(b)

Figure 4.6: (a) Sparsity pattern of the 4160 × 4160 matrix ΠΞΠT and
its triangular factors. The black lines partition the matrix according to
(4.16). The block D is the same size as the matrix in Figure 4.5(a). The
nonzero main diagonal is difficult to see at this scale, so it has been drawn
thickly. (b) Symmetric permutation produced by nested dissection. Again,
the main diagonal is drawn thickly to emphasize that no zeros occur there.
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4.3 Compressing the Sparse System

It is possible to reduce both the order of the sparse matrix Ξ and its number of

nonzero elements. This compression is possible because the multipole field represen-

tations (2.10) and (2.28) show some redundancy. While those spectral expansions

are efficient for all boundaries, they are suboptimal for any particular boundary.

The suboptimality can be appreciated by considering how the multipole algorithm

uses the exterior expansion of a root charge cluster. In polar coordinates (r, φ),

the field produced by sources inside a disk G0 with center r = 0 and radius α is

approximated for r > 2α by a weighted sum of functions {Hm(kr)eimφ}. Assume

that p of these basis functions are needed to achieve a specified accuracy. Inside each

member of the set of well-separated disks {Gj} in G0’s interaction list, the exterior

expansion is converted into an interior expansion in a local coordinate system (rj, φj)

attached to disk Gj’s center. Because G0 is a root disk, its exterior expansion serves

no further purpose. That expansion, constructed to approximate the field at all

points well separated from the disk G0, is actually needed only at points inside
⋃
j Gj. If this collection of disks subtends a small angle with respect to the center

of G0, the field inside
⋃
j Gj can have fewer than p degrees of freedom.

Rank revealing decompositions of the translation matrices stored in Ξ can detect

such a situation and substitute a shorter expansion. That approach is effective

not only for exterior expansions of root clusters, but for all interior and exterior

expansions.

The details of the compression are illustrated with the assistance of Figure 4.7,

which shows two subgraphs of a multipole dag. In Figure 4.7(a), edges lead from

the vertex labeled ai to the three vertices ap, bf , and bg, indicating the flow of an

exterior expansion from a leaf node i of the source tree to its parent node p and to
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interior expansions at nodes f and g of the destination tree.

Except for −I on the block diagonal, the weight matrices associated with these

edges are the only nonzero entries in the block column of Ξ associated with node i.

They can be stacked together as



ap
bf
bg


 =




Si
Tf,i
Tg,i


ai =: Aai, (4.17)

where A ∈ Cm×n has been introduced to simplify later expressions. We plan to

approximate A with a matrix of smaller rank.

�

�

�

�

�

qi

ai

ap bg

bf

(a)

�

�

� �

�

�

bj

bq a`

ah

bc bd

(b)

Figure 4.7: Two subgraphs of a multipole dag. (a) Subgraph containing
all edges connected to the vertex ai. (b) Subgraph containing of all edges
connected to the vertex bj .

If m ≥ n, then A has a singular value decomposition (SVD) A = QLΣQ
H
R , where

QL ∈ Cm×n has orthonormal columns, Σ ∈ Rn×n is a diagonal matrix of singular

values {σi}, and QR ∈ Cn×n is a unitary matrix of right singular vectors. This

reduced SVD is computed in Matlab with the function call svd(A,0). We assume

that the singular values are produced in nonincreasing order, so σi ≥ σj if i < j.

Given a relative accuracy ε, the numerical rank of A is defined to be the smallest
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number r such that σi < εσ1 for i > r. To this accuracy, a low-rank approximation

Â of A is obtained by truncating its singular value spectrum at the length r. Let

Q̂L and Q̂R be the leading r columns of QL and QR, respectively, and let Σ̂ be the

r × r leading principal submatrix of Σ. Then the approximation is Â = Q̂LΣ̂Q̂
H
R .

Now partition Q̂L into three block rows conforming with the original row partition

of A. Then (4.17) becomes



ap
bf
bg


 = Q̂L(Σ̂Q̂H

Rai)

=




Ŝi
T̂f,i
T̂g,i


 âi,

(4.18)

where the new exterior coefficients of node i are âi := Σ̂Q̂H
Rai, and the new trans-

lation operators are the indicated block rows of Q̂L.

Although the new translation operators Ŝi, T̂f,i, and T̂g,i are smaller, any Toeplitz

structure is lost. Since I am not using a sparse solver that can utilize such structure

anyway, in my code I compress all translation operators.

The net effect of this manipulation is to shorten the vector ai from a length of

n to a length of r, and to simultaneously compress the translation matrices from n

columns to r columns. The latter reduces the width of the associated block column

of Ξ from n to r, an alteration that makes Ξ nonsquare.

Now the change to ai must be propagated to the graph edges incident on node

i, after which Ξ will become square again.

In the subgraph of Figure 4.7(a), there is but a single incident edge, corresponding

to the operation ai = Viqi. Except for −I on the block diagonal, Vi is the only

nonzero entry in the block row of Ξ associated with node i of the source tree. In
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the new basis, this operation is

âi = Σ̂Q̂H
Rai

= (Σ̂Q̂H
RVi)qi

= V̂iqi,

(4.19)

where V̂i := Σ̂Q̂H
RVi is the new leaf operator. It has r rows, and the height of the

associated block row of Ξ is thus reduced from n to r.

We have compressed the sparse system Ξ by n− r rows and columns. The only

change to the multipole dag is to replace the data vector at vertex i, together with

the matrix operators weighting all edges connected to that vertex. Since the change

is confined to a small subgraph, further compression of Ξ is possible by repeating

this procedure—in parallel, perhaps—for other vertices of the dag.

A similar procedure first compresses a block row of Ξ and propagates the com-

pression to a block column. Figure 4.7(b) shows another subgraph of the multipole

dag. The vertex labeled bj stores the interior expansion coefficients for node j of the

destination tree. Three edges feed signals to this vertex, and another two edges carry

the data bj to node j’s children, where it is translated into new interior expansion

coefficients.

Excluding the matrix −I on the block diagonal, the nonzero entries of the block

row of Ξ associated with node j can be collected as

bj =
[
Rj Tj,h Tj,`

]


bq
ah
a`


 =: A



bq
ah
a`


 , (4.20)

where again for convenience the temporary matrix A ∈ Cm×n has been introduced.

It is obviously not the same as A in (4.17).

Now we assume m < n, so that the reduced SVD is A = QLΣQ
H
R , where QL ∈
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Cm×m is unitary and QR ∈ Cn×m has orthonormal columns. After truncating the

singular values, we have an approximation Â = Q̂LΣ̂Q̂
H
R of rank r. Partitioning Q̂H

R

into three block columns, conformal with the partition of A, (4.20) is replaced with

bj = Q̂LΣ̂Q̂
H
R



bq
ah
a`




= Q̂LΣ̂
[
R̂j T̂j,h T̂j,`

]


bq
ah
a`


 ,

(4.21)

where new translation matrices have been introduced as the block columns of Q̂H
R .

Define the new vector of interior coefficients b̂j implicitly by

bj = Q̂LΣ̂b̂j. (4.22)

Then (4.21) becomes

b̂j =
[
R̂j T̂j,h T̂j,`

]


bq
ah
a`


 . (4.23)

The length of b̂j is r, and each of the new translation matrices has r rows instead

of m.

The edges leaving the vertex carry out the operations bc = Rcbj and bd = Rdbj.

Substituting (4.22), these become

bc = (RcQ̂LΣ̂)b̂j = R̂cb̂j, (4.24a)

bd = (RdQ̂LΣ̂)b̂j = R̂db̂j, (4.24b)

in which new branch operators R̂c := RcQ̂LΣ̂ and R̂d := RdQ̂LΣ̂ have been identi-

fied.

Although these new branch operators already have fewer columns, further com-

pression can be achieved through the same manipulations applied to the edges leav-

192



ing the central vertex of Figure 4.7(a). Concatenating R̂c and R̂d as in (4.17) gives

[
bc
bd

]
=

[
R̂c

R̂d

]
b̂j. (4.25)

By truncating the SVD of the block matrix on the right-hand side, we obtain an

approximation Q̃LΣ̃Q̃
H
R with rank s ≤ r. With a row partition of Q̃L, conformal

with the partition of the left-hand side,

[
bc
bd

]
= Q̃L(Σ̃Q̃H

R b̂j)

=

[
R̃c

R̃d

]
b̃j,

(4.26)

where b̃j := Σ̃Q̃H
R b̂j is the second compression of the vertex data, reducing its length

from r to s. The updated translation matrices R̃c and R̃d have s columns each.

This compression must be propagated to the translation matrices weighting the

incident edges, so that Ξ remains square. The update follows the pattern of (4.19),

b̃j = Σ̃Q̃H
R b̂j

= Σ̃Q̃H
R

[
R̂j T̂j,h T̂j,`

]


bq
ah
a`




=
[
R̃j T̃j,h T̃j,`

]


bq
ah
a`


 ,

(4.27)

where the translation matrices R̃j, T̃j,h, and T̃j,` now have s rows each.

To review the steps applied to the subgraph in Figure 4.7(b), we first obtained

some compression by truncating the SVD of the entering edge matrices, which also

modified the exiting edge matrices. Then we obtained more compression by truncat-

ing the SVD of the exiting edge matrices, which in turn modified the entering edge

matrices. Further compression is not possible by iterating this procedure, since the
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block of new incident edge matrices,

[
R̃j T̃j,h T̃j,`

]
= Σ̃Q̃H

R Q̂
H
R , (4.28)

is already a reduced SVD. The columns of the product Q̂RQ̃R are necessarily or-

thonormal, since the columns of each factor are orthonormal.

