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Abstract

Higher Order Numerical Discretization on Scattered Grids

Karthik Jayaraman Raghuram

Beginning with the suppression of Runge Phenomenon which arises in equi-

spaced polynomial interpolation, we present the Minimum Sobolev Norm inter-

polation technique which we generalize to produce Finite Difference (MSNFD)

type weights for differential operators. It is shown that these weights yield higher

order approximations to these operators with increasing stencil sizes, and that

the idea generalizes to non-uniform grids easily. Thus perhaps for the first time,

a systematic means of producing higher order FD weights on irregular grids is

discussed. After the basic theoretical discussions on the interpolation process and

local convergence of weights, the idea of solving elliptic PDEs using these MSNFD

weights is discussed. A set of extensive numerical experiments on standard sec-

ond order problems as well as the Exterior Laplace problem and the biharmonic

equations are discussed. In the absence of a theory for global convergence of the

PDE solution, various numerical results that validate our claim of a higher order

FD method on non-uniform grids are presented. The concluding section discusses

the short-comings associated with solving ill-conditioned problems such as the bi-

xi



harmonic equation and the scattering problem. The idea of lifting using Div-Curl

systems is presented as a possible future work and extension.

Professor S. Chandrasekaran

Dissertation Committee Chair
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Chapter 1

Introduction

One of the most surprising facts in the theory of interpolation and
approximation is that the simplest and the most natural approach to
synthesis leads to failure, or rather, to an impossibility

Philip J. Davis - Author of “Interpolation and Approximation”

1.1 Overview

This thesis is primarily concerned with the efficient solution of partial differen-

tial equations (PDEs), systems in which one tries to recover an unknown function

from measurements of its derivatives. In order to solve such systems, we use a

discrete representation of the unknown function to produce an algebraic system of

equations. These are then solved using standard or specialized linear algebra tech-

niques. A method of solving PDEs (a PDE Solver) is regarded efficient if it uses as

1



Chapter 1. Introduction

few measurements and as few unknown samples to get to a target accuracy. The

minimum number of such samples is prescribed by the Nyquist criterion, which

requires at least two points per wavelength corresponding to the largest frequency

in the solution to the PDE. Hence an efficient solver would be one whose operating

point is as close to this rate as possible. However, a more efficient representation

may lead to increased complexity in recovering the solution as is the case with

signal compression. Hence, a more realistic measure is just the wall-clock time

taken to get to a target accuracy i.e. the time taken to solve the discrete system

obtained from the PDE.

In solving a PDE, we have a discrete representation of the unknown function.

To illustrate this idea, we consider a simple differential equation u′ = f . Let us

discretize the solution at N points u(xi) = ui. Let us also suppose that at some

point y, we have some weights wi such that

K∑

i=0

wi(y)ui ≈ u′(y). (1.1)

Then if we discretize the PDE at M points yi, we can write the discrete system

Wu = f, (1.2)

where W is an M×N matrix that has the weights wi(yj) in row j. The important

matters for us are the generation of accurate weights wi and solution to the system.

As another example, the Helmholtz equation specifies a combination of the second

2



Chapter 1. Introduction

partial derivatives and a scaled function value. This equation arises naturally in

solving for time snapshots of a traveling wave. If ∇ denotes the vector gradient

operator







∂
∂x

∂
∂y







, then the two dimensional Helmholtz equation is given by:

∇.∇u + k2u = f

for any real k. Another example is the diffusion-advection equation, which involves

a combination of second and first partial derivatives,

∇.A∇u + ∇.(ǫu) = f.

There are global and local approaches to solving PDEs. The former uses

all the underlying samples and equations at once to recover the solution in the

entire domain. While this seems to be the most natural approach, and several

powerful global methods exist, this may not be good idea for many reasons. For

example, if the solution to the underlying PDE is mostly smooth, except in a small

neighborhood, the solution has a low Nyquist rate except in a small locality. For

example, a PDE modeling fluid flow would require high Nyquist rate at regions

where the flow is turbulent. Similarly, a wave traveling through a waveguide

would require highly Nyquist rate at sharp corners. A global approach however

could be oblivious to this fact, and require a very high sampling rate to resolve

the resolution compared to a local solver, which could exploit a selectively high

3



Chapter 1. Introduction

sampling rate in the vicinity of the non-smooth neighborhood. An example of a

global method is a spectral method, that solves for the Fourier coefficients of the

solution in entire domain.

In addition to the above possible inefficiency, global approaches lead to dense

systems of equations. If the structure of such systems is known, such as low-

numerical rank off-diagonal blocks, then these can be solved efficiently using

techniques such as Fast Multipole Methods [20], and Hierarchical Semisepara-

ble Representations [5]. But we still end up having to solve for a larger number of

spectral coefficients since we are solving for a high-frequency solution. Although

global methods tend to have high rates of convergence, their numerical stability

and the need for specialized solvers limits their utility.

A local approach to a PDE Solver on the other hand, uses only a neighborhood

of samples to reconstruct the underlying solution at a given point. Such methods

work well with adaptive gridding schemes that selectively boost the sampling rate

in the vicinity of specific regions. Local discretizations lead to sparse banded sys-

tems and such systems can be efficiently solved using direct or iterative methods.

The popular Finite-Difference (FD) and Finite Element (FEM) methods both

employ local discretizations. A related advantage of a local method is that the

accuracy (or inaccuracy) in one region does not affect the convergence in the other

4



Chapter 1. Introduction

regions. Also, using adaptive gridding, one can selectively boost the accuracy in

specific regions if needed.

Note that our goal here is to have an effective discretization strategy, showcased

in a PDE Solver. For this an FD method is used, although a similar FEM setup

may well be in order. An FD method has an elegance to it in that it is never bogged

down by details. Its primary ideas are just those of sampling, approximation and

reconstruction. Further, FD solvers are very robust in the sense of the types

of PDEs they can handle. An FD solver can be built to handle almost any

type of PDE with minimum modifications. In my recent discussion with some

eminent parallel computing experts it also came to light that super computing

architectures, and computing architectures in general are most suited to FD type

PDE Solvers than FEM type PDE Solvers. We therefore discuss and work with

FD type of PDE Solvers.

To summarize the main goal, this thesis presents an effective process of nu-

merical discretization, and its application in a Higher Order FD PDE Solver.

1.2 Interpolation and Approximation

This section introduces the basic ideas in numerical discretization. The related

mathematical notation is set up, and will be used in the remainder of this thesis.

5



Chapter 1. Introduction

Interpolation may be regarded as the process of reconstructing a function,

given its sample values. Interpolation helps us read between samples by using the

function thus reconstructed. Often, the reconstructed function takes the form of

a polynomial which approximates the actual function. The polynomial is chosen

so that it matches the prescribed function values. Let us consider interpolation

in one dimension. Let x1, x2, x3, ..., xN denote N points in the interval [−1, 1].

Let f1, f2, f3, ..., fN denote the prescribed sample values of some function f(x).

Suppose we wish to use polynomials to approximate f(x) given fi. An important

question that arises is : “What is the order of the interpolating polynomial?”.

Traditional wisdom in interpolation is to choose a polynomial whose order is

the number of samples being interpolated, N . An interpolation to N samples

using an order N polynomial is termed Lagrange interpolation. The interpolating

polynomial (interpolant) in this case is unique since the polynomial is completely

specified by N coefficients, and there are as many interpolating conditions. How-

ever, this process has serious disadvantages and we resort to polynomials of order

larger than N . Let M denote the order of the interpolating polynomial p(x).

Then, the interpolation constraint is given by

p(xi) = f(xi), i = 1, 2, ...N. (1.3)

6
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Let p(x) be represented in a Chebyshev basis,

p(x) =
M−1∑

m=0

amTm(x), (1.4)

where Tm = cos m cos−1(x), the order m Chebyshev polynomial. In general, we

do not restrict ourselves to the Chebyshev basis, although this choice has certain

advantages described later. The interpolation constraints then become

M−1∑

m=0

amTm(xi) = f(xi), i = 1, 2, ...N. (1.5)

Since we have a system of equations, it is natural to consider the Linear Alge-

braic representation as follows. Let V denote the matrix as below,

V =



















T0(x1) T1(x1) T2(x1) ... TM−1(x1)

T0(x2) T1(x2) T2(x2) ... TM−1(x2)

. . . . .

. . . . .

T0(xN) T1(xN ) T2(xN ) ... TM−1(xN )



















.

7
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Let a, f denote the vector of coefficients and prescribed samples as below.

a =



























a0

a1

a2

.

.

.

aM−1



























, f =



























f0

f1

f2

.

.

.

fN−1



























The linear algebraic interpolation problem is then to find a such that,

V a = f . (1.6)

For Lagrange interpolation, N = M . Hence, V is a square matrix of full rank.

Hence the system of equations has a unique solution for a as expected. If M < N ,

then, we have a tall-skinny over determined system and there may not be an exact

solution. However, we may still produce an approximant that has minimum least

square error by solving the above system. This is often the case when several noisy

measurements are available. If M > N , we have infinitely many solutions to the

system. In this case, one is left with the option of picking particular solutions,

that satisfy some additional constraints. One traditional way of solving the above

system is to pick that a whose 2-norm is minimum. If we interpret a as the

‘Fourier’ coefficients, then this corresponds to a minimum energy interpolant.

8
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1.3 Runge Phenomenon

In this section, we discuss an important but perhaps little known observation

in interpolation theory. This observation is the main reason one seldom sees

polynomial approximations over neighborhoods larger than a few samples, as with

Splines. Consider a function f(x) = 1
1+25x2 in the interval [−1, 1]. Figure 1.1 in

page 9 shows the prescribed samples at N = 5, 9 equidistant points and the

corresponding Lagrange interpolant. Surprisingly, the 9 point interpolant is much

worse than the 5 point interpolant in approximating f(x). These wild oscillations

and the resultant divergence of the interpolant from the underlying function is

known as Runge Phenomenon.

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

x

f
(x

)

 

 

f (x) = 1

1+25x2

5 point Lagrange Interpolant

9 point Lagrange interpolant

Prescrib ed sample values

Figure 1.1: One dimension Lagrange Interpolation
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−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

f
(x

)

 

 

f (x) = 1

1+25x2

5 point Lagrange Interpolant

9 point Lagrange interpolant

Prescrib ed sample values

Figure 1.2: One dimension Lagrange Interpolation

This phenomenon was first studied by Runge, and hence called so [11]. Runge’s

observation was that equispaced interpolation of the function 1
1+x2 in |x| ≤ 5 di-

verges in the interval |x| > 3.63. The divergence is attributed to the complex

singularity at ±i. Beginning with Runge, a series of negative results followed

revealing that a convergent interpolatory process is not obvious and that La-

grange Interpolation on equispaced points can in fact even diverge everywhere for

a continuous function’s samples. Figure 1.2 depicts the Runge phenomenon on

scattered points.

Table 1.1 depicts Runge’s observation for f(x) = 1
1+25x2 . As the number of

interpolating points and hence the order of the Lagrange interpolant is increased

10
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from 5 to 50, errors at x = −0.821, 0.91 grow unbounded. This illustrates the

fundamental bottleneck with using Lagrange interpolation on equispaced nodes.

At this point we stop and ask the important question “Why are we interested

in higher order interpolation?”. While highly accurate interpolation is definitely

useful, the main application of interest for us is that of solving PDEs. Given

a linear interpolatory process, it is possible to systematically move from inter-

polation to production of FD weights of arbitrary width to provide increasing

accuracy. This shall be proved constructively using the interpolatory process we

call the Minimum Sobolev Norm (MSN) interpolation. Through MSN, we con-

struct highly accurate weights using increasing number of interpolation samples

as shall be shown later.

As another example of the Runge phenomenon, consider a two dimensional

function f(x, y) = 1
1+100x2+100y2 as shown in Figure 1.3 . The Lagrange interpolant

to this function at 11 equispaced nodes is shown in Figure 1.4. One again, we see

that Runge Phenomenon renders Lagrange interpolation on an equispaced grid

useless! We therefore need an efficient interpolation mechanism, that could be

used to produce accurate FD weights to solve PDEs.

11



Chapter 1. Introduction

Table 1.1: Point-wise Lagrange interpolation error

x Order 5 Order 9 Order 50
-8.31e-01 4.27e-01 5.57e-01 5.47e+00
-5.25e-01 5.37e-02 5.32e-02 1.28e-04
1.21e-01 2.06e-01 8.75e-02 1.11e-06
2.60e-01 3.54e-01 1.45e-02 8.16e-07
9.10e-01 3.14e-01 1.04e+00 8.89e+02

Figure 1.3: Two dimensional Runge phenomenon.
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Figure 1.4: A two dimensional Runge type function
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1.4 Traditional Finite Difference Weights

In this section we consider traditional methods of producing FD weights. By

FD weights we refer to a discrete form of differential operators, that we could

use to solve PDEs. Such weights are usually computed using a Taylor series

expansion of the underlying solution. While this may be useful in one dimension

and on equispaced (regular) grids, using Taylor series has some problems in higher

dimensions, particularly on scattered grids. For scattered grids, it is useful to

think of FD weights as computed from a Lagrange interpolant. But such weights

are not useful over large stencils due to Runge phenomenon; since the underlying

interpolant diverges, so would the weights! We expand on these key concepts

13



Chapter 1. Introduction

below. In addition, the weights themselves are not uniquely specified using Taylor

expansions as shall be shown below.

Consider the standard five-point stencil given in Figure 1.5. Let the grid points

be given by (x0, y0), (x0±h, y0), (x0, y0±h). Suppose we wish to compute weights

αi such that,

fxx + fyy = α0f(x0 − h, y0) + α1f(x0, y0) + α2f(x0 + h, y0) +

α3f(x0, y0 − h) + α4f(x0, y0 + h), (1.7)

where fxx = ∂2f
∂x2 and so on. Taylor series expansion of each of the above terms

leads to the following system of equations,

f(x0, y0) = f(x0, y0) (1.8)

f(x0 ± h, y0) = f(x0, y0) ± hfx(x0, y0) +
h2

2!
fxx(x0, y0) ±

h3

3!
fxxx(x0, y0)

+... (1.9)

f(x0, y0 ± h) = f(x0, y0) ± hfy(x0, y0) +
h2

2!
fyy(x0, y0) ±

h3

3!
fyyy(x0, y0)

+... (1.10)
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Using equations 1.8 through 1.10 in equation 1.7, we have

fxx + fyy =

(
4∑

i=0

αi

)

f(x0, y0) + h(α2 − α0)fx(x0, y0) +

h(α4 − α3)fy(x0, y0) +
h2

2!
(α2 + α0)fxx(x0, y0) +

h2

2!
(α3 + α4)fyy(x0, y0) +

h3

3!
(α2 − α0)fxxx(x0, y0) +

h3

3!
(α4 − α3)fyyy(x0, y0) + ... (1.11)

To solve for the αi, we use equation 1.11 to setup appropriate constraints on

the αi so that the left and right hand sides of the equation match to the desired

accuracy. To uniquely define these weights, so that the error bound on them is

known, we can at most specify five constraints. We set lower order derivative

coefficients to zero, giving,

4∑

i=0

αi = 0 (1.12)

α2 − α0 = 0 (1.13)

α4 − α3 = 0 (1.14)

In addition to these three constrains that make sure the error is at least O(h2),

we further want the coefficients of the second order terms be one. We therefore

get

h2

2!
(α2 + α0) = 1 (1.15)

h2

2!
(α4 + α3) = 1. (1.16)
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We solve the exact system defined by equations 1.12 through 1.16 to get the

weights as

(αi)
4
i=0 =

(
1

h2
,− 4

h2
,

1

h2
,

1

h2
,

1

h2

)

.