We can replace the SVD with a cheaper decomposition, such as a rank revealing

QR factorization [20] [24] [73]. Matlab does not offer that factorization, but it does

have the column-pivoted QR factorization AP = QLH , which is triggered by calling

qr(A,0) with three output arguments. The main diagonal elements of the upper

triangular factor LH are returned in order of decreasing modulus. By applying a

threshold to those elements, some trailing rows of LH and trailing columns of Q

are discarded. The result is a low-rank approximation Â = Q̂L̂HP T in which P is a

permutation matrix, LH is upper trapezoidal, and the columns of Q̂ are orthonormal.

Although the asymptotic complexity of the SVD matches the complexity of QR,

if A is large the QR factorization is faster by a nontrivial length of time. The

trade-off is that truncating the column-pivoted QR factorization can overestimate

the numerical rank of A, and it will not usually achieve quite as much compression

as the SVD. Since the resulting sparse system is larger, the time savings realized by

QR compression will in part be erased by the extra work required to factor Ξ. For

that reason, in my code I use QR compression only when A is large.

The QR factorization Q̂L̂HPH is an appropriate substitution for the SVD in the

block column compression (4.18). In the block row compression (4.21), however,

Q̂ should appear on the right-hand side of the factorization. A row-pivoted LQ

factorization PA = LQ, easily constructed in Matlab from the QR factorization

of AH , is a suitable alternative to the SVD.
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If instead a QR factorization were used in (4.21), then in (4.24) Rc and Rd would

be right-multiplied by only Q̂. It is the presence of Σ̂ in the case of the SVD, or L̂

in the case of LQ, that promotes a rank reduction. Furthermore, the usage of only

QR—or only LQ—factorizations will invalidate the given argument that iterating

the compression of entering and exiting edges is superfluous.

Table 4.1 shows the compression achieved for the spiral of Figure 3.10(d). Details

of the discretization are provided in the following section.

Table 4.1: Compression of the Spiral

Uncompressed Ξ Compressed Ξ

k N Order Nonzeros Order Nonzeros

211/2 576 2.87N 0.886N 2 1.62N 0.499N 2

212/2 736 3.45N 0.810N 2 1.85N 0.362N 2

213/2 896 4.08N 0.849N 2 2.08N 0.299N 2

214/2 1344 4.68N 0.665N 2 2.30N 0.172N 2

215/2 1728 5.38N 0.678N 2 2.54N 0.140N 2

216/2 2624 5.84N 0.515N 2 2.70N 0.098N 2

217/2 3392 6.56N 0.532N 2 2.94N 0.089N 2

218/2 5152 6.91N 0.417N 2 3.05N 0.065N 2

219/2 6688 7.69N 0.443N 2 3.30N 0.061N 2

4.4 Direct Solver Performance

4.4.1 Frequency Scaling

To demonstrate the efficiency of the direct multipole solver, we compute the plane

wave scattering from the 2 1
4
-turn spiral of Figure 3.10(d), which is slightly less chal-

lenging than the spiral of 3 turns used in Section 4.2.1. In that section, the boundary
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mesh was refined three times at the spiral end points. The results of this section

are computed with only a single mesh refinement, but the accuracy specification

is improved to ε = 10−4. Using order-32 rules, 6 grid points per wavelength are

needed to achieve that accuracy. To show how the costs grow with N , the scattering

problem is solved for a sequence of wavenumbers k ∈ {2j/2 : 11 ≤ j ≤ 21}.

Three solvers are compared:

• Gaussian elimination applied to the N ×N dense system Φq = u

• Iterative multipole applied to the same dense system

• Direct multipole applied to the sparse system Ξx = y

The Krylov solver used for the iterative solution is unrestarted GMRES with no pre-

conditioning. The sparse factorization used for the direct solution is Matlab’s built-

in sparse lu, which is passed a symmetric permutation of Ξ returned by METIS.

Table 4.2 records the time required by each method. The time reported for

Gaussian elimination includes the time to fill the matrix Φ, and the time reported for

iterative multipole includes the time spent initializing the multipole data structures

after the cluster tree has been constructed. Neither of the last two columns includes

the time needed to build the multipole tree, but that cost is negligible in comparison

to the expense of the other operations. The figures for the direct multipole solver

include the time to fill, compress, and reorder the matrix Ξ.

The times reported are wall clock times, but with the exception of four entries

those times are nearly the same as CPU times. At N = 3392, Φ fits comfortably

into physical memory. At N = 5152, however, the dense Gaussian elimination solver

already exhausts virtual memory. The memory requirement of either multipole

method grows more slowly, so they are each able to make profitable use of the

available virtual memory for two large problems. The wall clock times for those
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Table 4.2: Solution Time (s) for the Spiral

Multipole

N Gauss Iterative Direct

576 4.44 10.93 6.10

736 7.03 17.09 7.90

896 10.44 28.89 11.36

1344 24.04 52.33 22.06

1728 41.03 86.57 37.28

2624 104.08 151.94 61.31

3392 187.36 332.59 120.78

5152 862.21 240.99 + 3.11

6688 1151.55 492.87 + 18.00

10272 3472.76 + 12.21

13312 3465.10 + 37.12

problems are reported as the sum of the user CPU time and the system time required

to manage virtual memory.

Clearly, for this boundary the iterative multipole solver is inferior in execution

time to even dense Gaussian elimination. It is, though, able to treat larger problems

than either of the other solvers. That lower memory requirement is evident in

Table 4.3.

The direct multipole solver becomes faster than dense Gaussian elimination at

some point between N = 896 and N = 1344. It is not faster by a startling amount,

but the sparse LU factorization in Matlab is also not particularly fast. The mul-

tifrontal code in UMFPACK [36], for example, typically performs the sparse factor-

ization much more quickly. The dense LU factorization in Matlab issues a call to

LAPACK [9], and it is unreasonable to expect much improvement from any alter-

natives. If the fastest available sparse solver were compared to the fastest available

dense solver, the advantage of the direct multipole method displayed in Table 4.2
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would grow.

Table 4.3: Memory (MB) Consumed by the Spiral

Multipole

N Gauss Iterative Direct

576 5.31 4.88 7.10

736 8.67 5.88 10.02

896 12.85 7.47 14.85

1344 28.90 10.20 28.35

1728 47.78 14.19 42.15

2624 110.17 24.34 69.63

3392 184.09 43.91 116.13

5152 85.99 206.56

6688 107.40 343.95

10272 215.92

13312 239.28

Figure 4.8 marshals some evidence that the complexity of the direct multipole

solver is less than the complexity of dense Gaussian elimination. Only the asymp-

totically dominant cost of those two methods has been plotted. The O(N 2) time

needed to fill Φ is not included, but the time spent in compressing Ξ is included.

Fitting the data on this logarithmic graph to a straight line produces an exper-

imental complexity estimate of aN b flops. The cost of the sparse solver is hard to

assess theoretically, since it depends strongly on the details of the sparsity pattern.

As demonstrated in Section 4.2, a poor choice of row and column permutations can

make b as large as 3, irrespective of any compression of Ξ. The data of Figure 4.8

indicate, however, that a good ordering makes b < 3 possible.

Since the spectral expansion of a root cluster has length O(N), the translation

matrices {Tij} at the top of the multipole tree have O(N 2) elements. Therefore,

since those translation matrices are stored as dense blocks in Ξ, without compression
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Figure 4.8: Comparison of the asymptotically dominant portion of the so-
lution time for the direct solvers. A least-squares fit to the dense Gaussian
elimination data has a slope of 2.72, while a fit to the multipole data im-
proves that slope to 2.01.

the sparse matrix has Ω(N 2) elements. Unless compression can reduce the storage

complexity, the solver will require Ω(N 2) flops. Figure 4.8 suggests that this lower

bound is achievable.

Compared to iterative multipole, the memory consumption of direct multipole is

its chief liability. Two factors inflate the memory requirements:

• Toeplitz blocks {Si}, {Tij}, and {Ri} are stored explicitly in Ξ, and

some of those blocks are large.

• Gaussian elimination partially fills in the sparsity pattern of Ξ.

Iterative multipole can solve problems an order of magnitude larger. For the scat-

tering from a unit circle, Table 4.4 shows the largest problems that either method
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can solve before exhausting memory on my PC workstation.

Table 4.4: Circles of Maximum Optical Size

Multipole Solver Maximum k Maximum N

Direct 600 4096

Iterative 10,000 65,536

4.4.2 Accuracy Scaling

A different way to grow N is to increase the number of grid points applied to the

boundary at a fixed frequency, something that is done to increase the accuracy of

the computed solution.

The complexity of the solution by dense Gaussian elimination depends only on

N . It is the same for either frequency scaling or accuracy scaling. The complexity of

the direct multipole solver, on the other hand, does depend on how N is increased.

To study the direct multipole performance under accuracy scaling, we solve the

scattering problem depicted in Figure 4.9. The incident field has wavenumber k =

100. The boundary is discretized with order-32 quadrature rules at a density of 16

points per wavelength, which is sufficient on a smooth boundary to obtain a relative

accuracy of ε = 10−10. This boundary, however, has three corners. To reach the

desired level of accuracy, the mesh must be refined by adding grid points near those

points. The reported data has been collected for a sequence of boundary grids that

are successively finer at the corners.

Table 4.5 shows how the measured solution accuracy ε̂ improves as N increases.

(To be precise, ε̂ is a backward error, determined by averaging the logarithm of
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Figure 4.9: A plane wave incident from the angle π/2 scatters from a per-
fectly conducting equilateral triangle.

the measured residual over the curve Γ .) The table also lists the size of the sparse

matrix Ξ after basis compression. Two measures of its size are given: its order, and

the number of nonzero entries in its triangular factors.

The time and space complexities of direct multipole and dense Gaussian elimina-

tion are compared in Figure 4.10. The direct multipole method is plainly superior.

Its complexity appears to be at most linear in both time and space.

Table 4.6 contains the timing information displayed in Figure 4.10(a), and it

also includes the time required by an iterative multipole method. The solver is

unrestarted GMRES, preconditioned by the incomplete LU factorization of Φ̂ with

a drop tolerance of 10−3.

The table entries in parentheses are extrapolated values. Dense Gaussian elimi-

nation runs out of memory at N = 3456. In contrast, neither multipole solver has

any trouble fitting these problems into memory.
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Table 4.5: Accuracy and Size Measurements for the Triangle

Ξ = LU

N ε̂ Order nnz(L+ U)

1536 10−4.98 2.62N 0.56N 2

1920 10−5.67 2.57N 0.41N 2

2304 10−6.51 2.51N 0.32N 2

2688 10−7.39 2.48N 0.26N 2

3072 10−8.22 2.44N 0.22N 2

3456 10−8.93 2.41N 0.19N 2

3840 10−9.15 2.39N 0.18N 2

4224 10−9.25 2.37N 0.15N 2

4608 10−9.32 2.35N 0.14N 2

4992 10−9.37 2.34N 0.12N 2

5376 10−9.42 2.33N 0.11N 2

PSfrag replacements

103 104
101

102

103

N

T
ot

al
ti

m
e

(s
)

Direct
Multipole

Gauss

(a)

PSfrag replacements

103

104

101

102

103

103 104
107

108

109

N

M
em

or
y

(B
)

Direct
Multipole

Gauss

(b)

Figure 4.10: (a) Total time, fill plus solve, as a function of problem size N .
A least-squares fit to the multipole data has a slope of 0.94. (b) Memory
as a function of problem size N . A least-squares fit to the multipole data
has a slope of 0.73.
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Table 4.6: Solution Time (s) for the Triangle

Multipole

N Gauss Iterative Direct

1536 35.36 16.53 14.17

1920 54.00 23.90 17.11

2304 87.12 32.24 20.02

2688 114.78 39.88 23.02

3072 174.55 47.77 26.28

3456 (234) 54.11 29.46

3840 (305) 62.93 32.63

4224 (389) 70.48 35.61

4608 (486) 79.86 38.98

4992 (597) 93.12 42.13

5376 (724) 106.42 45.75

The timings for the direct multipole solver are certainly impressive. In this com-

parison, however, the iterative solver may be unfairly handicapped. The direct

sparse solver used here is not Matlab’s built-in lu, but rather UMFPACK, a state-

of-the-art library code. The iterative solver is mygmres, which is coded as a Matlab

M-file. The multipole algorithm also has an M-file implementation. The overhead of

the Matlab interpreter may be substantial, and a compiled version of the iterative

solver may compare more favorably with the direct multipole solver.

4.5 Multipole Preconditioners

I have introduced in this chapter a new direct solver for scattering problems. The

direct solver can also be applied to the construction of new preconditioners for

iterative solvers. The general strategy is to skip some of the computations in the

direct solver, trading accuracy for speed.
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Since the direct solver computes the LU factorization of the sparse matrix Ξ, one

idea is to compute an incomplete factorization of Ξ.

Furthermore, we might relax any tolerances used to generate Ξ. Multipole expan-

sion lengths can be reduced, giving an approximation Ξ̂ of smaller order and with

fewer nonzero elements. Higher thresholds can be employed during the compression,

yielding still smaller order and still fewer nonzeros.

I have applied these ideas to the spiral scattering problem treated in Section 4.4.1.

In constructing Ξ̂ for the preconditioner factorization, short spectral expansions are

used. The expansions have sufficient length only to ensure a truncation error of

εbig = 10−1. The basis compression also uses εbig as its numerical rank cutoff.

The drop tolerance of the incomplete LU factorization is chosen to be 10−2, which is

tighter than the basis tolerance. If the drop tolerance is too large, the preconditioner

does not perform well.

For the wavenumber k = 215/2, which produces a dense interaction matrix Φ of

order N = 1728, the relaxed error tolerances generate a sparse matrix Ξ̂ of order

3443 with 284,656 nonzero elements. The tighter tolerances used in the direct solver

construct a sparse matrix Ξ of order 4394 with 417,950 nonzero elements.

A row and column permutation of Ξ that works well for the complete factorization

is not necessarily the right permutation for an incomplete factorization of Ξ̂. In fact,

as illustrated in Figure 4.11, the natural ordering of (4.16) generates many small fill-

in values that the incomplete factorization simply discards. That natural ordering

turns out to be substantially better than the nested dissection ordering determined

by METIS.

The elements colored red in Figure 4.11 are small nonzero elements of Ξ̂ that are

dropped from its triangular factors. With a drop tolerance incomplete factorization,
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it is possible for the factors to have fewer nonzeros than Ξ̂ itself. That does not

happen here, but dropping those small elements helps to offset the fill-in of large

values.

Comparing Figure 4.11(a) with Figure 4.6(a), note that the fringes in the leading

principal submatrix D are absent. The spiral here has fewer turns, and the leaf

clusters on adjacent turns are well separated. Their interactions are computed with

spectral expansions rather than with entries in D.

Unrestarted GMRES is compared once again to the direct multipole solver in Ta-

ble 4.7. Now, however, in addition to speeding up the matrix-vector multiplications

with the usual fast multipole method, the multipole preconditioner described here

is also applied. Because of its shorter expansions and reduced fill-in, the iterative

solver uses less memory than the direct multipole solver. It still consumes much

more memory than the unpreconditioned iteration, as shown in Table 4.3.

Unlike the preconditioners in Chapter 3, this one is effective against the spiral

boundary. With multipole preconditioning, GMRES is faster than the direct multi-

pole solver for large problems. For this boundary, the performance crossover point

for these methods occurs at about N = 1344. Referring back to Table 4.2, the mul-

tipole preconditioner lends an appreciable improvement to GMRES at all values of

N .

Table 4.8 gives more evidence of the effectiveness of the new preconditioner. Since

approximations of the long-range interactions are captured in the multipole precon-

ditioner, it greatly reduces the number of GMRES iterations required to converge

to an error level of ε = 10−4. An incomplete LU preconditioner that includes only

short-range interactions offers scant improvement of the unpreconditioned solver.

Starting with the direct multipole solver, other preconditioners might be devel-
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(a)

(b)

Figure 4.11: (a) With the natural ordering (4.16) of Ξ̂, incomplete Gaus-
sian elimination nets 270,407 new nonzero elements. (b) With the nested
dissection ordering computed by METIS, the net fill is 371,900 elements.

206



Table 4.7: Performance of Multipole Preconditioner

Memory (MB) Time (s)

N MP Direct MP Precon MP Direct MP Precon

576 7.10 7.97 6.10 9.69

736 10.02 11.80 7.90 14.75

896 14.85 13.32 11.36 18.53

1344 28.35 14.91 22.06 22.01

1728 42.15 17.57 37.28 25.38

2624 69.63 31.26 61.31 48.01

3392 116.13 49.47 120.78 90.22

5152 206.56 90.37 240.99 + 3.11 195.67

6688 343.95 146.18 492.87 + 18.00 353.11 + 1.22

Table 4.8: GMRES Steps Taken with Multipole Preconditioning

GMRES Steps

N No Precon ILU Precon MP Precon

576 110 49 21

736 139 68 25

896 191 93 28

1344 237 163 28

1728 306 249 27

2624 375 314 37

3392 601 514 55

5152 837 723 79

6688 794 720 92
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oped. One idea is to apply a graph coarsening heuristic, like those used in the

algebraic multigrid method [16] [137], to eliminate some edges and vertices of the

multipole dag. That idea extends the dag compression of Section 4.3, and may lead

to a further reduction in the size of Ξ̂.
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Chapter 5

Taming Multipole’s
Numerical Instability

I have so far, apart from a sideways glance on page 83, skirted an issue that com-

mands attention. As anyone who implements a multipole method from Chapter 2

will quickly discover, the algorithm is numerically unstable. The computation can,

and probably will, go badly awry because of differences between exact and floating-

point arithmetic.

The numerical instability is a phenomenon that plagues scattering problems in

particular. It does not play a role1 in the application of multipole methods to the

Laplace equation. Fast multipole methods have been constructed for many other

interaction kernels, but I am unaware of any unstable methods among them.

In this chapter, I describe how the scattering instability originates and how it

can be repaired. Fortunately, the remedy does not require a complete teardown

of the algorithm. The history of computational science and engineering is replete

1Instability has hampered efforts to speed up the translations [13] [52], but the need for
such fast translations is less pressing than in scattering problems.
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with examples of fast but unstable algorithms that have not been so lucky, and it

is generally a losing strategy to try to build numerical stability into an algorithm as

an afterthought.

Much published work on scattering multipole has failed to adequately address

the instability. Many budding implementations have probably been thwarted, and

as a result the method is not as widespread as it should be.

While acknowledgment of the instability has grown, it continues to be character-

ized as a phenomenon that should occur only in special circumstances. In particu-

lar, the problem is described as a “subwavelength instability” that insinuates itself

into scattering solutions only for obstacles that have nonsmooth structure at scales

smaller than a wavelength.

5.1 Demonstration of the Instability

Figure 5.1 demonstrates that the instability is not confined to low frequencies. Here a

circular cylinder with unit radius is illuminated by a TM plane wave with wavenum-

ber k = 30. The circumference of the cylinder is 30 wavelengths, so it is not optically

small. The surface current density, as computed by unpreconditioned GMRES with

a multipole matrix-vector product, is graphed for each member of a decreasing se-

quence of multipole truncation error tolerances. As the tolerance is reduced from

ε = 10−1 to ε = 10−3, the solution takes shape nicely. The current is small on the

half of the cylinder in shadow, and on the bright side the current oscillates rapidly,

reflecting the high frequency of the illuminating field. The solution holds its shape

as the tolerance is further tightened, until at ε = 10−9 some stray spikes begin to

appear. At ε = 10−10 it has been completely corrupted. A closer inspection of the
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computed values reveals that these errors appear also in the solution at ε = 10−8,

where they limit the accuracy to about 6 significant digits instead of the requested

8.