Using these weights, we can see that the error in approximating fxx + fyy is

h2

12
fxxxx + h2

12
fyyyy + O(h4).

A few important observations are in order. Suppose we wish to use a nine

point stencil instead, as shown in figure 1.6. In this case, we have nine unknowns

corresponding to the weights. However, there are only six derivative terms in

the expansion up to second order, namely, (f, fx, fy, fxx, fxy,fyy
). Hence, there

is no unique way to pick these weights. If we decide to include a higher order

term and set its coefficients to zero, we would have coefficients corresponding to

(fxxx, fyyy, fxxy, fyyx), giving a total of ten equations for nine unknowns. There

is no solution that satisfies this over constrained system in general. For any of

the nine point weights we have bounded the error only to the same order as with

the five point stencil, there is no gain in using these additional weights, expect

for particular advantages with the Laplacian operator. However, this is only the

beginning of the complication.

The equations themselves and hence the coefficients depend on the grid spacing

h. For irregular grids, the Taylor expansion and hence these equations need to

locally setup. So the elegance of the pre-computed weights disappears once the

16
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grid becomes irregular. Rather than consider the Taylor series expansion to the

solution and compute FD weights, on may also use interpolation to compute FD

weights. To illustrate this, consider the five point one-dimensional discretization

for the first derivative. In this case, we are given (f(x0), f(x1), f(x2), f(x3), f(x4))

to approximate the derivative at some point x as shown in figure 1.7. The Lagrange

interpolant to these five samples is given by,

p(x) =

4∑

i=0

f(xi)li(x) (1.17)

li(x) = Π4
j=0,j 6=i

x − xj

xi − xj
. (1.18)

Note that the point-wise interpolation weights at x are given by l(x). In order to

construct weights for f ′′, we simply apply the same operator to the interpolant.

Since this is a Linear interpolatory operator, the weights simply correspond to l′′i

as seen in equation 1.19. Thus, in the case of non-uniform grids, one can construct

the Lagrange interpolant, and use it to obtain the weights for linear operators.

p′′(x) =
4∑

i=0

f(xi)l
′′
i(x) (1.19)

However, as seen earlier, Lagrange interpolation is not guaranteed to converge due

to Runge phenomenon, even on equispaced samples! Hence, Lagrange interpola-

tion cannot be used to produce the correct FD weights.

To summarize our observations with traditional FD weights, we noted that

the process of specifying weights using Taylor series expansion is inefficient, and

17



Chapter 1. Introduction

(x0, y0)

Figure 1.5: Five point stencil

(x0, y0)

Figure 1.6: Nine point stencil

x0 x1 x2 x3 x4

Figure 1.7: 1D Five point stencil

leads to grids that are of the ‘cross’ form since there is no way to harness other

neighbors effectively. This process becomes complicated for non-uniform grids.

Further, if we consider the FD weights as arising from a Lagrange interpolant over

increasing number of samples, then Runge phenomenon prevents us from finding

accurate weights! Thus the problem of finding FD weights on non-uniform grids

remains and we address this problem using the idea of Minimum Sobolev Norm

Interpolation. The rest of this thesis is concerned with discussing the MSN method

in Chapter 2, a specialized method for solving ill-conditioned Weighted Least-
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Squares systems called CODA in Chapter 3, and PDE applications in Chapter 4

onwards.
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Chapter 2

Minimum Sobolev Norm

Interpolation

Common sense is the collection of prejudices acquired by age eighteen.
Albert Einstein

2.1 The Route to MSN

In the previous chapter, Runge Phenomenon was pointed out to be a key hur-

dle to be overcome, if one hopes to produce higher order FD weights. We revisit

it, to gain further intuition about resolving it. Consider the function 1
1+ax2 in

the interval [−5, 5]. This function has singularities at ±ai on the complex plane.

In order to see the effect of this singularity on the Runge Phenomenon, consider
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Chapter 2. Minimum Sobolev Norm Interpolation

figures 2.1 through 2.3. We observe that as the singularity is moved closer to the

real plane, the oscillations increase. Epperson discusses the Runge phenomenon

and the various complications in Lagrange interpolation in [17]. Since we have no

control over the location of the singularity of the function we are trying to inter-

polate, this observation is of no use. Instead, what gives a better insight is that of

interpolation error analysis. As discussed in [17],[11], we see that the interpolation

error depends on the derivatives of the function being interpolated. For the Runge

function, derivatives become increasingly large in magnitude. Such increasing er-

ror bounds permit these wild oscillations. These derivatives also increase as the

singularity in the function gets closer to the real plane as mentioned earlier in this

section. We do not get into further discussions of the Runge phenomenon, as a

more detailed look requires complex analysis and the theory of residues.

The Runge phenomenon exhibits itself as oscillations in the interpolant. A tra-

ditional approach to alleviate Runge phenomenon is to use specific configurations

of grid points. It is known that use of the zeros of the Chebyshev polynomial as the

grid points for interpolation suppresses the Runge phenomenon for the function

1
1+ax2 . However, there exist continuous functions for which the Lagrange inter-

polant diverges everywhere [11] even using Chebyshev nodes as interpolating grid

points. This result is due to G. Grünwald and (independently) J. Marcinkiewicz,

who showed that there is a continuous function for which interpolation at Cheby-
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Figure 2.1: Runge function and Lagrange interpolant, poles at ±
√
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Figure 2.2: Runge function and Lagrange interpolant, poles at ±i

−5 0 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x

f
(x

)

 

 

f (x) = 1

1+1.0x2

9 point Lagrange Interpolant

Prescrib ed sample values

22



Chapter 2. Minimum Sobolev Norm Interpolation

Figure 2.3: Runge function and Lagrange interpolant, poles at ±10i
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Figure 2.4: Runge function and minimum 2 norm interpolant of order 18
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shev zeros does not converge. However, such an f must be rough enough so as to

not satisfy the Dini-Lipschitz condition

lim
N→∞

ω

(
1

N

)

log N = 0,

where ω denotes the modulus of continuity of f . Thus, there is not a unique

configuration of grid points that can alleviate Runge phenomenon during Lagrange

interpolation. Even if available, such a configuration would be of little or no

use, since in the context of PDE Solvers, the grid configuration is determined by

several other factors. Therefore, the only degree of freedom we have is the choice

of the interpolant, which is uniquely specified for Lagrange interpolation, i.e.,

interpolation using a polynomial of the same order as the number of grid points.

Naturally, this leads us to the question of using polynomials of order larger than

the number of grid points.

As seen in the introductory section on interpolation, if we let the order M of

the interpolant be larger than the number of grid points N , we have an under-

constrained system of equations V a = f . Since there are infinitely many choices

possible, one can pick an interpolant with the desired property i.e. Runge suppres-

sion. Suppose we pick the naive minimum two norm solution for interpolation, we

see that we still have not suppressed the Runge oscillations as in figure 2.4. This

of course makes sense because a function with a small two norm may still have
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rapidly growing derivatives, something directly related to Runge phenomenon.

We therefore need to consider interpolants whose derivatives are controlled.

Fejer, the Hungarian mathematician provided for an interpolation scheme in

which he used a polynomial of order twice the number of grid points. He used

the additional degrees of freedom to set the first derivative of the interpolating

polynomial to zero at the grid points, thereby uniquely specifying the interpolant.

Such schemes in which both the function value and its derivatives are specified

fall into the category of Hermite interpolation. Splines too fall in this category

[16], [40]. Splines are piece-wise polynomials, with derivatives up to a particular

order matched at the boundary of these pieces. The over all interpolant is as

smooth as the number of derivatives matched among neighboring pieces. This

idea of matching point-wise derivatives becomes increasingly complicated, and in

higher dimensions and arbitrary surfaces, such matching is very hard to specify

[30]. Also, there exist known examples of functions for which Fejer’s approach fails

to converge as well [37]. Unfortunately setting the derivative of the interpolant

to be zero at the interpolation points reduces the accuracy of interpolation for

finite values of N . Also, this scheme fails on equispaced points. This is a result of

D. L. Berman [37, Theorem 6.1]. However the key idea of using a polynomial of

order larger than the number of grid points remains to be used, albeit correctly.

Bernstein proposed a famous alternative scheme. He showed that by giving up
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the interpolation property it is possible to produce a sequence of polynomials that

converge uniformly for all continuous f with equispaced points. Since the scheme

of Bernstein converges slowly it has not been of much practical interest either.

However, it is to be compared with Fejer’s scheme which does not converge for

equispaced points. J. Szabados [37, Theorem 2.8] shows a non-linear interpolatory

process that converges at equispaced grid points for all continuous function. But a

linear interpolatory process is what our goal is, given that we would like to produce

FD weights using the process. The Lozinskii and Kharshiladza theorem provides

a near complete justification of all these observations. As per the theorem, no

linear interpolatory process for producing polynomials of degree N , that also

preserves all polynomials of degree N , can converge for all continuous functions.

Fejer and Bernstein do not preserve all polynomials and hence produce convergent

interpolatory processes; however both have practical short comings that limits

their use.

Thus far, our discussions have been about divergence of polynomial interpola-

tion to continuous functions. A key inference from the preceding discussions is one

may need to relax this condition of convergence for all continuous functions, and

instead work with a class of functions with known smoothness properties. For

example, one could consider the Sobolev space Hs, of functions whose Sobolev

26



Chapter 2. Minimum Sobolev Norm Interpolation

norm, defined by,

‖f‖2
s = ‖f s‖2

2 =

∫ ∞

−∞
|f s(x)|2dx < ∞, (2.1)

where f s refers to the sth derivative. Note that the Sobolev space we have consid-

ered is weak in the sense that a true Sobolev norm would consider all derivatives

of f less that s as well. We take a moment to quickly look at the Fourier series

of such functions. One can also generalize the above notation for all real s if we

define derivative through Fourier coefficients. Suppose we construct the Fourier

series for the function f ∈ Hs defined over the interval [−1, 1],

f̂n =

∫ +1

−1

f(x)e−jnπxdx. (2.2)

Consider the reconstruction equation,

f(x) =

+∞∑

n=−∞
f̂ne

jnπx. (2.3)

The Fourier series may not converge, since at the periodic extension of f may not

even be continuous even though f is differentiable. We therefore need a clever

trick that would preserve the nicety of f .

We map the interval [−1, 1] onto a circle using the mapping x = cos θ. This

maps the interval x ∈ [−1, 1] → θ ∈ [π, 2π], a semi-circle. Note that f(cos θ) =

f(cos (θ + 2π)), 2π periodic and still s times continuously differentiable. If we
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now consider the Fourier coefficients of f s,

f s(θ) =
+∞∑

n=−∞
f̂n

ds

dθs
ejnπθ

=

+∞∑

n=−∞
f̂nnsjsejnπθ (2.4)

Using 2.1 and 2.4, we see that

‖f‖2
s = ‖f s‖2

2 =
+∞∑

n=−∞
|f̂n|2n2s < ∞ (2.5)

⇒ f̂n = O

(
1

ns+k

)

k > 0 (2.6)

From 2.6 we see that specifying a function’s smoothness through bounded

energy in derivatives is equivalent to specifying a rate of decay of its Fourier

coefficients on the circle.

2.2 Minimum Sobolev Norm interpolation

The MSN method draws from Fejer’s approach and attempts to control deriva-

tives of the interpolant. But instead of point-wise control over the derivative, we

control the norm of the derivative uniformly throughout the interval of interpola-

tion. The last discussions in the previous section hints at the fact that we shall be

achieving this by specifying a rate of decay of the Fourier coefficients of the inter-

polant on the circle. For our setup, we first consider the one dimensional case, in

which the grid points are given by x0, x1, x2, ...xN−1 in increasing order in [−1, 1].
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We assume uniqueness of these grid points. Further, we let f , denote the vector

of function values at these grid points; fi = f(xi). Let the Chebyshev Vander-

monde matrix be indicated by V . The choice of Chebyshev instead of monomial

basis has important advantages. Firstly, the Chebyshev basis is a well-conditioned

basis (Gautschi). Secondly, under the mapping x = cos θ, the Chebyshev basis

transforms into an orthogonal Fourier cosine basis. In this case, it is very simple

to express the Sobolev norm of the interpolant through just a weighted two norm

of the Fourier coefficients of the interpolant as shown in equation 2.10. Let pM(x)

denote the M th order Chebyshev polynomial given by

pM(x) =
M−1∑

m=0

amTm(x). (2.7)

⇒ pM(cos θ) =

M−1∑

m=0

am cos mθ (2.8)

and let a denote the vector of Fourier coefficients.

Using 2.1 and 2.4

‖pM(θ)‖2
s = ‖ ds

dθs
pM(θ)‖2

2 (2.9)

=

M−1∑

m=0

|am|2m2s (2.10)

≈ ‖Dsa‖2
2. (2.11)
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Note that in the above equation, we introduced a diagonal matrix Ds, defined

as

Ds =















1s 0 ... 0 0

0 2s ... 0 0

. . ... . .

0 0 ... 0 Ms















M×M

. (2.12)

we define Ds in the above manner so that it is invertible, for the sake of ease of

analysis. Later on , we shall consider the case when we have a need to choose Ds

to be singular. In general, Ds can be chosen to be any suitable matrix so long as

it serves our purpose of representing a Sobolev weight for the Fourier coefficients.

With this setup, we are ready to state the main problem of MSN Interpolation.

We wish to find interpolating polynomials specified by the coefficients a so that,

the sth Sobolev norm as defined by equation 2.10 is minimum. In our notation,

this is the optimization problem specified by equation 2.13. Through this we are

finding an interpolant such that its Sobolev norm on the semi-circle is minimum.

a∗ = arg min
a:V a=f

‖Dsa‖2
2 (2.13)
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2.2.1 Solution when Ds is invertible

V a = f (2.14)

⇒ V D−1
s Dsa = f (2.15)

Equation 2.15 is an under constrained system with infinitely many solutions.

However, our unique solution is the one with minimum norm as defined by equa-

tion 2.13.