The error growth is catastrophic. This is not the type of behavior that results from

the gradual accumulation of small rounding errors. Nor is the error specification too

close to machine epsilon, eps ≈ 10−16, for us to expect a reliable solution. Clearly a

major flaw in the algorithm has been exposed.

The instability portrayed in Figure 5.1 worsens for low frequency problems, so the

description “subwavelength instability” is not without merit. If k were decreased in

these computations, the instability would obliterate the computed solution at larger

values of ε. The instability threshold is not a function of k alone, but of both k and

ε.

I hasten to add that the code responsible for the displayed results has been

designed, through tight control of the spectral expansion lengths, to allow as little

of the instability as possible to creep in. A naive implementation is likely to do far

worse.

We will conduct further analysis on a purely discrete problem, to strip away

such things as singular quadrature rules and their associated discretization errors.

Consider the charged particle distribution in Figure 5.2. A random collection of

N point oscillators contained in the unit disk generates a scalar wavefield that is

evaluated at M random positions in a disk well separated from the sources.

The field is u = Φq. Exposing the matrix and vector elements,

um =
N∑

n=1

Φ(ym− xn)qn, 1 ≤ m ≤M. (5.1)

We will compare two ways of evaluating this sum: the standard matrix-vector prod-
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Figure 5.1: Real ( ) and imaginary ( ) parts of the normalized current
density ησ/‖Einc‖ as a function of angular position φ on a circular cylinder.
The illumination is a plane wave incident from φ = π. The change of
vertical scale in the last frame is a telltale sign of numerical instability.
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Figure 5.2: N = 100 particles at points {xn} generate an oscillating field
in E2. The field is evaluated at M = 100 distant points {ym}. The vector
d is the displacement from the center of the source disk to the center of the
destination disk.

uct and the fast multipole method. The standard product is a stable reference

against which the numerical stability of the multipole algorithm will be judged.

Since the cluster of destination points is well separated from the cluster of source

points, the multipole algorithm is a simple factorization of Φ. To briefly review,

a leaf operator V transforms the charge amplitudes q into a vector a of exterior

spectral expansion coefficients. Then the exterior coefficients are mapped to interior

expansion coefficients b through a Toeplitz matrix T . Finally, another leaf operator

U transforms the interior coefficients into the field values u. Putting this together,

we have

a = V q

b = Ta

û = Ub





û = UTV q, (5.2)

where the computed field vector has been decorated with a hat to distinguish it from

the vector u computed by the standard product.
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5.2 High Frequency Instability

In the low frequency case, Φ is numerically rank deficient and the factor T is small,

instantly conferring an efficiency advantage to the multipole factorization.

At high frequencies, T is not small, and the factorization efficiency originates else-

where. Since T has Toeplitz structure, a fast matrix-vector product Ta is possible.

The algorithm was covered in Section 2.3.2. A fast translation Ta is not sufficient by

itself to reduce the complexity of Φq, since we still must compute the matrix-vector

products involving U and V . In the multilevel algorithm, however, the matrices U

and V are themselves factored into products of leaf operators and branch translation

operators. If the source and destination point sets are each organized into a binary

cluster tree with 3 levels, then

U =




[
U1R1

U2R2

]
R5

[
U3R3

U4R4

]
R6


 , (5.3a)

V =
(
S5

[
S1V1 S2V2

]
S6

[
S3V3 S4V4

])
. (5.3b)

The matrices {Ui} and {Vi} are small, and all matrices {Ri} and {Si} are Toeplitz.

With this additional structure, the multipole factorization (5.2) can be faster than

(5.1).

Although it is not fast, we will use the single-level factorization Φ = UTV as

a point of comparison because it exhibits the same instability as the faster multi-

level factorization. The translation matrix T is the source of the problem at high

frequencies.

The solutions u and û have been computed for the particle distribution in Fig-

ure 5.2 at the wavenumber k = 10. Figure 5.3 shows that no instability is present if
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a standard O(p2) matrix-vector product is used to compute Ta. If the fast O(p log p)

product is used, and if the spectral expansion is too long, then the algorithm shows

its instability. Since the fast product cannot be abandoned, we should adhere to the

following piece of advice:

Choose the spectral cutoff p to be as large as necessary, but no larger.

This is good advice anyway from an efficiency standpoint, since needlessly long

expansions only add to the workload. But the penalty of numerical instability is

much greater.
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As explained in Chapter 2, the spectral expansion length controls the accuracy

of the multipole method. In exact arithmetic, longer expansions always yield higher

accuracy. Figure 5.3 shows that this is not true in floating-point arithmetic. Par-
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ticularly when the computation time is short, it is tempting to increase p in order

to obtain a more accurate solution. That is a risky proposition, and that is how I

discovered the instability in my first multipole implementation.

Figure 5.4 shows how the instability threshold changes as the wavenumber is

increased. The first frame of that sequence of plots is the same as Figure 5.3. Clearly,

as k increases, it is safer to use longer spectral expansions. These graphs also show

that as k increases longer expansions are necessary to obtain a given accuracy. The

requirement given in Chapter 2 is p = O(kα+log ε−1), where α is the disk radius. As

the optical size of the disks increases, more expansion terms are needed before the

solution begins to converge. That behavior is exhibited in the rightward progression

of the knee at the 0-digit accuracy level. For larger values of p, the error decays at

an exponential rate, until rounding errors prohibit it from dropping below eps. As

expected for a semilogarithmic graph, the plotted data nearly falls on a straight line

in the region of exponential convergence.

This experiment shows that the fast translation between well-separated clusters

can only be used if the requested accuracy is small enough. If the requested accuracy

is too high, then the value of p necessary to achieve that accuracy in exact arithmetic

will exceed the instability threshold of the floating-point algorithm. In such an event,

I switch to the slow but stable algorithm for computing Ta. Given two clusters and

values of k and ε, my code automatically determines which multiplication algorithm

should be used.

The question raised by selectively switching to the slower, stable multiplication

is: Does that ruin the complexity of the multipole algorithm as a whole? Figure 5.4

gathers evidence that it does not, because as k increases, the accuracy achievable

with the fast multiplication also increases. That trend is displayed more explicitly

in Table 5.1, which tracks the error level at the onset of instability.
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Figure 5.4: Plots of maxi |ui − ûi|/|ui| versus p as wavenumber k increases.
The point at which the curves separate—beyond which a fast translation
should not be used—moves in the direction of increasing p and decreasing
ε. Were the latter trend in the direction of increasing ε, the multipole
algorithm would probably be unsalvageable.
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Table 5.1: Accuracy Obtainable by Fast Translation

k maxi |ui − ûi|/|ui|
10 6.1× 10−09

20 7.6× 10−10

30 2.6× 10−11

40 1.0× 10−11

50 5.6× 10−13

60 1.6× 10−13

70 2.7× 10−13

80 3.3× 10−13

90 3.0× 10−13

100 3.6× 10−13

As the optical size of the clusters increases while ε is fixed, the fast translation

becomes more stable. Referring back to the hierarchical multipole example of N

interacting particles given in Section 2.5, the largest clusters lie at the upper reaches

of the multipole tree. For these clusters, p is large—it may approach or even exceed

N—and the O(p2) translation is worthless. The fast translation must be available

for these translations. For small clusters, at the lower extremities of the multipole

tree, it is quite acceptable to use the O(p2) translation because p is small.

5.2.1 Why is Fast Translation Unstable?

Through experimentation it is easy enough to isolate the fast translation as the

cause of instability. But that algorithm (Algorithm 2.4) consists of nothing more

than a few FFTs, and the FFT has a rock-solid stability reputation. An FFT is

more stable, in fact, than slow multiplication by the DFT matrix [82, Ch. 24]. So

what, exactly, is the problem?

To investigate further, we reexamine the solution computed for the two-cluster
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problem pictured in Figure 5.2. Let k = 10 and p = 34. Referring to Figure 5.3, the

fast multiplication Ta is unstable for this combination of parameters, and almost

all elements of the computed solution vector û have no accurate digits whatsoever.

Figure 5.5 is a graphical display of the elements of T ∈ C69×69 and a ∈ C69. The

dynamic range of the displayed values is huge, more than 30 orders of magnitude.

The scale ranges from about eps to eps−1, and that is a clue to why we have no

significant digits left in the computed solution.
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Figure 5.5: Modulus of elements in T and a. Note that, in forming the
product Ta, the huge numbers in T always get multiplied by tiny numbers
in a.

The huge elements of T give the matrix a commensurately large norm. Comparing

the norm of the interaction matrix with the norms of its factors,

‖Φ‖2 ≈ 11.6 versus

‖U‖2 ≈ 3.17,

‖T‖2 ≈ 4.11× 1015,

‖V ‖2 ≈ 3.23,

(5.4)

it is easy to fault the factorization. Since ‖UTV ‖ � ‖U‖‖T‖‖V ‖, the factorization

219



is surely an unstable foundation for any algorithm. But, remarkably, the multipole

algorithm manages to be stable when the standard matrix-vector product is used to

compute Ta. To explain, we must turn to a componentwise analysis.

Consider the sensitivity of the product Ta to relative perturbations of the ele-

ments in T or a. The componentwise condition number for b = Ta is

κa :=
‖ |T ||a| ‖2
‖Ta‖2

≈ 1.81,

(5.5)

which is surprisingly small. It is so small because, in forming the product2 |T ||a|,

the huge elements of T always multiply tiny elements in a to give “nice” numbers,

something that becomes evident upon studying the positions of small and large

numbers in Figure 5.5.

Although the translation is well conditioned in a componentwise sense, the norm-

wise condition number for the same problem is

κb :=
‖T‖2‖a‖2
‖Ta‖2

≈ 2.75× 1012,

(5.6)

which is certainly awful. The product ‖T‖2‖a‖2 offers no opportunity to attenuate

the huge elements of T .

The standard algorithm for a matrix-vector product is backward stable in a com-

ponentwise sense. The cumulative effect of roundoff errors is equivalent to an O(eps)

relative perturbation of the data elements in the complete absence of rounding errors.

If b̂ is the computed product, then

b̂ = (T + δT )a where |δT | = O(eps |T |). (5.7)

2The ith element of |a| is |ai|. The (i, j)th element of |T | is |Tij |.
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Magnifying the tiny perturbation in T by the condition number (5.5) produces only

a tiny error in the computed product b̂.

If, however, our algorithm for the matrix-vector product were not componentwise

backward stable, but only normwise backward stable, then the much larger condition

number (5.6) would magnify an O(eps) data perturbation, giving a large error in

the computed product.

The condition numbers κa and κb both measure the normwise relative pertur-

bation ‖b− b̂‖2/‖b‖2 of the output. It is not difficult to show, either theoretically

or through experiment, that a small normwise perturbation in b is not sufficient

to ensure a small perturbation in ‖u‖. Rather, each element of b should have a

small relative perturbation. Like T and a, the elements of b span a large dynamic

range, and its smallest elements can have a large relative error without influencing

the relative normwise error.

Each element of b has a condition number that measures its sensitivity to relative

perturbations in the elements of T or a. For the data of Figure 5.5, the largest of

those condition numbers is

κc := max
i

ith component of |T ||a|
ith component of |Ta|

≈ 7.91,

(5.8)

which, like (5.5), is small.

A rounding analysis gives the following forward error estimates for the elements

of b:

Slow translation: |b− b̂| = O(eps |T ||a|) (5.9a)

Fast translation: |b− b̂| = O(eps ‖t‖‖a‖) (5.9b)
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In the latter estimate, t is the main crossdiagonal of T , and since ‖t‖2 ≈ 5.65× 1015

the fast algorithm is not stable with respect to the condition number (5.8). In my

code, the switch from a fast translation to a slow translation is made when ‖t‖2
exceeds a threshold that depends on the chosen accuracy ε.

The simple example in Figure 5.6 computes x̂ = F−1Fx for a vector x with large

dynamic range. The FFT mixes the small and large elements of x, and significant

digits in the small elements are lost during floating-point addition with larger ele-

ments. The error in each component of x̂ is O(eps ‖x‖), showing that processing

with the FFT can introduce large relative errors in small components. That does

not contradict the fact that the FFT is normwise backward stable.

>> x = (1/2).^(0:40);

>> y = real(ifft(fft(x)));

>> [x(end); y(end)]

ans =

1.0e-12 *

0.90949470177293

0.90958135332607

Figure 5.6: A short Matlab session. The second line of input is an algo-
rithm for the identity operation, a problem that is perfectly conditioned
by any measure. The first line defines the input vector x ∈ R41, which
has elements xi = 21−i. The output produced in response to the third line
shows that the computed solution y has a large relative error in its smallest
component. Only 3 digits are correct.

Another demonstration, closer in spirit to the fast multipole translation, is the

well-known application of the FFT to the rapid computation of discrete convolutions.
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Let two sequences be

fn =




α|n| if −q ≤ n ≤ q,

0 otherwise,

(5.10a)

gn =




β|n| if −r ≤ n ≤ r,

0 otherwise.

(5.10b)

The convolution of f and g is defined elementally as

(f ? g)n :=
∞∑

m=−∞
fmgn−m, −∞ ≤ n ≤ ∞. (5.11)

The sequences have bounded support, and an equivalent matrix-vector product is

Gf , where G ∈ R(2q+2r+1)×(2q+1) is a banded Toeplitz matrix, as in Figure 5.7. The

leading 2r + 1 elements of the first column of G comprise the vector g.
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In the example of Figure 5.7, replacing the matrix-vector product with a fast

convolution produces an output vector whose smallest components are in error by

more than 25 percent. There are no correct digits in those elements. The largest

elements, on the other hand, have a full complement of correct digits.

The breakdown of the multipole algorithm is evidently caused by the combination

of two factors:

1. The fast translation algorithm is normwise backward stable but not

componentwise backward stable.

2. The translation is well conditioned in a componentwise sense but

poorly conditioned in a normwise sense.

In light of the latter factor, it becomes less clear that the fast translation algorithm is

to blame. We have described it as numerically unstable, but that is not a label fairly

attached to an algorithm that is normwise backward stable. It seems more judicious

to blame the multipole factorization for presenting the fast translation algorithm

with a poorly conditioned system in the first place. After all, the overall problem,

to compute u = Φq, is well conditioned. The factorization has fashioned a poorly

conditioned subproblem, so the fault must really lie with the multipole algorithm

structure at an earlier stage. The following section uncovers the root of the trouble.

5.3 Low Frequency Instability

For small enough wavenumbers, the instability of the multipole algorithm manifests

itself in a different way. As shown in Figure 5.5, the elements grow exponentially in

modulus as the top-right and bottom-left corners of T are approached. That growth

is exacerbated at small wavenumbers, and the largest elements of T can overflow.
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Furthermore, if the spectral expansions are too long at low frequencies, the overflow

in T may be preempted by underflow in U or V .

This instability is unrelated to the fast translation algorithm, and the strategy in

the previous section of switching to a slow translation does not ensure stability at

low frequencies.

Figure 5.8 exhibits the accuracy obtainable for the particle problem of Figure 5.2

at low frequencies. For each of several values of k, the multipole expansion length is

increased until at least one element of T overflows. Table 5.2 summarizes the results.
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The problem underlying both high and low frequency instabilities is that the

vectors a and b and the matrices U , T , and V all have elements that span too great

a range. The fault ultimately rests with the chosen bases for the exterior and interior
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Table 5.2: Accuracy Obtainable with Unstable Basis

k maxi |ui − ûi|/|ui|
10−40 8.1× 10−05

10−20 3.7× 10−06

10−10 3.2× 10−08

10−4 4.4× 10−13

spectral representations.

The multipole algorithm is numerically unstable

because

both interior and exterior bases are unstable.

Recall from Section 2.2.1 that the basis for the spectral expansion on the exterior of

a disk with center 0 is

ϕn(x) := Hn(k‖x‖)einθ(x), n ∈ Z, (5.12)

and, from Section 2.2.2, the basis on the disk interior is

ψn(x) := Jn(k‖x‖)einθ(x), n ∈ Z. (5.13)

Through the Bessel function addition theorem, these functions also appear in the

matrix elements of U , T , and V . Those elements are

Umn = ψn(ym− d), (5.14a)

Tmn = ϕn−m(d), (5.14b)

Vmn = − i
4
ψm(xn), (5.14c)

if the center of the source disk in Figure 5.2 lies at the origin of coordinates, and if

d is the displacement vector from the origin to the center of the destination disk.
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Figure 5.9 graphs the Bessel functions Jν(x) and Yν(x) for ν, x ∈ [0, 30]. The scale

problems are reflected in the asymptotic behavior of the basis functions. As |n| → ∞,

|Jn| decays faster than any exponential function ζ |n| with ζ < 1. Meanwhile, |Hn|

grows faster than any exponential function ζ |n| with ζ > 1. In more detail, the

asymptotic behavior of the basis functions is [1, §9.3.1]

ψn(x) = O

(
1√
n

(ek‖x‖
2n

)n)
as n→∞, (5.15a)

ϕn(x) = O

(
1√
n

(ek‖x‖
2n

)−n)
as n→∞. (5.15b)

The behavior as n→ −∞ is the same, since |ψ−n| = |ψn| and |ϕ−n| = |ϕn|.

To understand the trouble this causes, pick a single point x, highlighted in Fig-

ure 5.2, and evaluate each term in the exterior spectral expansion of the field at that

point. The expansion is

u(x) =
∞∑

n=−∞
anϕn(x), (5.16)

and Figure 5.10 plots the modulus the factors an and ϕn, together with the modulus

of their product.

The vertical scale in Figure 5.10 covers practically the entire range of double-

precision floating-point numbers. While the terms of the expansion fall on a shallow

line on this logarithmic scale, for large n the terms are computed as the product of

a huge number and a tiny number. To compensate superexponential growth in the

exterior basis functions, the expansion coefficients {an} decay at a superexponential

rate. At n = 26, the growing tension between ϕn and an finally snaps when an

underflows.

The behavior of the interior spectral expansion,

u(x) =
∞∑

n=−∞
bnψn(x− d), (5.17)
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Figure 5.9: (a) Bessel function Jν(x). (b) Bessel function Yν(x).
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is the same. To compensate superexponential decay in the interior basis functions,

the expansion coefficients {bn} grow at a superexponential rate.

5.3.1 Scaling the Multipole Basis

The easiest remedy for the arithmetic exceptions at low frequencies is to scale the ba-

sis functions, better governing their asymptotic rate of change. I use a normalization

that restrains the limiting behavior to an exponential law.

For a disk with radius α, the new basis functions are

ψ̃n(x) := ψn(x)Hn(kα), (5.18a)

ϕ̃n(x) :=
ϕn(x)

Hn(kα)
, (5.18b)
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and these functions have the asymptotic behavior

ψ̃n(x) = O

((‖x‖
α

)|n|)
as |n| → ∞, (5.19a)

ϕ̃n(x) = O

(( α

‖x‖
)|n|)

as |n| → ∞, (5.19b)

so both interior and exterior basis functions exhibit exponential decay. This is

illustrated for the unit disk in Figure 5.11.

The new basis eliminates range exceptions even for wavenumbers that approach

the underflow limit realmin. This stability is illustrated by taking k = 10−200 with

the random charge distribution of Figure 5.2. Table 5.3 shows that with the new

basis a relative error approaching eps is possible. Without scaling, only single-term

expansions are allowed, and the achievable error is no better than 8× 10−4.