(Dsa)∗ = (V D−1
s )†f (2.16)

⇒ a∗ = D−1
s (V D−1

s )†f (2.17)

= D−2
s V T (V D−2

s V T )−1f . (2.18)

The interpolant at some x ∈ [−1, 1] is given by the sum

pM(x) =
M−1∑

m=0

aMTm(x)

= V (x)a∗, (2.19)

where V (x) = [ T0(x) T1(x) ... TM−1(x) TM−1(x) ].

Equation 2.19 can be rewritten as,

pM(x) = V (x)D−2
s V T (V D−2

s V T )−1f (2.20)

=

N−1∑

i=0

K(x, xi)fi, (2.21)

where K(x, y) is the MSN interpolation kernel.
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2.2.2 Solution for a general Ds

In this section we consider the solution when Ds is not invertible. Through

the matrix Ds, we are imposing Sobolev weights on the Fourier coefficients of

the interpolant on the circle. By using a weight of the form ms, we require that

high frequency terms be all the more smaller, compared to the low-frequency

terms. We are in effect looking for a low-pass filtered interpolant. However,

we do not preserve all polynomials, since we are considering only those which

can be expressed as a minimum sobolev norm solution. Suppose we wish to

preserve certain polynomials, then the Sobolev weight in Ds corresponding to these

terms is zero. Hence the matrix Ds has zero diagonal entries. With appropriate

permutations it is possible to rewrite such a Ds as

Ds =







0 0

0 D̂s







(2.22)

The corresponding optimization problem now reads, find

a∗ = arg min
V a=f

‖D̂sa2‖2
2, (2.23)

where a2 the M2 × 1 vector of coefficients whose Sobolev norm needs to be mini-

mized. Let M1 denote the number of polynomial terms preserved, corresponding

to as many zero sobolev weights in Ds, M1 + M2 = M . Let us partition the
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Chebyshev Vandermonde matrix V accordingly as

V =

[

V1 V2

]

. (2.24)

Using 2.24, we write 2.23 as, minimizing D̂sa2 subject to V1a1 + V2a2 = f . We

solve this problem in the manner below.

V2a2 = f − V1a1 (2.25)

⇒ V2D̂
−1
s D̂sa2 = f − V1a1 (2.26)

⇒ (D̂sa2)
∗ = (V2D̂

−1
s )†(f − V1a1) (2.27)

We still need to pick a1 so that the minimum sobolev norm condition is met.

Hence we solve,

arg min
a1

‖(V2D̂
−1
s )†(f − V1a1)‖2

2. (2.28)

The minimum norm solution for a1 is given by,

a∗
1 = ((V2D̂

−1
s )†V1)

†(V2D̂
−1
s )†f (2.29)

We now use equations 2.27 and 2.29 to solve for a2. The over all solution is

given by a1 and a2.

2.2.3 Convergence with infinite order polynomials

We now consider the conditions on the smoothness of the underlying function

f , so that the interpolant p∞ converges to it. The reason why we consider ∞
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order polynomials is that in this case, the coefficients of interpolation that we

seek to find are actually the Fourier coefficients of f(cos θ). In this case, since the

Fourier coefficients themselves are a part of the possible solution space, and the

interpolant p∞(x) has minimum sobolev norm, we have,

‖p∞(x)‖2
s = ‖Dsa‖2

2 < ‖f‖2
s. (2.30)

Now if the function itself is in some sobolev space Hs, then ‖f‖s < ∞ and so

the sobolev norm of the interpolant is also bounded. We now consider the Arzela-

Ascoli theorem of convergence. A set of functions F is said to equicontinuous if

every one of them is equally continuous. This means that for this entire set F for

all points x, y, if there exists an ǫ > 0, such that |f(x) − f(y)| < ǫ, ∀f ∈ F ,

then there exists δ so that |x − y| < δ. Note that for a continuous function,

the parameters ǫ, δ are specified for each f and for each x, y. The Arzela-Ascoli

theorem states that for such an equicontinuous set F with a countable dense

subset E, every sequence of functions {fn} ∈ F uniformly converges on every

compact subset over which F is defined [34].

Our plan of attack to prove convergence is as follows. We first consider the

sequence of MSN interpolants with M = ∞, and increasing number of grid

points N1, N2, N3, .... We show that this constitutes an equicontinuous, point-

wise bounded set that satisfies the assumptions needed for Arzela-Ascoli type

convergence for every sub-sequence. We then show that if we take the limit of
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such a converging sub-sequence, then this limit converges point-wise to the un-

derlying function f(x). Since this is shown to be the case for every sub-sequence,

the entire sequence of MSN interpolants should converge to f(x).

Theorem 1. Let s > 3
2
. Let pN be the sequence of MSN interpolants of order ∞

at N grid points, {xi : 1 ≤ i ≤ N, 1 ≤ N < ∞}. If f ∈ Hr, with r ≥ s, and if x

is a limit point of the set of grid points, then

lim
N→∞

pN(x) = f(x).

Proof. Consider the norm of the first derivative of the interpolants on the circle,

given by,

‖p(cos θ)′‖1 =

∞∑

m=1

|am|m (2.31)

=
∞∑

m=1

|am|
ms

ms−1
(2.32)

≤

√
√
√
√

∞∑

m=1

|am|2m2s

√
√
√
√

∞∑

m=1

1

m2s−2
, using Cauchy-Schwarz (2.33)

= ‖Dsa‖2

√
√
√
√

∞∑

m=1

1

m2s−2
(2.34)

≤ ‖f‖s

√
√
√
√

∞∑

m=1

1

m2s−2
, using 2.30 (2.35)

= K < ∞, s >
3

2
(2.36)
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Since the first derivatives of the interpolants are uniformly bounded, using

mean value theorem, we would have that

|p∞(x) − p∞(y)|
|x − y| ≤ K. (2.37)

Thus, to satisfy equicontinuity, one can pick any ǫ and δ = ǫ/2K. This is a well

known results about differentiable functions. The fact that we are working with

functions with uniformly bounded derivatives is very important in that, Arzela-

Ascoli becomes transparent to us! In fact, using the power of Arzela-Ascoli, the

proof even generalizes to d dimensional spaces easily.

Now that we have an equicontinuous set of interpolants pN , over a compact

interval on the real line, every sub-sequence of interpolants (corresponding to

increasing number of grid points), converges. Let us consider one such sub-

sequence, and let us suppose its limit is p(x). We now show that irrespective

of the sub-sequence we consider, this limit converges to the underlying function.

Consider some point x, which is the limit point to some sequence of grid points,

{xn,Nk
}, 0 < n ≤ Nk.

|p(x) − f(x)| = lim
n→∞

|p(xn,Nk
) − f(xn,Nk

)| (2.38)

Since we interpolate at the grid points, we can replace f with the sub-sequence

of interpolants, pN .

|p(x) − f(x)| = lim
n→∞

|p(xn,Nk
) − pN (xn,Nk

)| (2.39)
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The above is a point-wise limit, and so we can replace the RHS with max

norm, as

|p(x) − f(x)| ≤ lim
n→∞

‖p − pN‖∞ (2.40)

But the limit of the sub-sequence pN is p. Hence, we have shown that p

converges to f at any point x, so long as we pick a set of grid points, whose

limit will be x. Since we picked a subsequence in general, and the limit namely f

was independent of which subsequence we pick, all subsequences, and hence the

entire sequence of interpolants converges point-wise to f , at limit points to the

grid points.

|p(x) − f(x)| = 0 using the fact that p is the limit of pN (2.41)

Corollary 1. Theorem 1 still holds if s > 1
2
.

The assumptions of the Arsela-Ascoli theorem are still satisfied if we have

uniform Holder continuity, rather than bounded derivatives. In fact, this directly

presents a mean-value form that shows equicontinuity. The reason we are going

through this is of course because, s > 1
2

does not even imply differentiability, but

important functions such as |x| are in this space. We show that a function in

Hs has a bounded Hölder norm, and hence the family of MSN interpolants with

s > 1
2

is still equicontinuous. The α-Hölder norm we consider is
∥
∥
∥

f(x)−f(y)
|x−y|α

∥
∥
∥
∞

.
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Proof. Consider a function g in Hs> 1

2 . We consider the function at two points

θ1, θ2. Then, we would like to bound the above mentioned Hölder norm for g for

some α. Suppose that g has Fourier coefficients ĝm.

|g(θ1) − g(θ2)| =

∣
∣
∣
∣
∣

∞∑

m=0

gn (cos mθ1 − cos mθ2)

∣
∣
∣
∣
∣

(2.42)

≤
∞∑

m=1

|gm| |cos mθ1 − cos mθ2| (2.43)

= 2

∞∑

m=1

|gm|
∣
∣
∣
∣
sin

(

m
θ1 − θ2

2

)∣
∣
∣
∣

∣
∣
∣
∣
sin

(

m
θ1 + θ2

2

)∣
∣
∣
∣

(2.44)

We now use the observation that |sin(mx)| ≤ |mx|t, 0 < t ≤ 1. Using this for

the term
∣
∣sin

(
mθ1−θ2

2

)∣
∣ and continuing on the earlier argument, we have

|g(θ1) − g(θ2)| ≤ 2
∞∑

m=1

|gm|
∣
∣
∣
∣

(

m
θ1 − θ2

2

)∣
∣
∣
∣

t

, 0 < t ≤ 1 (2.45)

= 21−t|θ1 − θ2|t
∞∑

m=1

|gm|mt, 0 < t ≤ 1 (2.46)

We now use the usual trick of multiplying and dividing by mβ .

|g(θ1) − g(θ2)| ≤ 21−t|θ1 − θ2|t
∞∑

m=1

|gm|
mβ

mt+β , 0 < t ≤ 1 (2.47)

|g(θ1) − g(θ2)|
|θ1 − θ2|t

≤ 21−t
∞∑

m=1

|gm|
mβ

mt+β , 0 < t ≤ 1 (2.48)

≤ 21−t

√
√
√
√

∞∑

m=1

1

m2β

√
√
√
√

∞∑

m=1

|gm|2m2t+2β (2.49)

The first term in the above product is bounded for β > 1
2
. Since g ∈ Hs> 1

2 , the

second term would also be bounded if t + β ≥ 1
2
. This guaranteed because β > 1

2
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by choice, and 0 < t ≤ 1. We see that the function g is Hölder continuous for

some t. Therefore the MSN interpolant class with s > 1
2

is equicontinuous, and

we can proceed using Arzela-Ascoli as before with Theorem 1.

The above results may be easily extended to the cases where we have inter-

vals devoid of limit points and uniform convergence over any dense subset of the

interpolating interval for s > 2 using the Arzela-Ascoli convergence.

2.2.4 Convergence with finite order polynomials

The case for finite order polynomials is much more involved. We merely state

the key results here; the proof is presented in [9]. The key idea is still to prove

that the MSN interpolants of finite order still satisfy the assumptions needed by

Arzela-Ascoli. For this, there exist an additional constraint on the order of the

polynomial. Essentially, we want the order of the polynomial of the polynomial

to be a constant factor of the mesh norm I(xN ) associated with a set of points

xN , which we define as

I(xN) =

⌈
π

mini6=j ‖θi − θj‖

⌉

, (2.50)

where θi = cos−1 xi. We therefore require that M = cI(xN) in order that

‖pM‖s ≤ K‖f‖s ≤ ∞. (2.51)
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Once we have bounded Sobolev norms, one can use the techniques presented

to show an induced bound on a Hölder norm and hence equicontinuity. With

these in place, we can appeal to Arzela-Ascoli again to prove convergence. The

paper by Chandrasekaran and Mhaskar [9] proves such convergence for arbitrary

p Sobolev norms, and arbitrary dimensions. The Arzela-Ascoli theorem is really

general and extremely powerful indeed!

2.2.5 Construction of the MSN Interpolant

For the one-dimensional case, we saw how the MSN interpolant is constructed

earlier. The only comment that needs to be made is that, one need to choose the

order of the interpolating polynomial based on the mesh norm as required by our

theorem. As a rule of thumb, for the equispaced grid setting, the order of the

interpolant needs to twice the number of grid points in each dimension. For the

general setting, the order of the polynomial is set to be three to four times the

mesh norm for each dimension.

Consider a set of grid points, xi = {xi, yi}N
i=0. Let the corresponding mesh

norm be

I(xi) =

⌈
π

mini6=j ‖θi − θj‖2

⌉

, (2.52)

where θi = {cos−1 xi, cos−1 yi}. We set M = 4

⌈mini6=j‖θi−θj‖2⌉ in practice.
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In two dimensions, the Chebyshev basis takes polynomials of the form

Tm,n(x) = Tm(x)Tn(y), 0 ≤ m < Mx, 0 ≤ n < My, (2.53)

product of one dimensional polynomials.

We now write the Chebyshev Vandermonde matrix as

V =















T0,0(x0) T0,1(x0) ... T0,My−1(x0) ... TMx−1,My−1(x0)

T0,0(x1) T0,1(x1) ... T0,My−1(x1) ... TMx−1,My−1(x1)

. . . . . .

T0,0(xN−1) T0,1(xN−1) ... T0,My−1(xN−1) ... TMx−1,My−1(xN−1)















(2.54)

The Sobolev weight matrix Ds is defined to correspond to a Sobolev norm as

below,

Ds =















(1 + 02 + 02)
s
2 0 0 ... 0

0 (1 + 02 + 12)
s
2 0 ... 0

. . . . .

0 0 0 ... (1 + (Mx − 1)2 + (My − 1)2)
s
2















(2.55)

With the V and Ds defined, one can construct the MSN interpolant as de-

scribed. The interpolatory process remains the same irrespective of dimensional-

ity. In fact, we readily even see how things extend to any higher dimension! The

rate of convergence of the interpolant with increasing grid density is an important
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parameter. We discuss this in the light of local discretizations we use to produce

FD weights in a later chapter. We do pay a penalty in the rate with increase

in dimensions, as the case called the ’curse of dimensionality’. Also, if the grid

points are not in [−1, 1], then we must use an appropriate mapping function φ(x)

before we use the Chebyshev basis at these points.

The construction of the interpolant involves the construction of the pseudo-

inverse of V D−1
s . This is often carried by first performing a QR or QL factorization

of D−1
s V T . However, the QR factorization of such badly row-scaled matrices is in-

accurate, unless carried out with complete pivoting, or in rank-revealing manner.

Such factorizations require a special treatment, through the use of complete or-

thogonal decompositions [22]. We present one such efficient method using SVDs,

which we call CODA. This is described in a subsequent chapter in conjunction

with the computation of FD weights. For now, we shall assume that any QR

factorization involving the bad row-scaling has been carried out though CODA.