Table 5.3: Scaled Basis Performance at k = 10−200

maxi |ui − ûi|/|ui|
p Before Scaling After Scaling

0 8.1× 10−04 8.1× 10−04

1 Fails 1.5× 10−04

2 Fails 3.3× 10−05

3 Fails 1.6× 10−05

...
...

...

32 Fails 1.2× 10−15

The numerical evaluation of the new basis functions must not literally follow the

formulas (5.18), because that procedure produces range exceptions in intermediate

quantities. Instead, I compute them as follows:

ψ̃n(x) = exp
[
logHn(kα) + log Jn(k‖x‖) + inθ(x)

]
(5.20a)

ϕ̃n(x) = exp
[
− logHn(kα) + logHn(k‖x‖) + inθ(x)

]
(5.20b)
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Figure 5.11: New basis functions for k = 10−10 and α = 1. (a) Superexpo-
nential decay in functions {ψn} (dashed lines) is replaced with exponential
decay in functions {ψ̃n} (solid lines). (b) Superexponential growth in func-
tions {ϕn} (dashed lines) is replaced with exponential decay in functions
{ϕ̃n} (solid lines).
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This approach requires computational routines that return the complex logarithms

log Jn(x) and logHn(x). The exponential functions in (5.20a) and (5.20b) make

irrelevant the choice of branch cut. Specialized code is required because Jn(x) un-

derflows well before log Jn(x) does. Likewise, Hn(x) overflows well before logHn(x)

does. The implementation should return an accurate value of logHn(x) even if Hn(x)

overflows.

Many other stable bases can be chosen, but a considerable advantage of the choice

made here is that the Bessel function addition theorem can still be used to derive a

formula for the translation matrix elements in the new basis. The translation from

an expansion on the exterior of a disk with radius α to an expansion on the interior

of a well-separated disk with radius β is

bm =
∞∑

n=−∞
anHm−n(k‖d‖)e−i(m−n)θ(−d), m ∈ Z, (5.21)

which after renormalization becomes

b̃m =

∞∑

n=−∞
ãn
(
Hn(kα)Hm(kβ)

)−1
Hm−n(k‖d‖)e−i(m−n)θ(−d), m ∈ Z. (5.22)

After series truncation, this operation becomes b̃ = T̃ ã. Note that T̃ is a row and

column scaling of T , and the scaling gives the elements of T̃ a much smaller dynamic

range than the elements of T . Again, to avoid overflowing intermediate quantities,

the matrix elements should be computed as

T̃mn = exp
[
− logHn(kα)− logHm(kβ)+logHm−n(k‖d‖)− i(m−n)θ(−d)

]
. (5.23)

Similar changes can be applied to the leaf operators U and V , and to the branch

operators R and S.

Unfortunately, scaling the rows and columns of the translation matrix T elimi-

nates its Toeplitz structure. The fast translation algorithm of Section 2.3.2 is no
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longer available. But since the scaling is only necessary for optically small charge

clusters, for which p is small, a slow O(p2) translation for those clusters will not

damage the overall multipole complexity of O(N logς N) flops.
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Chapter 6

Conclusion

Before closing with a discussion of extensions and related work, I comment briefly

on the restriction to 2-D scattering problems. After all, that restriction limits the

immediate value of the work to the engineering community.

My interest in numerical scattering originated with the computation of the mutual

element impedances of large antenna arrays. In the course of my studies, I continu-

ally simplified the scattering geometry, trading realistic engineering complexity for

a stronger mathematical footing. The product of that shift emphasizes accuracy

and speed, the currency of numerical analysis. I believe that it makes more sense

to build engineering complexity on top of this foundation than to try to build speed

and accuracy into a slow and inaccurate treatment of general 3-D problems with

multiple materials and complicated interfaces.

That is not to say that the problems I have been solving are simple. While

the results presented here have been restricted to connected 2-D metallic obstacles,

some of those obstacles span thousands of wavelengths. Because they require so
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many variables, the associated scattering problems are challenging. The greatest

difficulty in three dimensions is the same: Solutions are rapidly oscillating functions

that must be sampled at a large number of points.

6.1 Extensions

Laplace and Poisson

In the limiting case k → 0 of zero oscillation frequency, the Helmholtz equation

reduces to the Laplace equation, which brings into scope an impressive assortment

of applications. In empty regions of space, Newtonian gravitational potentials and

Coulomb electrostatic potentials are both solutions of the Laplace equation. Mul-

tipole has been used to speed up the computation of parasitic capacitances [111]

and inductances [89] in high-speed integrated circuits. In the field of computational

chemistry, multipole has also been used to speed up the computation of long-range

interatomic forces in large molecular simulations [41] [123].

The Poisson equation—the nonhomogeneous Laplace equation—is important in

the modeling of solid-state electronic devices. It is also an important component

of many numerical treatments of the equations that govern fluid flow [3, §5.9–5.12].

Multipole has been used to speed up vortex methods for fluid simulation [120] [134].

Multiple Obstacles

It is merely a programming exercise to extend my existing 2-D code to treat a

disconnected boundary Γ . An interesting example of such multiple obstacles is given

by Greengard and Moura [69], who compute the flow of electric current through
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composite materials. That application is magnetostatic (k = 0), but high frequency

computations are also important in materials science. With the extension to multiple

obstacles, the Helmholtz solver described here can be applied to scattering structures

in photonic bandgap materials [140] [26].

Other Boundary Conditions

Another extension of the code might treat various other boundary conditions. If

the Dirichlet condition is replaced with a Neumann condition, then a new integral

operator D′ arises from the CSIE formulation,

(D′χ)(x) :=
∂

∂n(x)

∫

Γ

∂Φ(x,y)

∂n(y)
χ(y) dΓ (y) where x ∈ Γ. (6.1)

This operator evaluates the normal derivative of the field produced by a dipole

layer χ. It is a hypersingular integral operator: The formal exchange of the outer

differentiation with the integration produces an integrand that is nonintegrable.

Nevertheless, a high-order discretization for (6.1) can be developed in the same way

that we developed rules for the single layer operator S. Kress [97] has extended the

global spectral rule of Section 1.6 to cover D′.

Three Dimensions

Rokhlin [118] has extended scattering multipole from E2 to E3. As in his presenta-

tion [117] of the 2-D algorithm, he mentions the hierarchical algorithm in an offhand

way. As they wrote code, other researchers filled in some important details. Those

efforts were conducted more or less simultaneously by Chew et al. [125] [126] at the

University of Illinois, by Dembart and Yip [39] at Boeing, and by Wandzura et

al. [29] [75] at HRL Laboratories.
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The basis functions for scalar 3-D spectral expansions are the natural generaliza-

tion of the 2-D basis functions. In two dimensions, the expansions represent fields

inside or outside a disk. In three dimensions, they represent fields inside or outside

a ball. The 3-D expansions are double series, indexed by two integers m and n. In

spherical coordinates (r, θ, φ), the exterior basis functions {ϕmn} and interior basis

functions {ψmn} are

ϕmn(r, θ, φ) := hm(kr)Ymn(θ, φ), (6.2a)

ψmn(r, θ, φ) := jm(kr)Ymn(θ, φ), (6.2b)

for nonnegative integers m and integers −m ≤ n ≤ m. The functions hm and jm are

spherical Bessel functions [1, Ch. 10]. The functions Ymn are spherical harmonics,

defined by

Ymn(θ, φ) := cmnP
n
m(cos θ)einφ, (6.3)

where P n
m is an associated Legendre function [1, Ch. 8] and cmn is a normalization

constant. These basis functions are, like the 2-D basis functions, numerically unsta-

ble. Stabilization measures patterned after those in Chapter 5 can, however, restore

stability.

Unfortunately, the 3-D translation operators are substantially more complicated

than their 2-D counterparts. In two dimensions, each matrix element requires little

more than a single Bessel function evaluation. In three dimensions, the matrix

elements are sums of Wigner 3-j symbols [53]. Ongoing research [74] aims to make the

computation as efficient as possible. Meanwhile, in Matlab a user has easy access,

through functions like besselj and besselh, to Amos’s venerable FORTRAN Bessel

routines [6] [7]. But, as with many of the less common special functions, there is

no access to Wigner 3-j symbols, or to their close relatives the Clebsch–Gordon

coefficients.
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For translations that do not require special treatment to avoid numerical instabil-

ity, the expensive evaluation of the matrix elements can be bypassed if the coefficients

{amn} and {bmn} of the spectral expansions are suppressed in favor of their spherical

Fourier transforms. The transform of the exterior coefficients is

ã(θ, φ) :=
∞∑

m=0

m∑

n=−m
amnYmn(θ, φ), (6.4)

which is essentially the far field pattern of the expansion. As in the 2-D case, the

interior coefficients {bmn} must be weighted for large values of m to prevent their

Fourier transform from diverging.

The Fourier transforms ã and b̃ are sampled at a finite set of points on the unit

sphere. As in two dimensions, the bandwidth of those functions increases with the

optical size of the charge cluster, so bandlimited interpolations must be performed as

the multipole tree is traversed. While in two dimensions the standard bandlimited

interpolation of far field patterns does not dominate the complexity, in three di-

mensions it does. Recent work [84] has produced a faster bandlimited interpolation

algorithm on the sphere. The method relies on a subsidiary fast multipole method

for particles distributed on a line [45] [141]. Another approach [94] [32] oversam-

ples the transforms, but replaces the global bandlimited interpolations with local

polynomial interpolations.

Instead of using spherical Fourier transforms to diagonalize the translations of

infinite coefficient sequences, we could try to unravel the algebraic structure of the

linear transformations of the finite-length coefficient vectors a and b. While the

2-D translation matrices are Toeplitz matrices, the 3-D translation matrices are

only block Toeplitz. If the 2-D complexity O(N logς N) is to be preserved, some

remaining structure in the translation matrices must be utilized. If only the block

Toeplitz structure is used, the 3-D algorithm will require O(N 3/2 logς N) flops, where
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ς is a small constant.

Turning to vector scattering problems, in the context of a Galerkin discretization

of the 3-D EFIE, Coifman, Rokhlin, and Wandzura [29] briefly consider the modi-

fications necessary to treat the vector field solution of Problem 1.2. One approach

is to represent each rectangular component of the electric field with the scalar basis

(6.2). But since the components are coupled in order to satisfy ∇ · E = 0, that

approach is not as efficient as one that uses the vector bases

{
∇× r̂ϕmn,∇×∇× r̂ϕmn : m ≥ 0,−m ≤ n ≤ m

}
, (6.5a)

{
∇× r̂ψmn,∇×∇× r̂ψmn : m ≥ 0,−m ≤ n ≤ m

}
, (6.5b)

on the exterior and interior of a ball, where ϕmn and ψmn are taken from (6.2).

Other Constant-Coefficient PDEs

In principle, a fast multipole method can be developed for any shift-invariant linear

differential operator. Gimbutas and Rokhlin [61] use a generic tensor product mul-

tipole basis capable of approximating any analytic field with spectral accuracy. The

translation matrix elements are then constructed by brute force.

In practice, for more than one space dimension a substantial gain in efficiency

can be realized if the multipole basis is specialized to the differential operator. As

in Chapter 2, that is typically done with a separation of variables analysis of the

PDE on the interior and exterior of a simple domain. Addition theorems provide

formulas for the translation matrix elements.

Table 6.1 lists a selection of differential operators for which the multipole construc-

tion has been carried out. Subscripts have been used to indicate partial derivatives

with respect to rectangular coordinates. The constant k is everywhere a positive
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real number, and f is a prescribed source function. Listed next to the equations

are the fundamental solutions that satisfy the usual boundary condition at infinity.

Those solutions are given in polar coordinates, up to a constant multiplier, for a

point source at the origin.

Table 6.1: Selected Fast Multipole Methods

Two Space Dimensions

Name Equation Fund. Solution References

Poisson uxx+uyy = f log r [116]

Helmholtz uxx+uyy+k
2u = f H0(kr) [117]

Three Space Dimensions

Name Equation Fund. Solution References

Poisson uxx+uyy+uzz = f r−1 [66] [70]

Helmholtz uxx+uyy+uzz+k
2u = f r−1eikr [118]

Modified Helmholtz uxx+uyy+uzz−k2u = f r−1e−kr [14] [72]

Heat uxx+uyy+uzz−kut = f t−3/2e−(k/4)r2/t [71]

The 3-D wave equation uxx + uyy + uzz − c−2utt = f has a fundamental solution

r−2δ(r− ct). That interaction has a character distinct from those in Table 6.1, all of

which are analytic away from the origin. Ergin, Shanker, and Michielssen [54] have

nevertheless developed a multipole method for the wave equation. The particles

taking part in the interaction are points in space, but their time waveforms are not

impulse functions. Because it does not have a sharp trailing edge [10, §I.6], the fun-

damental solution of the 2-D wave equation presents an even greater difficulty [102].

As indicated in Section 1.3.1, another approach to the wave equation relies on

Fourier synthesis of solutions to the Helmholtz equation. For each member of a finite

set of wavenumbers, the multipole algorithms of Chapter 2 may be applied.
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Variable-Coefficient PDEs

Multipole methods can be profitably used in two different numerical treatments of

a variable-coefficient PDE such as

∆u(x) + k2
(
1 + r(x)

)
u(x) = f(x) for x ∈ E2, (6.6)

in which r is the electric susceptibility and
√

1 + r is the index of refraction of a

material that fills the plane. For electromagnetic scattering from bounded obstacles,

the function r vanishes outside a bounded set G−. Transmission boundary conditions

apply at any jump discontinuities of r, such as on the obstacle boundaries and on

any internal material interfaces.

One approach uses a multipole method for a nearby constant-coefficient equa-

tion as a preconditioner for an iterative variable-coefficient PDE solver [132]. The

constant-coefficient approximation may be obtained by averaging r over the obstacle

interior G−. Boundary integral equations can also be established if the nonhomoge-

neous material is approximated by a piecewise homogeneous structure, so that the

averaging of r is performed separately over each subdomain of a partition of G−.

A more typical approach to (6.6) uses volume integral equations. If r is smooth

on the whole plane, even at the boundary of G−, then u may be represented as the

field generated by an unknown current density J ,

u(x) = −ikη
∫

G−

Φ(x,y)J(y) dy for x ∈ E2. (6.7)

The current J is, like q, smooth on the whole plane, but it is nonzero only on

G−. Substitution of (6.7) into (6.6) gives the Lippmann–Schwinger equation [31], a
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volume integral equation of the second kind,

J(x) + k2r(x)

∫

G−

Φ(x,y)J(y) dy = −(ikη)−1f(x) for x ∈ G−. (6.8)

A suitable discretization of (6.8), patterned after the one in Section 3.1, produces an

algebraic system to which a multipole method can be applied. The construction of a

high-order discretization will be made easier if in the Lippmann–Schwinger equation

G− is replaced with a rectangular region R ⊃ G−, but then (6.8) will no longer be

a second-kind equation.

In electromagnetics problems, r is usually discontinuous at the obstacle boundary

Γ . Then the volume sources J should be supplemented by surface distributions on

Γ . If r is piecewise constant in E2, then surface distributions can be placed on all

the curves of discontinuity, and no volume sources are required.

Note that the motivation to transform the PDE into an integral equation is weak-

ened if volume integrals are necessary. For both differential equation and integral

equation, the computational grid fills a 2-D region. Low-order finite difference and

finite element methods are, by virtue of their sparsity, likely to be the preferred

approaches.

6.2 Related Work

This work addresses the solution of scattering problems such as Problem 1.1 by the

fast multipole method. Its three main contributions are

• The block spectral singular quadrature rules of Chapter 3

• The direct solver of Chapter 4

• The basis stabilization of Chapter 5
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My research has been influenced by a number of sources, a few of which I now briefly

describe.

6.2.1 Singular Quadrature Rules

I had been reading Colton and Kress [31] and was impressed with the spectral

singular quadrature rule they apply to 2-D obstacle scattering problems. (That rule

is given in Section 1.6 for the EFIE.) Colton and Kress themselves attribute the rule

to previous work by Martenson [103] and Kussmaul [99]. I am continually puzzled

that the rule is not presented in more texts on computational electromagnetics. For

example, Peterson, Ray, and Mittra [114] have written one of the best such books,

but in its lengthy treatment of scattering integral equations in two dimensions, it

never progresses beyond crude discretizations that facet the boundary and produce

piecewise constant or piecewise linear solutions.

At the same time, I was learning about the fast multipole method by reading the

papers of Rokhlin, Greengard, and their collaborators. (Greengard and Rokhlin’s

treatment [64] of Newton–Coulomb particle interactions in the plane is probably the

best place to start.) It became clear that the spectral discretization used by Colton

and Kress is incompatible with existing multipole methods.

Although they are conceptually simpler than the rules I have developed, the

singular quadratures rules applied to scattering integral equations by Rokhlin [119],

and subsequently by Kapur and Rokhlin [90], are numerically unstable at high orders.

Like Newton–Cotes rules, those rules use equally spaced quadrature nodes. And

just like high-order Newton–Cotes rules, the quadrature weights become large and

oscillatory. Acute rounding errors occur in floating-point arithmetic. Of course,

low-order Newton–Cotes rules are used all the time, and so too the rules produced

243



by Rokhlin and his colleagues suffer no ill effects at sufficiently low orders.

Work has been carried out [130] [133] to stabilize the rules at high orders. Order

of accuracy can be traded for stability. Instead of making a P -point rule exact

for functions in a P -dimensional linear space, the rule is designed to be exact for

a linear space of lower dimension. The remaining degrees of freedom are used to

minimize the norm of the weight vector. The same approach can be taken with

high-order Newton–Cotes rules. Nobody does it, because much better high-order

rules are available.

I have not presented a comparison of those rules with the new block spectral rules.

In my limited experiments to date, the block spectral rules at low orders outperform

Kapur and Rokhlin’s rule [90, column 1 of Table 6] of the same order. The block

spectral rules can reach much higher orders. (I have experimented with rules of order

288.) The block spectral rules are easier to generate. (They do not require variable-

precision arithmetic.) On the other hand, the kernel splitting certainly makes the

application of the block spectral rules more cumbersome.

The block spectral rules are more easily applied to boundaries with corners. The

rules are based on piecewise polynomial interpolations, and the break points of the

interpolant can include any corners. Mesh refinement is accomplished by adding

more break points near the corners.

6.2.2 Stabilization

After reading Rokhlin’s papers, I was unprepared to expect severe numerical insta-

bility in my multipole implementation. To my dismay, I found that the instability

in fact seriously limited the scope of problems I wished to solve. Arriving at an

effective way to manage that behavior was a long and frustrating process. With
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the solution of Chapter 5 implemented, however, I no longer have to worry about

stability issues. I am free to concentrate on solver efficiency.

After I settled on the basis renormalization presented in Chapter 5, I discovered

some work of Zhao and Chew [143] [144] [27, Ch. 5], who had already reached a

similar conclusion.

As indicated in Table 6.2, however, our scalings are not the same. The new basis

functions are given for the exterior and interior of a disk with radius α.

Table 6.2: Two Basis Renormalizations

Author(s) Exterior Basis Interior Basis

Zhao and Chew [143] (kα)nHn(kr)einφ (kα)−nJn(kr)einφ

Pals Hn(kα)−1Hn(kr)einφ Hn(kα)Jn(kr)einφ

The renormalization presented here is stronger. Zhao and Chew’s polynomial

scaling does not eliminate the superexponential growth of the exterior basis func-

tions {ϕn} as |n| → ∞. Nor does it eliminate the superexponential decay of the

interior basis functions {ψn}. It may nevertheless be quite sufficient. I have not yet

performed any comparisons of the two scalings.