2.2.6 Numerical Results for Interpolation - 1D

In this section, we present a series of numerical examples of 1D MSN interpo-

lation.
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Table 2.1: MSN Interpolation error for Runge function

s
N M 2 4 6 8 10 12 14
30 60 1.8e-3 4.2e-4 1.1e-3 1.8e-2 1.4e-1 7.3e-1 2.7e+00
100 200 4.9e-6 1.7e-9 9.9e-12 7.3e-13 9.1e-12 1.1e-9 5.1e-8
311 622 3.3e-7 7.5e-12 1.8e-14 1.4e-13 1.6e-12 1.8e-10 8.6e-8
512 1024 9.6e-8 7.7e-13 1.7e-14 2.7e-13 9.1e-12 2.6e-8 1.2e-5

Runge type function f(x) = 1
1+x2 , x ∈ [−5, 5]

Table 2.1 presents the maximum relative reconstruction error using MSN in-

terpolants to the function f(x) = 1
1+x2 over the interval [−5, 5]. Note that this was

the same example Runge had used to observe the oscillations. The table contains

the number of grid points N , the order of the interpolant M (chosen to be twice

the number of grid points), and the maximum relative reconstruction error for

s = 2, 4, 6, 8, 10, 12, 14. The error is measured as ‖f(x)−pM (x)‖∞
‖f(x)‖∞ where x is a set of

1024 equispaced points in the interval [−5, 5].

Runge type function f(x) = 1
1+25x2

Table 2.2: MSN Interpolation error for f(x) = 1
1+25x2

s
N M 2 4 6 8 10 12 14
30 60 1.8e-3 4.2e-4 1.1e-3 1.8e-2 1.4e-1 7.3e-1 2.6e+00
100 200 4.9e-6 1.7e-9 9.9e-12 7.3e-13 8.9e-12 1.0e-9 5.1e-8
311 622 3.3e-7 7.5e-12 3.0e-14 2.2e-13 4.3e-12 5.3e-11 7.1e-8
512 1024 9.7e-8 7.8e-13 5.6e-15 9.2e-14 4.4e-12 7.4e-8 4.0e-5
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Table 2.2 presents the maximum relative reconstruction error using MSN in-

terpolants to the function f(x) = 1
1+25x2 over the interval [−1, 1]. The error is

measured over a set of 1024 equispaced points in the interval [−1, 1]. Note that

this function has its complex poles closer from the real plane than the previous

function. In order to be visually convincing as well, see below, the MSN Inter-

polant and the actual function super-imposed. They are barely discernible from

each other in figure 2.5. The figure uses 30 equispaced samples, with s = 2 and a

polynomial of order 60.

Figure 2.5: MSN Interpolant to f(x) = 1
1+25x2 at 30 equispaced points.
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Table 2.3: MSN Interpolation error for f(x) = 1
1+0.01x2

s
N M 2 4 6 8 10 12 14
30 60 2.0e-5 3.7e-9 2.0e-12 9.2e-15 7.4e-14 1.9e-13 8.8e-13
100 200 1.8e-6 3.4e-11 2.2e-14 1.4e-13 2.9e-12 7.5e-11 1.0e-9
311 622 2.0e-7 3.9e-13 9.9e-14 9.5e-13 5.7e-12 5.3e-10 1.6e-7
512 1024 5.9e-8 4.5e-14 4.1e-14 1.9e-13 1.7e-11 4.9e-8 2.4e-4

Runge type function f(x) = 1
1+0.01x2

Table 2.3 presents the maximum relative reconstruction error using MSN in-

terpolants to the function f(x) = 1
1+0.01x2 over the interval [−1, 1]. The error is

measured over a set of 1024 equispaced points in the interval [−1, 1]. Note that

this function has its complex poles farther from the real plane than the previous

function.

Function f(x) =
√

|x|

Table 2.4: MSN Interpolation error for f(x) =
√

|x|
s

N M 0.5 1.0 1.5 2 6 10 14
30 60 2.1e-1 1.5e-1 1.3e-1 1.3e-1 1.3e-1 1.2e+00 1.9e+01
100 200 1.2e-1 6.4e-2 5.8e-2 5.7e-2 5.5e-2 5.4e-2 1.1e+02
311 622 8.2e-2 2.7e-2 2.7e-2 2.9e-2 3.1e-2 6.8e-1 7.3e+05
512 1024 6.2e-2 1.1e-2 9.3e-3 8.8e-3 8.2e-3 3.6e+00 7.2e+06

The function
√

|x| is not differentiable at x = 0. Hence, the interpolation

error is dominated by the accuracy in the vicinity of x = 0. To address, one may

resort to a more careful choice of grid points, such as a quadratically clustered
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set of points sgn(x)x2, where x is still from an equispaced set of points in [−1, 1].

We see that the effect is immediate, and we get more accuracy at the even a 100

grid points. Of course, to do this, we have used a much larger polynomial order,

since the mesh norm, which depends on the minimum sample spacing is much

smaller. Due to numerical ill-conditioning, we restrict ourselves to s ≤ 4 for this

case; note that s > 1
2

is sufficient for this case. We shall discuss the numerical

error in more detail while summarizing the numerical results. Table 2.5 below

presents the interpolation error at 1024 equispaced points in [−1, 1].

Table 2.5: Square root Interpolation, quadratic grid point clustering

s
N M 0.5 1.0 1.5 2 6
30 1261 3.7e-1 5.1e-2 1.4e-2 1.6e-2 4.7e+02
100 14701 2.7e-1 1.7e-2 1.4e-3 1.0e-3 8.8e+03
311 72075 1.8e-1 5.6e-3 2.7e-4 1.46e-4 8.8e+12
512 391682 1.5e-1 3.5e-3 1.3e-4 4.7e-6 4.1e+12

Lagrange and Spline interpolation on
√

|x|

For the sake of visual curiosity, we see how Lagrange interpolation does on this

function with equispaced and quadratic points. Figure 2.6 and Figure 2.7 show

Lagrange interpolation of the
√

|x| function at 5, 9 equispaced and quadratically

clustered points respectively. We see that Runge oscillations render Lagrange

interpolation with no hope. In addition to Lagrange interpolation, we also take a

moment to compare our performance against Splines. For this, we use the cubic
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spline interpolation toolbox of Matlab. We use piece-wise cubic interpolants with

slope conditions matching at the edges in this case. We observe that due to their

local nature, they are affected much by errors in the vicinity of x = 0. However,

they converge extremely slowly. To get to a comparable accuracy of 10−4, it

was observed experimentally that 1e6 equispaced grid points were needed. If we

used quadratic clustering, the error actually worsened, and only and accuracy of

10−2 was observed. To fix the slow convergence one may hope to set up larger

polynomials, so that higher derivatives could be matched. But this presents dual

problems. Firstly, Runge oscillations will haunt us again. Secondly, the idea

of matching point-wise derivatives become complicated in higher dimensions and

geometries such as even a sphere.

Summary

Firstly, the Runge phenomenon has been dealt with successfully. We observe

convergence for several Runge type functions. As a hard example, we considered

the square root function, and convergence was observed for s > 0.5. In fact, we

observed convergence for s = 0.5. Clearly, the theorem we proved can be made

much sharper! We considered quadratically clustered grid points, and saw that it

increases accuracy considerably. It was observed that for such a grid, one needs to

resort to much higher orders of interpolants. The numerical conditioning of such
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Figure 2.6: Square root function and its Lagrange interpolants
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Figure 2.7: Square root function on a quadratic grid
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higher order interpolation methods are still a problem. While we dealt with them

partially using the CODA algorithm, to be detailed in the next chapter, we see that

it still is a problem for larger M and s. However, a few comments must be made in

this regard. Firstly, for rough functions such as the square root function, a small

value of s will work well. Secondly, since we have high rates of convergence, the

desired accuracy can be reached with relatively coarse grids, which means a more

modest order for the interpolant. Thirdly, for our end goal of solving PDEs, we are

going to deploy MSN locally. Of course, the size of the neighborhood determines

the order of the FD method, but increasing order increases the computationally

complexity as well. As shown with a simple calculation, it is not advantageous

to increase the size of interpolating neighborhoods beyond a limit. Within this

limit, the MSN interpolant is very well conditioned, as we shall see, even up to

s = 50. Note that since our primarily goal was to present a convergent scheme,

we did not make explicit comments about the rate of convergence. As evident in

comparison with splines, MSN is a higher order interpolation method, capable of

many order accuracy with comparable grid sizes.

2.2.7 Numerical results for interpolation - 2D

We now consider examples of MSN interpolation of two dimensional samples.
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Smooth Runge function 1
1+25x2+25y2

Figure 2.8 shows the MSN interpolant to the considered function at a 20× 20

regular grid in [−1, 1] × [−1, 1]. Note that in comparison with the Lagrange

interpolant shown in figure 1.3 there is no Runge oscillations. The order of the

polynomial was chosen to be M = 57 along each dimension and s was set to 2.

Figure 2.8: MSN interpolant to Runge type function in two dimensions

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

xy

p
(x

,
y
)

Table 2.6 shows the MSN interpolation error. N indicates the number of

equispaced grid points in the interval [−1, 1]× [−1, 1]. s was varied as 2, 4, 6, ...14.

The optimum choice of s is seen to be around s taking into account numerical

issues. This function has comparable smoothness to the one-dimensional Runge

example we presented in table 2.2. For this function, the interpolation example
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was run until memory overflow in the computer and up to 24 hours of computation

time. This was a time limit on the use of super computing nodes, with large

memory. Note that we are able to interpolate to an accuracy of 7 digits. The

reconstruction error for each N was measured over an equispaced grid using 4×N

grid points in the interval of interpolation. The reconstruction grids were chosen

not to overlap with the interpolation grids.

Table 2.6: MSN Interpolation error for f(x) = 1
1+25x2+25y2

s
N M 2 4 6 8 10 12 14
100 900 2.5e-1 2.2e-1 2.2e-1 2.2e-1 2.2e-1 2.3e-1 2.3e-1
961 8449 2.1e-3 3.5e-4 1.6e-4 2.2e-3 2.5e-2 1.6e-1 7.3e-1
6400 57600 2.2e-4 2.2e-5 4.7e-6 1.4e-6 4.6e-7 2.4e-7 1.5e-6
14641 131769 7.5e-5 5.5e-6 8.7e-7 1.9e-7 5.3e-08 1.7e-08 6.0e-09

Rough Runge function

Having convinced ourselves of the basic example, in which Runge oscillations

were successfully suppressed, we now consider a rougher example. This function

has several Runge type singularities, along a circle, two paraboli and a straight

line too. The function is shown in Figure 2.9 and is mathematically given by,

f(x, y) =
1

1 + 25(x2 + y − .3)4
+

1

1 + 35(x + y − 5.4)2
+

1

1 + 25(x + y2 − .5)2
+

1

1 + 35(x2 + y2 − 2.25)2
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Figure 2.9: MSN interpolant to Runge type function in two dimensions
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Table 2.7 below presents the Interpolation error for this function. Once again,

we succeed in obtaining up to 6 digits of accuracy for the grid sizes we considered

and possible could be run.

Table 2.7: MSN Interpolation error for the rough Runge type function

s
N M 2 4 6 8 10 12 14
100 900 2.3e-1 2.1e-1 2.6e-1 7.8e-1 1.4 2.0 2.4
961 8449 2.1e-2 1.1e-2 1.0e-2 1.7e-2 8.0e-2 3.5e-1 1.4
6400 57600 1.6e-3 1.8e-4 3.2e-5 8.5e-6 8.0e-6 5.5e-5 4.8e-4
14641 131769 5.2e-4 3.5e-5 4.9e-6 1.0e-6 2.7e-07 1.0e-07 5.8e-08
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Annular Domain

We now consider interpolation of a rough function given by

f(r, θ) = Im{
√

(r − .5)(0.5 − r) sin 2|θ|} (2.56)

We also complicate the domain of interpolation to an annulus with a concentric

disk as shown as in figure 2.10. The front views of the function being interpolated

are given in figures 2.11,2.12.

Figure 2.10: Domain of interpolation r ≤ 0.3 ∪ 0.5 ≤ r ≤ 0.75
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Table 2.8 gives the interpolation error over the domain specified as an annular

region 0.1 ≤ r ≤ 0.25. Note the orders of the interpolant. These were picked

computing the mesh norm of the region being interpolated. The function itself has
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Figure 2.11: Front view of the rough function

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x

f
(x

,
y
)

Figure 2.12: Front view of the rough function
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square root type singularities over a circle. In addition there is a jump singularity

at θ = 0, π.

Table 2.8: Rough function over a complex domain

s
N M 2 4 6 8 10 12 14
400 921 9.7e-1 1.1 1.2 1.2 1.2 1.3 1.3
1681 35344 1.3e-1 1.5e-1 1.6e-1 2.6e-1 4.2e-1 6.0e-1 7.5e-1
3969 85264 8.8e-2 9.8e-2 9.9e-2 1.0e-1 1.0e-1 1.9e-1 4.0e-1

Summary

The most important observation that is relevant in the global context of MSN

applications is that even in two dimensions, we retain the rapid convergence prop-

erties even for complicated functions, provided sufficient samples are available. In

the context of a local discretization of PDE Solutions, this is the most important

property we are interested in. PDE Solutions are often locally smooth, and the

solution may be rough over particular regions. The numerical issues are more pre-

dominant in the two dimensional case compared to the one dimensional case. But

note that in the context of a local discretization, the grid size we considered are

extremely large. The fact the interpolation worked stably even over such size, is

very encouraging. It also means that for smaller discretizations, we can accelerate

the convergence using larger values of s as the case may be.
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We also demonstrated MSN’s power in interpolating over complicated domains.

This again comes in handy when local discretizations are over complicated parts

of the domain of a PDE such as corners, exclusions etc. The observed conver-

gence for specific singular cases over complicated domains motivates that the fact

the method may succeed over singular PDEs over complicated geometries. Yet

another application where in the power of MSN has been demonstrated is image

segmentation. It has been shown in [8] that MSN can be used to characterize

regions of the image (which may be be as complicated as the objects that need

to be segmented). This requires us to perform interpolation or approximation

operations over such complicated domains as illustrated in the last example.

Another possibility with using MSN to solve PDEs is to use MSN coefficients

as unknowns of the solution. This would be a global pseudo-spectral type of ap-

proach. The resulting PDE discretizations would be dense, albeit with structure.

It has been experimentally observed that the interpolation operator kernel has

low-rank off-diagonal structure as required by HSS [5] type algorithms over carte-

sian grids. For general grids, one may need to use the full FMM formulation[20].