In Chapter 5, I distinguish between high and low frequency instabilities. I do not

treat the high frequency instability with basis renormalization. It is only necessary

in that case to replace some fast translation operations with slow translations.

The high frequency instability in particular puzzled me for a while. The instability

is clearly linked to the FFT, but the FFT is known [82, Ch. 24] to be stable. I have

endeavored to uncover the heart of the matter, and I do not think the instabilities

have been analyzed anywhere else in the detail appearing in Chapter 5.
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6.2.3 Direct Solver

The direct solver in Chapter 4 draws some inspiration from work by Chandrasekaran

and Gu [22] on fast and stable solvers for dense linear systems with coefficient

matrices that are the sum of a banded matrix and a semiseparable matrix. A

semiseparable matrix is constructed by joining the upper and lower triangular parts

of two low-rank matrices.

For the high-order numerical solution of two-point boundary value problems,

Greengard and Rokhlin [65] present a direct solver for the block diagonal plus

semiseparable system produced by a discretization of an equivalent volume inte-

gral equation. Starr and Rokhlin [131] extend the method to first-order ODE sys-

tems, which after discretization also give block diagonal plus semiseparable matrices.

Starr [130] extends the solver still further to cover weakly singular integral equations

λϕ(s)−
∫ 1

0

K(s, t)ϕ(t) dt = f(t), s ∈ [0, 1], (6.9)

in which the kernel K(s, t) is smooth and nonoscillatory away from the diagonal

s = t. The coefficient matrices in that case are not banded plus semiseparable, but

have a hierarchical low rank structure away from the main diagonal.

The Greengard–Starr–Rokhlin solver is based on the recursive application of for-

mulas related to the Sherman–Morrison–Woodbury formula,

(A+ UV H)−1 = A−1 − A−1U(I + V HA−1U)−1V HA−1 (6.10)

Solving an updated linear system using this formula is known to be numerically

unstable [82, Prob. 26.2], although a full characterization of its roundoff behavior

has not been given. The Greengard–Starr–Rokhlin solver also assumes that each

submatrix on the block diagonal is nonsingular, and Eidelman and Gohberg [48]
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give a simple example for which that assumption is violated. But it is the reliance

on the Woodbury formula that makes the instability pervasive.

Chandrasekaran and Gu’s direct solver is a stable alternative to the Greengard–

Starr–Rokhlin solver. It is also a stable alternative to the Woodbury formula when

A is banded and U and V are skinny matrices.

The solution technique employed by Chandrasekaran and Gu has been extended

to cover dense matrices that arise in the study of time-varying linear systems with

sparse state structure [21]. In their book [40], Dewilde and van der Veen have given

a factorization algorithm for such matrices. Eidelman and Gohberg [47] [46] have

analyzed matrix structures generated by time-varying systems with scalar input and

output. They have also made recent contributions [49] to the algebra of vector I/O

systems with sparse state structure.

Chandrasekaran et al. [23] have further generalized their solver to treat matrices

with a hierarchical structure that is nearly the same as the one studied by Starr in

his dissertation.

Hackbusch and his colleagues have also systematically studied dense matrices

with hierarchical structure [76] [77]. There are two connections with the research

presented here. First, their H2 matrices [79] have exactly the structure utilized by a

fast multipole method for a nonoscillatory 1-D interaction. Second, their notion of

weak admissibility [78] simplifies that structure so that it is exactly the one treated

by the hierarchical solver of Chandrasekaran and his collaborators.

The three generations of solvers constructed by Chandrasekaran et al. all work

by sequentially deflating the dense linear system after eliminating matrix elements

by the application of unitary transforms from the left- and right-hand sides. In

each case—banded plus semiseparable, sequentially semiseparable, hierarchically
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semiseparable—a different fast and stable solver can be obtained by the method

used in Chapter 4. The fast matrix-vector product is expressed as a dag, the dag is

embedded into a large sparse matrix, and sparse Gaussian elimination with partial

pivoting solves the system.

That idea can be illustrated with the Woodbury formula. If A is banded and U

and V are skinny matrices, then in lieu of using (6.10) to solve (A + UV H)x = b,

we can solve the sparse system

[
A U

V H −I

] [
x

y

]
=

[
b

0

]
, (6.11)

where y := V Hx is the vector of intermediate variables introduced to form the

sparse system.

For block diagonal plus semiseparable matrices, Eidelman and Gohberg [50]

present a direct solver that utilizes the solution of a larger banded system. That

sparse system is not, however, the same one that would be obtained if the construc-

tion in Chapter 4 were applied to a block diagonal plus semiseparable matrix.

The sparse matrix approach is more flexible than the Chandrasekaran–Gu solver.

For instance, in (6.11) A is not restricted to have band structure, and arbitrary

sparsity patterns can be just as easily accommodated. I need the flexibility of the

sparse matrix approach because

• The multipole dag is more unstructured than the dag of a hierarchi-

cally semiseparable matrix.

• At high frequencies, the off-diagonal matrix blocks do not have low

rank.

For eligible matrices, though, the Chandrasekaran–Gu solver is likely to be faster

than the sparse matrix approach.
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I am aware of no other fast direct solver that treats general impenetrable obstacles

at high frequencies. For elongated impenetrable obstacles, other attempts [108] [17]

at a direct solver have been made. For penetrable obstacles, direct solution of the

Lippmann–Schwinger equation has been met with greater success [28] [101] [25].

6.3 Future Directions

The results presented in this dissertation are the product of a research program that

can continue in a number of directions. In conclusion, I highlight three of them.

Parallel Iterative Solver

At the end of Section 4.1, I discuss the attraction of the sparse matrix representation

of the multipole dag from the standpoint of a parallel iterative solver. Those ideas

should be tested in the near future. The implementation appears to be painless, and

certainly it is much simpler than existing parallel multipole solvers [142] [139] [27,

Ch. 4].

If, in addition to the solution vector q, the spectral expansion coefficients a and

b are also approximated in the Krylov space, then no interprocessor communication

is needed to execute the multipole matrix-vector multiplication. Only the commu-

nication required by the Krylov iteration stands in the way of ideal parallel scaling.

Unanswered questions: Is the condition number of the sparse matrix significantly

worse than that of the dense interaction matrix? How effective is the fast precondi-

tioner obtained by dropping U or V from the sparse matrix?
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B-Spline Quadrature

The block spectral quadrature rules developed in Chapter 3 strike me as deficient

in one way. If I were to start over from scratch, I think I would try basing the

quadrature on a B-spline [38] polynomial interpolation rather than on polynomial

interpolation at Chebyshev nodes.

Under accuracy scaling, in which grid points are added to reduce the discretization

error, I have no complaint with the Chebyshev nodes. In computational electromag-

netics, however, we are usually more interested in frequency scaling, in which grid

points are added to keep up with the moving Nyquist barrier as frequency is in-

creased. In that circumstance, the clustering of the Chebyshev grid points becomes

a liability. N must be large enough so that, even where the boundary grid is least

dense, the Nyquist rate is exceeded.

Splines encourage the use of a more uniformly spaced boundary grid. In a P -

point Chebyshev interpolation, all P degrees of freedom are devoted to increasing the

polynomial degree. In a P -point spline interpolation, the polynomial degree is less

than P . The remaining degrees of freedom are spent on suppressing the Runge oscil-

lations [55] [135] well-known to plague uniformly spaced polynomial interpolations.

Unlike other splines, the B-spline basis functions have compact support, necessary

for the construction of a discretization compatible with the fast multipole method.

If two boundary grids, one of NCheby Chebyshev nodes and another of NSpline

equally spaced spline nodes, are designed to both satisfy the Nyquist criterion, then

NCheby =
π

2
NSpline (6.12)

expresses the expected asymptotic inefficiency of the Chebyshev points.
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Fast and Stable Multipole Basis

I confess that I find the steps taken in Chapter 5 to be an inelegant—though

effective—solution to scattering multipole’s numerical instability. I have little stom-

ach for implementing the ideas in three dimensions, where the translation matrix

elements are tougher to compute.

The poor asymptotic behavior of the spherical wave functions (6.2) is a barrier to

more widespread deployment of the fast multipole method. A global renormalization

cures the instability, but distorts the structure of the translations, destroying the

algorithm’s efficiency.

Is there a basis that is both fast and numerically stable?

Some recent work indicates that there is. To speed up the translations among

well-separated particle clusters for the 3-D Laplace interaction, Greengard and Rokh-

lin [70] have replaced the spherical boundary of the exterior spectral expansions with

a planar boundary. They subsequently suggest that a similar measure will cure the

instability of the multipole method for Helmholtz interactions.

To construct the new basis functions, the Helmholtz equation is solved on the

half-space by separation of variables. That solution does not take the form of an

infinite double series, but rather an improper double integral. The integral is the

continuous summation of plane waves, some propagating and some evanescent. Its

discretization is more complicated: The series only requires truncation, while the

integral requires a quadrature rule on an unbounded domain.

The flaw with the approach outlined by Greengard et al. [68] is that the plane

wave basis is only applied selectively. While they switch between the spherical

wave basis and the plane wave basis, the spherical wave basis—both exterior and
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interior—needs to be abandoned once and for all. Darve and Havé [33] realize that,

and their recent work may embody the best solution.

A plane wave basis would also benefit the direct solver. Since the plane wave

expansion must be taken in several directions, Ξ will have a larger order. But since

the translation matrices are diagonal in that basis, the matrix Ξ becomes more

sparse, and there is no leftover Toeplitz structure that fails to be utilized by a sparse

Gaussian elimination code.
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