We do not pursue this approach in this thesis. Fast algorithms and kernels for the

approximation case of MSN are discussed in an appendix.
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Complete Orthogonal

Decomposition Algorithm

Give me a place to stand, and I will move the earth. Archimedes

3.1 The Weighted Least-Squares problem

We begin this chapter with a brief introduction to weighted least squares

(WLS) problems. A WLS problem is usually as a minimization problem,

arg min
x

‖W (Ax − b)‖2
2, (3.1)

where AM×N, M>N is a tall-kinny matrix. A is assumed to have full column rank,

N . W is the weight matrix and b specifies the right hand side. The case when
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W is diagonal is most common. In this case, let us denote w1, w2, ...wM to be the

diagonals of W . If we let the rows of A be

A =



















AT
1

AT
2

AT
3

. . .

AT
M



















, (3.2)

then the WLS equations are

arg min
x

M∑

i=1

|wi(A
T
i x − b)|2. (3.3)

Practical situations in which such problems arise include barrier methods in

optimization, finite elements, structural investigations, circuit analysis problems

and in our case FD weight calculation through MSN. Further, it is natural for

the weights wi to be highly skewed, leading to a highly ill-conditioned W . [38]

discusses the problems with solving WLS systems, with highly ill-conditioned

positive definite diagonal W . In addition to the examples Vavasis discusses, as we

shall note shortly, MSN based FD weight computation also involves ill-conditioned

WLS systems.

In the notation of Vavasis, the stability of an algorithm to solve such a WLS

system is defined by an error bound independent of W . Essentially, we are look-

ing for an algorithm whose backward error can be bounded independent of the
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scaling matrix W . Traditional methods for solving WLS systems, such as LU fac-

torizations, Cholesky factorizations and even QR decomposition based methods

are shown to be unstable in the above sense. In [22] Hough and Vavasis discuss

the method of complete orthogonal decomposition to solve such WLS systems.

They show that the proposed approach is stable. In this chapter, we draw upon

their idea and present a poor man’s implementation of the technique, which we

called CODA. Instead of relying on the more expensive completely pivoted de-

composition methods, we use library SVD routines in a rank revealing manner to

obtain accurate results.

3.2 The Trick to solving WLS systems

While solving an ill-weighted LS system, the problem is essentially that due to

bad row scaling, traditional algorithms end up adding two very differently scaled

rows. This causes severe round off errors. If somehow, this bad row-scaling could

be dealt with, say by converting it into bad column scaling instead, then one can

hope that traditional methods would do better. Consider the ill row-scaled matrix

A and its SVD as below,

WA = UΣV H (3.4)

⇒ DAV = UΣ. (3.5)
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The matrix UΣ if computed correctly, would be the badly column scaled

version we want. If we have a QR factorization of this nicer matrix, then we can

write,

UΣ = QR (3.6)

⇒ WA = QRV H (3.7)

Note that we are dependent on an accurate SVD being computed. Of course,

a regular SVD would fail on the badly row scaled system. But one can hope

that it computes the singular values accurately up to some scale. We use idea

and repeatedly use SVDs to peel more accurate singular values, together with the

orthogonal columns of V . Note that we are never interested directly in the column

factors U . So for the tall skinny system, a memory efficient implementation is

possible, if we use only the singular values in Σ and the row orthogonal vectors

in V H . We state the algorithm with subsequent discussion leading to an informal

proof below. We present substantial numerical evidence that the algorithm works,

particularly in our context of MSN.

3.2.1 CODA

Consider the badly row-scaled matrix, WA = B. Our objective is to ob-

tain a form BV H = UΣ, U is well conditioned and Σ accordingly would be
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ill-conditioned. We shall show that it is possible to use SVDs to achieve this. We

let the refinement factor be η, the fraction of the largest singular value that could

be computed accurately. A smaller value of η means more refinement, and also

that we could potentially handle more severe ill-conditioning. Typically, η is set

to be about 10.

Step 1 Compute top-level SVD

B = UΣV H (3.8)

⇒ BV = UΣ. (3.9)

We can stop here if the SVD we to be computed accurately. But this may

not be so. Hence we iterate.

Step 2 Let the singular values in Σ be σ1, σ2, ... in decreasing order. Let k =

arg mini σi > σ1

η
. Split

BV =

[

BV (∗, 1 : k − 1) BV (∗, k : end)

]

(3.10)

=

[

BV1
︸︷︷︸

accurate

BV2

]

(3.11)

=

[

UΣ1 UΣ2

]

. (3.12)

We also appropriately partition V =

[

V1
︸︷︷︸

accurate

V2

]
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Step 3 Since BV2 and V2 we not accurate, we refine them further. Note that we

have peeled off the range of singular values corresponding to a factor of η

from the matrix we wanted to factorize. We perform the the refinement

SVD,

BV2 = Ũ Σ̃Ṽ H (3.13)

⇒ BV2Ṽ = Ũ Σ̃. (3.14)

In order for algorithm to terminate there should be no singular value σ̃i <

σ̃max

η
.

Case 1: Suppose the termination condition is met, we show how to obtain the

desired factorization form. Consider

B

[

V1 V2Ṽ

]

=

[

BV1 BV2Ṽ

]

(3.15)

=

[

UΣ1 Ũ Σ̃

]

(3.16)

= U

[

Σ1 UT ŨΣ̃

]

. (3.17)

Now the columns of U form an orthogonal for the column space of A.

On the other hand, Ũ forms a basis for the column space of AV2. But,

AV2 = UΣ2 =

[

U1 U2

]







0

Σ̂2







= U2Σ̂2. (3.18)
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Hence, the columns of Ũ span the columns of U2. Also note that the

columns of U are orthonormal be definition. Therefore,

UT Ũ =







UT
1

UT
2







Ũ =







0

I







. (3.19)

We therefore get the desired form,

B

[

V1 V2Ṽ

]

= BV = U





 Σ1







0

Σ̃













= UΣ. (3.20)

Case 2: Suppose there are some singular values that are smaller than of σ̃max

η
,

then we repeat the refinement as before, and split

BV2 =

[

BV2Ṽ1 BV2Ṽ2

]

. (3.21)

Step 4: Once we have the desired column scaled form, we can perform a QR

factorization,

BV = QR. (3.22)

Step 5: The WLS system is solved, as

QRV
T
x

LS
= Wb (3.23)

⇒ xLS = V R−1QT Wb (3.24)
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3.3 Discussion of the algorithm

In the previous section, we described an algorithm to compute the singu-

lar value decomposition of an ill-row scaled matrix. In [22], the first step of

the algorithm computes a column pivoted QR factorization, that orders the ill-

conditioning in the factor R to correspond to a descending order of D. Under

this assumption, the following step succeeds for them, with an unpivoted QR fac-

torization. In CODA, we rely on the SVD to do the ordering for us, although

due to the nature of implementation of the orthogonal reflections necessiated pre-

ordering for the best results. The SVD transforms the bad row-scaling into a bad

column scaling, and the columns are ordered roughly in decreasing order of norm

so that a normal QR routine has no issues constructing good factors for it. The

pinch-point for CODA is the accurate computation of SVDs.

It is known that if a matrix is perturbed by O(ǫ), then the singular subspaces

of A are perturbed by
ǫ

δ
where δ is the separation of the singular values (see

[19, Theorem 8.6.5]).The condition number of our WLS system is determined by

the ratio of the largest and smallest entry in W . Since we assume W to be ill-

conditioned, the smallest singular value is extremely small. δ then is very small,

and so the singular vectors V of WA are inaccurate. More specifically, it is known

that the angular error between the computed singular vector v̂i and the actual
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singular vector vi is given by

θ(v̂i, vi) ≤
p(m, n)ǫ‖A‖2

gapi

(3.25)

in LAPACK implementations GESVD,GESDD, where p(m, n) is a moderately

growing function of m, n, ǫ is the machine precision and gapi = mini6=j |σi − σj |,

the smallest absolute spacing between the singular values. For the ill-conditioned

WLS system, the range of singular values exceeds the machine precision. Hence

there is a non-zero set of singular values smaller than ǫ. Since all these singular

values are effectively zero, gapi is very small over this set of singular values, and so

the singular vectors are far from being accurate. In the refinement step of CODA,

we isolate the accurately computed singular values as suggested by the heuristic

tolerance η. Singular values smaller than σ1/η are deemed inaccurate and hence

are refined.

Since the first k singular vectors V1 corresponding to the correctly computed

singular values are also accurate, we apply them to the matrix WA. By the nature

of SVD, we get an appropriately column-scaled matrix UΣ, whose first k columns

are accurate, but the rest need to be refined. We now consider the partitioned

matrix WAv2. Since we consider a subset of the original set of columns, the

largest singular value is diminished, and the smallest singular value is increased,

compared to WA. In addition, we now know that the largest singular value is

bounded by σ1/η. So long as this partitioned residue WAV2 has singular values
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smaller than the machine precision, there are singular vectors that are incorrectly

computed. However, we are once again able to compute the k singular values that

correspond to a scale η accurately. Hence the corresponding singular vectors are

also computed accurately. In the extreme case, we would end up peeling only one

column and one singular vector at a time. At each iteration, the parameter gapi

corresponding to a given singular value σi is increased as compared to the previous

iteration. We don’t handle the situation where there are exactly repeated singu-

lar values; this implies a defective eigen space and non unique decompositions.

Such cases are not of practical interest to us and we ignore them. Subsequent

to a reliably computed SVD and WAV = UΣ, we now consider a regular QR

decomposition as discussed in [22]. The proof of their solution would directly

apply to CODA, with small modifications as needed corresponding to Step 1 of

their algorithm. The preceeding discussion gives an informal sketch of why CODA

computes an accurate column-scaled version that can be used by a standard QR

routine to solve the WLS system.

3.4 MSN Interpolation as a WLS problem

We now establish the significance of CODA to MSN Interpolation. Consider

the MSN intepolation problem given the Chebyshev Vandermonde matrix V at
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grid points xi, samples f and the Sobolev weight matrix D. Then, as we saw in

equation 2.19 the MSN interpolant is given by

pM(x) = V (x)D−2
s V T (V D−2

s V T )−1f , (3.26)

where V T (x) is the Chebyshev Vandermonde matrix at x.

We can rewrite the value of the interpolant a x as specified using a weighted

sum of samples fi, where the weights depend on x. In this notation, one may

write the above equation as

pM(x) = wT (x)fi , where, w(x) = (V D−2
s V T )−1V D−2

s V T (x). (3.27)

We now see the connection of MSN interpolation as a solution to a WLS problem,

which can be specified as

arg min
w(x)

‖D−1
s

(
V T w(x) − V T (x)

)
‖2

2. (3.28)

To prove that equation 3.28 yields the same weights as MSN, consider the normal

equation given by equation 3.29,

D−1
s V T w(x)

LS
= D−1

s V T (x)

⇒ V D−2
s V T w(x) = V D−2

s V T (x) (3.29)

⇒ w(x) = (V D−2
s V T )−1V D−2

s V T (x). (3.30)

From equations 3.30 and 3.27 we see that MSN interpolation can be set up as a

WLS system, which can be solved reliably using CODA. Of course the idea of com-
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puting the weight at every point is redundant, since the coefficients a completely

specify the polynomial throughout the interval of interpolation. For interpolation,

one can still use the idea of computing a more accurate orthogonal decomposi-

tion using CODA to compute these coefficients a. The WLS formulation is useful

in the construction of FD weights for linear operators through MSN as shall be

shown in the next chapter.

3.5 Numerical results

In this section, we compare the performance of methods to solve ill-conditioned

WLS systems. We consider random systems as well as MSN interpolation systems,

with Sobolev weights. We also consider random weights. A known random so-

lution was used to generate the RHS of these systems. The maximum relative

error between the computed solution and the actual solution is plotted as a func-

tion of increasing ill conditioning. The ill conditioning is chosen to be a diagonal

matrix with a negative exponential scaling. This scaling parameter s is increased

to increase the ill conditioning. These experiments were carried out in Matlab.

Perhaps due to manner of implementation of the SVD as well as the QR factor-

izations, the ordering of the diagonal weights seemed to matter. Although this

not completely clear, there are indications that the ordering of weights in such
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systems does matter, as reference by Vavasis in [38]. Hence, sorting the equa-

tions in the order of weights was considered. Comparison was drawn between QR

factorization and CODA under different ordering of the weights.

3.5.1 Random matrices, random weights

For this purpose, we chose a random matrix of V of size 500× 50. The matrix

is row scaled with a random positive diagonal matrix, 35 of whose entries, were

randomly amplified by 1016. Also to control the ill-conditioning in a systematic

manner, an exponential parameter s was varied as s = {2, 10, 30, 50}. The final

scaling matrix is of the form D−s, where D is a diagonal matrix, whose entries

were randomly picked as above. We compute the QR factorization, the SVD and

the CODA. We then use these factorizations to solve the WLS system. The RHS

for the system is generated by picking a set of 10 random vectors, and multiplying

them by D−sV . The maximum relative solution error is then computed for the

three cases. Since we pick random matrices, we average these errors over 1000

choices of matrices and weights for each s. The table 3.1 below presents the results

of solving the WLS system by the above methods. In addition, the table shows

the forward error for the QR factorization computed as
‖QR−D−sV ‖

∞

‖D−sV ‖∞
in column

2. The parameter η for CODA was set at 100. The CODA WLS Solver used

descending order of weights.
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Table 3.1: Solution Error for solving random ill-conditioned WLS systems

s QR forward error QR soln err SVD Soln err CODA Soln err
2 1.5e-15 4.1e-09 4.1e-09 2.2e-14
10 3.3e-16 5.9e+01 5.9e+01 4.3e-13
30 1.5e-16 1.1e+55 1.1e+55 5.3e-01
50 1.2e-16 5.5e+110 2.0e+110 3.6e+00

In addition to the random sweep above, we perform a more careful sweep of s

so as to find a workable range for CODA. We also vary η to see its effect. Figure 3.1

presents a comparison of QR, SVD and CODA accuracies, over s = {1, 3, 5, ...50}.

Figure 3.2 below show experimental results for η = 10. No marked change is

observed between the two values. The most important observation is that CODA

has made the error almost independent of the ill-conditioning over this range of

s. However, this result was generated over only 100 random matrices, and a sever

case for just one is enough to throw the average error out of range. In any case,

we set the safe range of operation to be s ≤ 15.

Results for η = 108 are shown in figure 3.3.

3.5.2 MSN Systems

We now consider a specific MSN system and compare the accuracy of CODA

against a QR decomposition based method. We use a 2D Chebyshev Vander-

monde matrix V over a 10 × 10 grid, with an order 40 polynomial used along

each dimension. The diagonal matrix D−1
s was the 1600 × 1600 Sobolev weight
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Figure 3.1: Comparison of WLS Solution error for Random System, η = 100
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Figure 3.2: Comparison of WLS Solution error for Random System η = 10
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Figure 3.3: Comparison of WLS Solution error for Random System η = 108
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matrix as in equation 2.55. Figure 3.4 shows the solution error. We now com-

pare various ordering of the weights as well. As mentioned earlier, sorting the

weights in descending order gives a definite advantage. The WLS system solved

was D−1
s V T LS

= D−1
s b. The RHS was once again generated using known solution

vectors. The maximum relative error over 10 such solution vectors is plotted for

s = {1, 2, ...60}.

Figure 3.4: WLS Solution accuracy for two dimensional MSN System, η = 10
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Figure 3.5 presents the accuracy comparison for a larger MSN system, over a

15 × 15 grid, with an order 60 polynomial. Once again, CODA with weights in

descending order is seen to be most stable.

Figure 3.5: WLS Solution accuracy over a 15 × 15 grid
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3.6 Summary

This chapter introduced CODA to accurately solving highly ill-conditioned

WLS systems of a particular type. The relation of WLS systems to MSN interpo-

lation was shown, and as shall be evident in the next chapter, CODA enables us to
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compute highly accurate FD weights that we use to solve PDEs. The key idea is

that through CODA, we have changed the problem from a bad row-scaled system

to a bad column-scaled system. Experimental results and the theoretical discus-

sion clearly show that CODA works reliably over wide scale of ill-conditioning for

varying systems. We thus have a stable method of solving for MSN weights over

a wide range of s and for reasonably large stencils. In subsequent developments

we conservatively use s = 15.
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Chapter 4

Solving PDEs using MSN : The

MSNFD weights

If I have seen further than others, it is by standing upon the shoulders
of giants. Isaac Newton

4.1 Introduction and Notation

In this chapter, we consider the main application of the MSN method, namely

solving PDEs. We focus on two dimensional elliptic PDEs for our work. Three

dimensional PDE solvers are much more complicated and not in our scope of

consideration, although all that we discuss usually generalize to three dimensions

unless otherwise noted.
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Consider a generalized PDE of the form

∑

i

∑

j

∂i+ju(x, y)

∂xiyj
= f(x, y), (x, y) ∈ Ω. (4.1)

Such a PDE is usually solved in conjunction with appropriate boundary condi-

tions, with each condition specified specified as

∑

i

∑

j

∂i+ju(x, y)

∂xi∂yj
= g(x, y), (x, y) ∈ ∂Ω, (4.2)

where ∂Ω denotes the boundary. The theory of PDEs is vast, and we shall not

get into details of it. For our purposes, we shall draw from the extensive array

of well-posed and known PDEs, in textbooks and literature. For a introduction

to PDEs, the textbook by Renardy and Rogers serves well [33]. A second order

PDE of the form

a11(x, y)
∂2u

∂x2
+

a12(x, y)

2

∂2u

∂x∂y
+

a21(x, y)

2

∂2u

∂y∂x
+a22(x, y)

∂2u

∂y2
+ ... = f(x, y) (4.3)

is said to be elliptic if the matrix, given by

A =







a11(x, y) a12(x, y)/2

a21(x, y)/2 a22(x, y)







(4.4)

is definite for all (x, y) ∈ Ω. This means that for all two dimensional vectors p,

pT Ap > 0, ∀p or pT Ap < 0, ∀p. In terms of eigenvalues of A, all of them are of

the same sign, and none are zero. If the eigenvalues are of both signs and non-zero,

the system is hyperbolic. If A is singular, the PDE is parabolic. Famous examples
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of these three class of PDEs are the Laplace’s equation, the wave equation and

the heat equation respectively. In general, we are concerned with PDE systems

whose leading term coefficients are strictly of the same sign, and these are elliptic.

Since we are interested in a discrete approximation to the unknown solution,

let xi = (xi, yi) be a set of grid-points in the domain Ω. In addition, we need

to discretize the PDE and the Boundary Condition as well at points we call the

specification points yi. In many cases, the grid points may be the same as the

specification points. If a specification point is an interior point, i.e if yi ∈ Ω, the

PDE as per equation 4.1 is specified. Otherwise, if the point is a boundary point,

the boundary equation is specified. Figure 4.1 gives an example of domain with

indication of interior and boundary specifications.

Figure 4.1: PDE Domain and discretization points

Boundary Point

Interior Point

79



Chapter 4. Solving PDEs using MSN : The MSNFD weights

With these discretization points defined, we can define a discrete system of

equations,
∑

i

∑

j
∂i+ju
∂xiyj (yk) = f(yk), yk ∈ Ω

∑

i

∑

j
∂i+ju
∂xi∂yj (yk) = g(yk), yk ∈ ∂Ω.







(4.5)

We now use that discretization of the solution u, to approximate the operators

in the LHS of equation 4.5. In a finite-difference type of scheme, we use a set of

weights w(yk) such that

∑

i

∑

j

∂i+ju

∂xiyj
(yk) ≈ wT (yk)u(x). (4.6)

The size of the weight vector depends on the number of samples u(xl) we use to

approximate the RHS. For a FD scheme using an N point stencil, we use an N

point neighborhood of yk from the set xl and have an N dimensional weight vector

at most. In the vicinity of the boundary, the stencil size reduces, and there may

be fewer than N neighbors present; the weights are chosen to take care of this. In

the introductory chapter, the traditional method of producing FD weights using

Taylor series was discussed. There were problems of uniqueness, and divergence

using this approach. In this chapter, we discuss a systematic method of producing

FD weights using MSN interpolation. The method we discuss works on arbitrary

stencil sizes and grid spacings. The convergence of the local solution directly

follows from convergence of MSN interpolation.
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4.2 MSNFD Weights

In this section, we discuss the approximation of differential operators using

MSN. Consider the problem of finding weights so that equation 4.6 is true. Since

we using a local approximation to the underlying solution, we consider a neigh-

borhood of a specification point yl, say δl = {xn : ‖xn − yl‖∞ < ξl}. The size of

neighborhood ξl lets us pick the size of the stencil Nl we wish to use for the local

approximation. Increasing ξl, Nl produces increasingly accurate approximations

and hence higher order of weights. In the following equations, we use a multi-

index m with Tm = Tm,n,...r = TmTn...Tr, |m| = m + n + ...r. In the Chebyshev

basis, the local solution is represented as

u(yl) =

∞∑

|m|=0

amTm(yl). (4.7)

Let us denote the linear differential operator
∑

i

∑

j
∂i+j

∂xiyj as D(i,j). Then one can

apply the linear differential operator to the above equation to get

D(i,j)u(yl) =
∞∑

|m|=0

âmTm(yl). (4.8)

However, what we seek are compact approximations of the local solution, and the

derivatives. Hence, we consider the local MSN interpolant to the solution at {xk ∈

δl}. Since we know that the MSN interpolant converges to the underlying solution

and that the derivatives of Chebyshev polynomials can be used to represent the
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derivatives of the solution, we write the following equations,

Tm(yl) ≈ w(yl)
TTm(δl) (4.9)

D(i,j)Tm(yl) ≈ ŵ(yl)
TTm(δl), (4.10)

where w, ŵ are computed using the MSN WLS formulation discussed in the pre-

vious chapter. While the first of the above equations is quite clearly just MSN

interpolation through weights, the second equation is not immediately obvious.

Intuitively, since Chebyshev polynomials are a basis for the underlying solution, if

we can differentiate the Chebyshev polynomials accurately, then the same weights

would also serve to differentiate the solution which is just a linear combination

of Chebyshev polynomials. Since we need compact weights, we use local approx-

imations to Chebyshev polynomials through the MSN interpolant, and use the

interpolatory process to locally differential Chebyshev polynomials as well.

To approximate the solution, and hence Chebyshev polynomials at yl using

the MSN interpolant at xl ∈ δl, we have a WLS system to solve for weights wl

such that

wl = arg min
w

‖D−1
s

(
V T w − V T (yl)

)
‖2

2. (4.11)

In this equation V is the Chebyshev Vandermonde matrix at the local interpolating

grid points xk ∈ δl and V (yl) is a Chebyshev Vandermonde row matrix composed

of Chebyshev polynomials evaluated at yl. In the previous chapter, we showed
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how the above system corresponds to MSN interpolation through coefficients of

Chebyshev polynomials. In order to find FD weights that approximate D(i,j), we

set us a modified WLS problem of the form,

wl = arg min
w

‖D−1
s

(

V T w − V̂ T (yl)
)

‖2
2, (4.12)

where V is the Chebyshev Vandermonde matrix at the local interpolating grid

points xk ∈ δl and V̂ is a row-matrix composed of derivatives of the Chebyshev

polynomials, as below.

V̂ T (y) = D(i,j)V T (yl) =



























D(i,j)T0(yl)

D(i,j)T1(yl)

D(i,j)T2(yl)

.

.

.

D(i,j)TM−1(yl)



























. (4.13)

Each equation in 4.12 is written as below,

D(i,j)Tm(yl) = (1 + ||m||22)−
s
2 wT (yl)Tm(δl). (4.14)

The LHS of the above equation is at a specification point yl, where we discretize

the PDE or the Boundary condition. On the RHS, we have a linear combination

of the solution at grid points x ∈ δl, a neighborhood of yl. Through the Sobolev
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weights (1+ ||m||22)−
s
2 , we are giving preferential treatment to the equations corre-

sponding to lower-order polynomials compared to higher order polynomials. This

is yet another view of looking at MSN interpolation, where in we suppress high

frequency oscillations.

For every specification point yl we compute the MSNFD weights using a

WLS system as above. We solve for the weights using CODA, as needed by

ill-conditioned WLS systems. We can then assemble the FD matrix correspond-

ing to the PDE specified by equations 4.1, 4.2 as follows. Once the weights are

computed, we have

D(i,j)Tm(yl) ≈
Nl∑

k=0

wk(yl)u(xk),xk ∈ δl. (4.15)

Since the discretization is local, we have a sparse system of equations of the form







F

G







u =







f

g







, (4.16)

where F and G correspond to discretizations of the interior and boundary equa-

tions respectively. If we have Ni interior specification points and Nb boundary

specification points, we have Ni × N and Nb × N matrices F and G respectively.

We also assumed that we have N grid points x where the known u is discretized.

The over all system is therefore (Ni + Nb) × N . If we have as many specifica-

tion points in total as many grid points, then we have a square sparse system of
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equations. Each row l of the sparse matrix contains weights wl at columns that

columns k that correspond to grid points xk ∈ δl.

We now state the local convergence result without proof. The proof is due to

Mhaskar and is presented in [6]. As per the proof, the local discretization error

∣
∣Dku(yl) −Dkp(yl)

∣
∣ =

∣
∣Dku(yl) − wT

l u(δl)
∣
∣ ≤ cξ

s−q/p−‖k‖1

l . (4.17)

In the bound above, ξl is the size of the neighborhood δl, s is the Sobolev

parameter, q is the dimension of the problem, p is the p-norm used for defining

the Sobolev norm, k is the multi-index corresponding to the derivative. If we

consider a fixed number of points per stencil, and keep increasing the number of

gird points in the domain, we get decreasing neighborhood size ξl. As ξl → 0, the

error reduces to zero. The rate of convergence is given as ξs at best, with penalties

due to dimensionality and the order of the derivative itself. In this sense, as we

refine the grid further, we get increasingly accurate local discretizations, Note that

these discretizations are coupled as the stencils of nearby points overlap leading

to a coupled system of equations. If not, we would end up solving for local

solutions with no bearing to the over-all solution. Unfortunately, a proof of global

convergence of the MSNFD solution is still work in progress. However, in what

follows, extensive numerical evidence of the convergence of the MSNFD solution

is presented over a wide class of PDEs. Also, though not proved yet, increasing

the stencil size also leads to increasing accuracy of solution and increasing order
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of convergence as shall be seen numerically. Consider an N ×N regular grid, and

an stencil with L points per dimension, i.e. and L×L stencil. Then, the area per

stencil is L
N

2
. The error bound above may then be written as

∣
∣Dku(yl) −Dkp(yl)

∣
∣ ≤ c

(
L

2N

)s−q/p−‖k‖1

, (4.18)

where L is held fixed, and N increases. In this light, we rewrite the error bound

to get our rate of convergence for two dimensions and the 2-Sobolev norm as

∣
∣Dku(yl) −Dkp(yl)

∣
∣ ≤ ĉ N−s+1+‖k‖1 . (4.19)

This is only the local error bound though. The global solution and its conver-

gence are observed to be dependent on the stencil size and the grid size, but the

exact relationship is not known yet. In the following section, we consider some

motivation and background on higher order methods.

4.3 On order of convergence and complexity

The order of a PDE solver is the rate at which the numerical solution converges

to the actual solution, with increasing grid fineness. The measure of fineness or

coarseness of a grid is usually the smallest grid spacing. For uniform grids, the

local grid spacing is the same for the entire domain and so the above definitions are

clear. Nevertheless, number of grid points shall be used as a measure of fineness
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of the grid, and the following numerical experiments shall primarily document the

error in the PDE Solution with increasing grid points and increasing stencil sizes

per neighborhood.

A higher order method clearly needs a coarser grid to get to a target accuracy,

than a finer grid. Also, In the case of MSNFD, experimental evidence suggests

that the rate of convergence increases with increasing stencil size. However, the

also means that there are more weights per row of the sparse discrete matrices

F and G defined earlier and hence increases computational complexity in solving

the PDE system. Although not known analytically yet, it has been observed

numerically that the order of convergence as a function of the stencil half-width

k = L−1
2

is N−k. This may be viewed as the Nyquist picture of higher order

methods. From the perspective Nyquist theory, the smallest number of samples

required to resolve the underlying solution is at least two samples per wavelength.

An efficient PDE solver, strives to be as close to this rate as possible. Higher

the order of the PDE solver, the closer the operating point to the Nyquist rate.

However there are computational aspects that need to be considered too.

If we have an L × L stencil, then we will have a sparse matrix of bandwidth

at most L2. If we let N be the total number of specification points and grid

points, then we have an N × N sparse banded matrix. The number of non-zeros

in the sparse matrix is given by O(NL2). The computational cost for solving
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such a sparse matrix under optimal ND ordering is O(N3L3). When L2 = N2

corresponding to a full-dense matrix of dimension N2 × N2, we get the known

asymptotic order of O(N6) [12] [19]. Based on out observation, we have the error

converging at O
(

N−L−1

2

)

while the computational complexity increases with L

as O(N3L3). We converge exponentially fast with increasing stencil size, with a

polynomial increase in computational cost.

Given that increasing order leads to increase in computational complexity,

the law of diminishing returns seems to hold true beyond a particular order. If

we consider a target accuracy of ǫ, then with an L point stencil, the rate of

convergence to this accuracy is O
(

N−L−1

2

)

. Ignoring the constants, the minimum

grid size to get to this accuracy can be computed as

N−L−1

2 = ǫ (4.20)

⇒ 1

N
= ǫ

2

L−1 (4.21)

⇒ Nǫ = ǫ−
2

L−1 . (4.22)

Since we have a computational complexity of O(N3L3), the total flops and hence

the time taken can be estimated as

tǫ = N3
ǫ L3 (4.23)

= ǫ−
6

L−1 L3. (4.24)
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Figure 4.2 considers the time taken as the number of points in the stencil is in-

creased for various target accuracies. The first inference from the plot is that

increasing the order does decrease the computational complexity for any reason-

able target accuracy. The second rather surprising observation is that increasing

the order does not continue to decrease computational cost significantly. As is ob-

served, increasing the stencil width beyond 20 seems to yield no obvious decrease

in flops to get to a target accuracy. Nevertheless, the advantage of going in for a

higher order method itself tremendous.

Figure 4.2: Order Vs Computations for varying target accuracies
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4.4 Finite Element and Other higher order FD

methods

With a higher order method, while ‘regular’ problems may be solved even

more efficiently, or to much greater accuracy, ‘hard’ problems which were pre-

viously impossible to tackle can now be handled better. In this category are

higher PDEs such as the biharmonic equation, a 4th order PDE, exterior Laplace

and exterior Helmholtz problems. Equations with a biharmonic leading term

arise naturally in elasticity problems, Navier-Stokes equations for fluid flow etc.

Exterior problems too are extremely important. The exterior Laplace problem

arises naturally in magneto hydrodynamics, electromagnetics etc, while the ex-

terior Helmholtz equation is omni-present through steady-state solutions of the

wave-equation, scattering and inverse scattering problems.

Just as we consider a higher order FD method, there are higher order FEM

methods as well. Two well known PDE Solver software packages available in the

public domain, which incorporate higher order FEM are Hermes and dealII. Her-

mes is due to Pavel Solin and his collaborators at the University of Neveda at

Reno [39], while dealII is due to Bangerth and his collaborators [3]. The field

of finite elements is vast and well studied. The area of higher order finite ele-

ments is rapidly growing and FEM techniques are becoming increasingly popular
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in several engineering applications. In our numerical experiments, we compare our

performance with those of dealII. These serve two purpose. Firstly, by compar-

ing against a standard well documented library such as dealII, we gain valuable

credibility. Secondly, since we do not have exact results on our order, we control

the order of the dealII solver and establish our order in comparison with dealII.

dealII is a library that has been developed over a decade nearly and is still actively

improved. Further it is built using C++ a low level language, and can be expected

to serve as an excellent benchmark. No further discussion of FEM is presented;

there are several well written textbooks in this area.

Several other higher order FD methods have also been tried before. For exam-

ple, a very comparable method is that due to Wright and Fohnberg [42], where

in radial basis functions (RBFs) are used to produce local FD weights. However,

RBFs are known to be notoriously ill-conditioned. Further in the methods pre-

scribed in [42], the local grid is modified to boost accuracy. As is evident from

their paper increasing the smoothness of the basis function leads to saturation.

The paper describes second and fourth order accurate weights, but not any higher

orders. In comparable examples we shall comment on the performance of the

RBF-FD technique. Also, the algorithm relies on gridding a domain locally. This

may lead to problems of reuse, consistency of the grid used etc. In comparison,

the MSNFD method is generic, and robust. The manner of increasing the order
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of the MSNFD method is merely that of specifying a larger window size. Another

serious question with the RBF-FD method is that since the RBF converges to the

Lagrange or Hermite interpolant in the limit of smoothness (which increases or-

der), the Runge phenomenon would cause divergence. Hence the method may not

converge for higher orders. Other methods that I’m aware of are very specialized

to particular types of problems and at most 4th order.

4.5 Numerical Accuracy of MSNFD weights -

1D

In this section, we calculate MSNFD weights in one and two dimensions that

correspond to derivatives in a few local grid configurations. We consider the

residue in computing these weights, which correspond to the error in computing

the derivatives of Chebyshev polynomials using these weights. The recurrence
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formulae for the derivatives of Chebyshev polynomials are as below,

Tm(x) = 2xTm(x) − Tm−1(x) (4.25)

⇒ T ′
m(x) = 2xT ′

m − T ′
m−1(x) + 2Tm(x) (4.26)

⇒ T ′′
m(x) = 2xT ′′

m − T ′′
m−1(x) + 4T ′

m(x) (4.27)

⇒ T ′′′
m (x) = 2xT ′′′

m − T ′′′
m−1(x) + 6T ′′

m(x) (4.28)

⇒ T ′′′′
m (x) = 2xT ′′′′

m − T ′′′′
m−1(x) + 6T ′′′

m (x) (4.29)

⇒ T ′′′′′
m (x) = 2xT ′′′′′

m − T ′′′′′
m−1(x) + 6T ′′′′

m (x). (4.30)

The weights corresponding to derivatives up to 5th order are computed by setting

a WLS system of the form

arg min
w

∥
∥
∥
∥
D−1

s

(

V T w −
[

V T
x V T

xx V T
xxx V T

xxxx V T
xxxxx

])∥
∥
∥
∥

2

2

, (4.31)

where the Vandermonde matrix V is evaluated at grid points x and the derivative

Vandermonde vectors Vx etc are evaluated at the specification point y. We first

consider the weights themselves for varying number of stencil points. We first

consider a regular grid of spacing h below. Tables 4.1, 4.2 and 4.3 specify the

MSNFD weights. Note that the weights are only specified to some precision as

the space permitted. The actual weights may have significant information in the

trailing (unseen) digits. Hence for actual weights, the code should be used to

generate them to full precision and used. These weights were generated with
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s = 15 and using a polynomial based on the mesh norm of the grid points. The

three point weights are the same as the Taylor series based FD weights. None of

these weights are zero, there are truly higher order weights generated by MSNFD.

As a further confirmation, we plot the logarithm of the absolute value of the

second derivative weights with a 31 point stencil below in Figure 4.3.

Table 4.1: Three point MSNFD weights

Term w(y − h) w(y) w(y + h)
hu′ -5.0e-1 2.0e-18 5.0e-1
h2u′′ 1.00 -2.00 1.00

y

x−1 x0 x1h h

Table 4.2: Five point MSNFD weights

hu′ h2u′′ h3u′′′ h4u′′′′

w(y − 2h) 8.333e-02 -8.336e-02 -5.000e-01 1.000e+00
w(y − h) -6.667e-01 1.333e+00 1.000e+00 -4.002e+00

w(y) -3.770e-17 -2.500e+00 1.505e-17 6.002e+00
w(y + h) 6.667e-01 1.333e+00 -1.000e+00 -4.002e+00
w(y + 2h) -8.334e-02 -8.336e-02 5.000e-01 1.000e+00

y

x−1 x0 x1
h h

x−2 x2
h h

The next immediate question is the accuracy of these weights. As a measure

of accuracy, we consider the error in differentiating the Chebyshev polynomials

using these weights of different lengths. The derivatives were all evaluated at
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Table 4.3: Nine point MSNFD weights

hu′ h2u′′ h3u′′′ h4u′′′′ h5u′′′′′

w(y − 4h) 3.614e-03 -1.843e-03 -2.953e-02 3.015e-02 1.691e-01
w(y − 3h) -3.835e-02 2.586e-02 3.022e-01 -4.079e-01 -1.515e+00
w(y − 2h) 2.006e-01 -2.016e-01 -1.413e+00 2.844e+00 4.367e+00
w(y − h) -8.006e-01 1.603e+00 2.038e+00 -8.188e+00 -4.867e+00

w(y) 4.706e-16 -2.851e+00 -4.778e-15 1.144e+01 2.387e-14
w(y + h) 8.006e-01 1.603e+00 -2.038e+00 -8.188e+00 4.867e+00
w(y + 2h) -2.006e-01 -2.016e-01 1.413e+00 2.844e+00 -4.367e+00
w(y + 3h) 3.835e-02 2.586e-02 -3.022e-01 -4.079e-01 1.515e+00
w(y + 4h) -3.614e-03 -1.843e-03 2.953e-02 3.015e-02 -1.691e-01

Figure 4.3: 31 point MSNFD weights for first derivative
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the point y = 0.1923, a random choice of point. A centered stencil was used to

compute these derivatives at this point. Table 4.4 below shows the relative error

in derivatives of Chebyshev polynomials up to order 10, up to 4th derivative using

a 5 point stencil. For example, the error corresponding to the first derivative was

computed as

ex =
‖V ′wx − V T

x ‖∞
‖V T

x ‖∞
, (4.32)

where wx is the MSNFD weight corresponding to the first derivative. Similar

errors were computed for other higher derivatives as well. Since a five point

stencil is insufficient to compute the 5th derivative, we do have those results here.

Table 4.5 shows the corresponding errors with a 9 point stencil and Table 4.6

shows the error in computing these derivatives up to order 30. The observation, as

expected is that with increasing stencil size, the derivatives are computed more and

more accurately, for increasingly larger orders of polynomials. The observation

again as expected is that higher derivatives are computed less accurately than

lower derivatives. Intuitively, since derivatives of a differentiable function tend

to become rougher, it becomes increasingly difficult to calculate their derivative

accurately.

Instead of Chebyshev polynomials, consider the derivatives of the Runge func-

tion 1
1+25x2 . This is a classical example of a function whose derivatives grow

unbounded and hence partly being responsible for the Runge phenomenon itself.
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Table 4.4: 5 point relative error in differentiating Chebyshev polynomials

Order T ′
m T ′′

m T ′′′
m T ′′′′

m

0 1.2e-17 0 2.8e-19 1.9e-19
1 7.4e-16 4.2e-16 1.1e-16 2.3e-17
2 1.2e-10 7.2e-11 1.9e-11 4.0e-12
3 5.3e-07 3.1e-07 8.3e-08 1.7e-08
4 2.4e-04 1.4e-04 3.8e-05 8.1e-06
5 3.7e-02 2.2e-02 5.9e-03 1.2e-03
6 3.9e-02 4.2e-02 2.1e-03 3.9e-03
7 1.1e-01 4.4e-02 2.6e-02 2.2e-03
8 9.6e-02 1.2e-01 4.2e-03 1.5e-02
9 2.3e-01 4.4e-02 7.0e-02 1.8e-03

Table 4.5: 9 point relative error in differentiating Chebyshev polynomials

Order T ′
m T ′′

m T ′′′
m T ′′′′

m T ′′′′′
m

0 3.9e-17 0.0e+00 1.3e-18 3.7e-19 4.4e-21
1 2.7e-17 0.0e+00 1.1e-19 0.0e+00 1.7e-20
2 8.4e-17 1.9e-17 4.7e-18 2.0e-18 3.9e-19
3 1.3e-13 9.9e-14 1.7e-14 8.6e-15 1.8e-15
4 8.8e-11 6.5e-11 1.2e-11 5.7e-12 1.2e-12
5 1.7e-08 1.3e-08 2.2e-09 1.1e-09 2.2e-10
6 1.1e-06 7.9e-07 1.4e-07 6.8e-08 1.4e-08
7 4.4e-05 3.3e-05 5.7e-06 2.9e-06 5.7e-07
8 5.2e-04 3.7e-04 7.1e-05 3.1e-05 7.4e-06
9 8.7e-03 6.6e-03 1.1e-03 5.8e-04 1.1e-04
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Table 4.6: 31 point relative error in differentiating Chebyshev polynomials

Order T ′
m T ′′

m T ′′′
m T ′′′′

m T ′′′′′
m

0 1.5e-16 8.3e-18 4.6e-18 3.1e-19 1.7e-19
1 1.5e-17 1.0e-18 2.9e-19 0.0e+00 1.1e-20
2 3.4e-16 8.1e-18 0.0e+00 9.2e-19 0.0e+00
3 1.9e-17 4.1e-18 6.2e-20 6.2e-19 2.2e-20
4 1.8e-16 7.7e-18 0.0e+00 5.5e-19 1.7e-19
5 3.8e-17 1.2e-17 5.9e-19 0.0e+00 6.6e-20
6 6.1e-17 1.1e-17 2.3e-18 4.0e-19 1.7e-19
7 9.9e-17 0.0e+00 8.6e-19 9.2e-19 1.9e-19
8 2.7e-16 3.9e-17 3.5e-18 3.8e-18 7.0e-19
9 5.3e-17 2.0e-16 1.0e-17 2.4e-17 3.4e-18
10 1.1e-14 9.9e-15 1.1e-15 1.1e-15 1.1e-16
11 1.8e-14 3.3e-14 1.8e-15 4.0e-15 6.1e-16
12 1.1e-12 1.0e-12 1.2e-13 1.1e-13 1.1e-14
13 8.5e-13 2.0e-12 1.5e-13 2.4e-13 4.4e-14
14 5.1e-11 4.6e-11 5.3e-12 5.0e-12 5.2e-13
15 1.6e-11 5.3e-11 6.1e-12 6.6e-12 1.5e-12
16 1.2e-09 1.0e-09 1.2e-10 1.1e-10 1.2e-11
17 3.1e-11 6.8e-10 1.3e-10 8.8e-11 2.9e-11
18 1.5e-08 1.3e-08 1.6e-09 1.4e-09 1.6e-10
19 2.7e-09 3.5e-09 1.5e-09 5.2e-10 2.9e-10
20 9.4e-08 8.2e-08 1.0e-08 8.7e-09 1.1e-09
21 3.5e-08 5.5e-09 8.9e-09 3.0e-11 1.5e-09
22 2.1e-07 1.8e-07 2.5e-08 1.9e-08 2.8e-09
23 1.5e-07 1.3e-07 1.6e-08 1.4e-08 1.8e-09
24 7.9e-07 7.2e-07 7.9e-08 7.8e-08 7.6e-09
25 1.5e-07 2.2e-07 8.8e-08 3.2e-08 1.7e-08
26 4.2e-06 3.6e-06 4.8e-07 3.8e-07 5.2e-08
27 2.4e-06 1.6e-06 3.6e-07 1.6e-07 4.9e-08
28 5.5e-06 5.4e-06 5.0e-07 5.9e-07 4.1e-08
29 3.8e-07 3.1e-06 7.4e-07 4.1e-07 1.6e-07
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In Table 4.7 below each column corresponds to various derivatives for a given

stencil size, which is varies from 5 up to 100. All these results and the above were

obtained on a 100 point grid in [−1, 1]. As can be observed, we get increasingly

accurate derivatives for increasing stencil size, although beyond about 100 points,

numerical errors began to interfere with the accuracy. The Sobolev parameter s

was again set to 15, the largest value we prefer considering numerical issues.

Table 4.7: Error in differentiating the Runge function 1
1+25x2 at x = −0.5378

derivative 5pt 12pt 19pt 31pt 45pt 71pt 100pt
f ′ 7.2e-06 5.2e-11 1.3e-13 4.3e-14 1.3e-14 2.2e-13 7.6e-10
f ′′ 7.8e-05 8.8e-10 1.8e-12 1.9e-14 2.1e-13 5.7e-13 5.7e-10
f ′′′ 4.9e-03 3.9e-08 1.0e-10 4.2e-12 6.4e-13 6.0e-11 1.7e-10
f ′′′′ 2.2e-02 5.4e-07 1.2e-09 4.7e-12 3.5e-11 4.3e-10 1.4e-08
f ′′′′′ 9.5e-01 1.2e-05 3.9e-08 1.5e-09 1.5e-09 2.8e-08 6.8e-09

Table 4.8 below presents these errors for the negative exponential function at

x = 0. The exponential function’s derivatives are all exponents as well. So this

test is a clear indicator of the loss in accuracy in computing weights corresponding

to higher derivatives. For the 5th derivative, the accuracy is several orders lower

than that for the the first derivative with a 31 point stencil, where numerical issues

are not yet prominent. Table 4.9 below presents these errors for the square root

function at the x = 0.354.

We now consider increasing grid size, with the same number of points per

stencil. We again consider the Runge function 1
1+25x2 as an example with s = 15

and a 13 point stencil. Table 4.10 presents the convergence results with increasing
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Table 4.8: Error in differentiating e−x at x = 0.0

derivative 5pt 12pt 19pt 31pt 45pt 71pt 100pt
1 1.2e-09 5.8e-15 1.9e-14 3.0e-14 2.9e-14 1.2e-14 1.2e-13
2 8.6e-05 4.5e-13 2.1e-12 2.1e-13 3.3e-12 8.5e-12 5.5e-13
3 8.0e-05 1.4e-10 2.3e-10 2.3e-10 6.3e-10 7.9e-10 1.3e-09
4 1.0e+00 4.0e-09 3.1e-08 5.2e-09 6.4e-08 1.6e-07 2.9e-08
5 1.6e+00 3.0e-07 3.7e-06 5.4e-06 6.1e-06 2.8e-05 1.8e-05

Table 4.9: Error in differentiating
√

1 + x2 at x = 0.354

derivative 5pt 12pt 19pt 31pt 75pt 100pt
1 9.0e-08 8.2e-14 3.0e-14 1.4e-13 4.5e-14 1.8e-14
2 5.6e-06 2.4e-12 1.0e-12 6.3e-13 1.0e-11 4.6e-12
3 8.7e-04 2.3e-11 9.2e-11 9.8e-10 1.6e-10 3.4e-10
4 5.0e-02 1.5e-08 3.4e-08 5.3e-08 1.2e-07 9.6e-08
5 1.1e+00 6.1e-08 1.7e-07 5.3e-07 1.7e-06 3.3e-07

N . We measure the error in computing the derivatives of the above function at x =

0.354. As expected, we see convergence with increasing grid size. However, as the

order of the derivative increases, the weights become numerically inaccurate since

the Chebyshev polynomials themselves have ill-behaved derivatives. Therefore,

we see the turn around in accuracy with increasing grid sizes. While this is not

entirely encouraging, the hope is that with a higher order method, one need not

have to reach such fine grids as to see the turn around. For example, we see that

we have 6 digits of accuracy for the 5th derivative at a 320 point grid. This is very

significant and as many as one can hope to get given the ill-conditioned nature of

this operator. Further, there are no issues for even the 4th derivative, which we

could compute to 9 digits before a turn around. Table 4.11 presents results for
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the same problem with a 7 point stencil instead. Comparing these two tables, it is

evident that increasing the stencil size does lead to increased rate of convergence!

Table 4.10: Error with increasing grid size, with 13 point stencil

Term 20 40 80 160 320 640 1200
f ′ 1.0e-02 4.8e-06 4.4e-11 2.2e-12 6.9e-15 8.1e-15 4.7e-14
f ′′ 2.3e-02 2.0e-04 1.3e-08 1.7e-10 1.3e-12 3.2e-12 1.4e-11
f ′′′ 2.4e-01 2.2e-04 7.9e-08 4.0e-09 5.9e-11 4.0e-10 2.4e-09
f ′′′′ 4.0e-01 1.6e-02 3.9e-06 2.1e-07 3.7e-09 3.1e-08 2.1e-07
f ′′′′′ 2.5e+01 1.0e-02 2.3e-04 3.0e-05 2.1e-06 1.3e-05 6.0e-04

Table 4.11: Error with increasing grid size, with 7 point stencil

Term 20 40 80 160 320 640 1200
f ′ 1.4e-02 7.8e-05 7.7e-08 1.8e-08 4.6e-10 2.0e-12 4.5e-13
f ′′ 1.7e-02 2.2e-03 1.1e-04 1.2e-06 2.9e-09 7.4e-10 1.5e-10
f ′′′ 2.8e-01 7.8e-03 1.6e-04 3.2e-05 2.6e-06 6.5e-08 4.2e-08
f ′′′′ 1.1e-02 1.5e-01 2.9e-02 1.1e-03 4.3e-06 1.2e-05 7.9e-06
f ′′′′′ 1.9e+01 2.6e+00 4.6e-01 1.9e-01 4.9e-02 6.7e-03 1.3e-02

As a final set of numerical results in one dimension, we consider the results

on a scattered grid. For this purpose, we pick as stencil size, say 17 points. We

perturb a regular grid randomly to get an irregular grid. We once again consider

the Runge function at a randomly chosen point. Table 4.12 below presents the

error in computing the derivative of the Runge function at x = 0.354 using a

random grid. Random grids can be extremely ill-conditioned. A reasonable one

has been picked for illustration. Nevertheless, the method succeeded in producing

the weights, shown in Figure 4.5.
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Table 4.12: Error in derivatives of 1
1+25x2 with 17 random points

Derivative Error
f ′ 3.0e-14
f ′′ 1.1e-11
f ′′′ 1.4e-10
f ′′′′ 1.1e-08
f ′′′′′ 9.3e-07

Figure 4.4: 17 point MSNFD weights for first derivative in a randomized grid
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We have thus seen substantial numerical evidence of the MSNFD approach in

1D. We do not present any results of solving ODEs using MSNFD weights. We

would directly be presenting more general PDE results.

4.6 Numerical Accuracy of MSNFD weights -

2D

The standard 9 point stencil is shown below in Figure 4.5 for illustration. In a

similar manner, we shall consider square stencils, for illustrative purposes. There

is nothing that precludes the use of any other neighborhood choice. For simplicity

we restrict ourselves to rectangular regions in what follows.

Figure 4.5: Standard nine point stencil in two dimensions

Specification and grid point

Grid points
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4.6.1 Higher order weights for two dimensional operators

Consider a regular square stencil centered at the origin. We consider the

approximation of the following operators at the origin,

∇2 =
∂2

∂x2
+

∂2

∂y2
(4.33)

∇4 =
∂4

∂x4
+

∂4

∂y4
+ 2

∂4

∂x2∂y2
. (4.34)

Equation 4.33 represents the two dimensional Laplacian operator, while equa-

tion 4.34 represents the Biharmonic operator. These are the most important

operators in engineering perhaps that arise in a variety of scenarios and so we

consider them. The smallest possible stencil for the Biharmonic operator is 13

point. Standard stencils for regular grids for these operators can be found in

standard textbooks. For example, Abramowitz and Stegun [1] provides a catalog

of known regular stencils using Taylor series expansions. Comparison of differen-

tiation accuracy with these standard weights are also considered.

To set the references for comparison, we consider the standard weights and

compute the error in computing derivatives of two functions. Table 4.13 below

presents the error in computing the derivatives of a Runge type function and

an exponential function near the origin, for various documented FD weights on

regular grids. Note that the Biharmonic operator is extremely difficult to deal

with and the loss in order for this operator. The standard 35 point weights given
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fourth order accuracy for regular grids for this operator. However, there are no

known general procedures to produce weights on irregular grids.

Table 4.13: Standard FD accuracy for Laplacian and Biharmonic Operators
1

1+25x2+25y2

sin y2

1+100x2+ey2

Stencil pts ∇2 ∇4 ∇2 ∇4

5 2.4e-03 - 5.0e-05 -
9 1.6e-06 - 4.2e-10 -
13 - 2.8e-03 - 1.2e-03
35 - 3.2e-06 - 1.2e-06

We now consider MSNFD weights on square stencils of varying size. The

following example shows how these weights are produced over any stencil size in

a robust manner. Table 4.14 below presents the 9 point weight for the Laplacian.

Since the Biharmonic operator needs wider stencils, we move on to larger stencils.

The weights have been truncated to one significant digit for reasons of space. The

accurate weights are computed by a Matlab code to be presented in the appendix.

Tables 4.15 through 4.18 present higher order Laplacian and Biharmonic operator

weights. To compute these weights, s = 15 was used for the sake of consistency

and numerical stability. The order of the interpolants was based on the mesh

norm of the stencil.

Table 4.14: 9 point MSNFD weight for the Laplacian

1.1e-16 1.0e+00 2.7e-16
1.0e+00 -4.0e+00 1.0e+00
3.3e-16 1.0e+00 2.2e-16
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Table 4.15: 25 point MSNFD weight for the Laplacian

-4.0e-05 1.7e-04 -8.4e-02 1.7e-04 -4.0e-05
1.7e-04 -7.3e-04 1.3e+00 -7.3e-04 1.7e-04
-8.4e-02 1.3e+00 -5.0e+00 1.3e+00 -8.4e-02
1.7e-04 -7.3e-04 1.3e+00 -7.3e-04 1.7e-04
-4.0e-05 1.7e-04 -8.4e-02 1.7e-04 -4.0e-05

Table 4.16: 25 point MSNFD weight for the BIHarmonic Operator

1.5e-02 -2.3e-01 1.4e+00 -2.3e-01 1.5e-02
-2.3e-01 3.6e+00 -1.1e+01 3.6e+00 -2.3e-01
1.4e+00 -1.1e+01 2.5e+01 -1.1e+01 1.4e+00
-2.3e-01 3.6e+00 -1.1e+01 3.6e+00 -2.3e-01
1.5e-02 -2.3e-01 1.4e+00 -2.3e-01 1.5e-02

Table 4.17: 49 point MSNFD weight for the Laplacian

-1.7e-05 1.3e-04 -4.0e-04 1.2e-02 -4.0e-04 1.3e-04 -1.7e-05
1.3e-04 -9.4e-04 2.8e-03 -1.5e-01 2.8e-03 -9.4e-04 1.3e-04
-4.0e-04 2.8e-03 -8.1e-03 1.5e+00 -8.1e-03 2.8e-03 -4.0e-04
1.2e-02 -1.5e-01 1.5e+00 -5.5e+00 1.5e+00 -1.5e-01 1.2e-02
-4.0e-04 2.8e-03 -8.1e-03 1.5e+00 -8.1e-03 2.8e-03 -4.0e-04
1.3e-04 -9.4e-04 2.8e-03 -1.5e-01 2.8e-03 -9.4e-04 1.3e-04
-1.7e-05 1.3e-04 -4.0e-04 1.2e-02 -4.0e-04 1.3e-04 -1.7e-05

Table 4.18: 49 point MSNFD weight for the Biharmonic Operator

7.5e-04 -7.0e-03 4.4e-02 -2.4e-01 4.4e-02 -7.0e-03 7.5e-04
-7.0e-03 7.0e-02 -5.2e-01 2.9e+00 -5.2e-01 7.0e-02 -7.0e-03
4.4e-02 -5.2e-01 4.7e+00 -1.5e+01 4.7e+00 -5.2e-01 4.4e-02
-2.4e-01 2.9e+00 -1.5e+01 3.4e+01 -1.5e+01 2.9e+00 -2.4e-01
4.4e-02 -5.2e-01 4.7e+00 -1.5e+01 4.7e+00 -5.2e-01 4.4e-02
-7.0e-03 7.0e-02 -5.2e-01 2.9e+00 -5.2e-01 7.0e-02 -7.0e-03
7.5e-04 -7.0e-03 4.4e-02 -2.4e-01 4.4e-02 -7.0e-03 7.5e-04
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We now consider the benchmark functions and present the error in differenti-

ating these functions at the origin using MSNFD weights. Table 4.19 consolidates

a few observations. As expected, increasing the stencil size produces increasing

orders. We shall consider the convergence with increasing grid size and stencil

size once again in solution to PDEs. The local discretization error for the PDEs

is an even stronger measure of accuracy, since it includes the errors at corners

and irregular geometries. Compared to the Traditional FD weights we see that

using MSNFD, we can generalize to much larger stencils as needed. It must be

noted that increasing the stencil size beyond about 100 beings to cause numeri-

cal errors and hence saturation or loss of accuracy. This has also been justified

from computational viewpoint, where in beyond such large stencils, the compu-

tational advantages of a higher order method begins to reduce. Perhaps the

more significant advantage of MSNFD is its ability to produce weights for irreg-

ular data. Since the weights themselves have no meaning in this situation, we

directly present convergence results with irregular grids. For example, for the

same problems we considered, since the idea is to approximate derivatives in the

center of the stencil, a grid point choice with more points closer to the origin

may be helpful. For this we consider a regular grid, but use a transformation

of the form x = |x|α sgn x, α > 0. This clusters points closer to the origin as

we seek. Table 4.20 below compares a regular grid with clustered grid, with the
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cluster parameter α set to 1.1 and 1.2. Clearly, clustering points near the origin is

seen to improve the accuracy by two digits! The penalty paid for this increase in

accuracy is through increased computational complexity. The irregular grid has a

larger mesh norm than the regular grids. The subsequent order of polynomials M

is shown in the table in the second column. It is important to note that no Taylor

series based FD weights are known for irregular grids although they are inevitable

in engineering when adapting grids to geometry. For example, a sharp corner or

a singularity may warrant higher grid density near it to resolve the solution to

sufficient accuracy.

Table 4.19: MSN FD accuracy for Laplacian and Biharmonic Operators
1

1+25x2+25y2

sin y2

1+100x2+ey2

Stencil ∇2 ∇4 ∇2 ∇4

3 × 3 2.5e-03 - 5.0e-05 -
5 × 5 1.5e-06 2.3e-03 4.2e-10 4.8e-06
7 × 7 3.0e-10 1.1e-06 4.0e-12 2.6e-08
9 × 9 7.0e-13 1.8e-09 7.3e-15 6.7e-11

11 × 11 1.2e-11 5.7e-08 2.8e-14 2.4e-10

Table 4.20: Boosting accuracy using an irregular 7 × 7 stencil
1

1+25x2+25y2

sin y2

1+100x2+ey2

α M ∇2 ∇4 ∇2 ∇4

1.0 82 3.0e-10 1.1e-06 4.0e-12 2.6e-08
1.1 262 3.4e-11 3.7e-07 5.0e-13 1.1e-08
1.2 827 9.0e-12 9.6e-08 2.8e-14 1.7e-09
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4.7 Summary

In this chapter, an extensive study of MSNFD weights was presented. Starting

with a sound motivation for higher order accurate FD weights, details about the

computation of MSNFD weights was presented. Extensive numerical results were

considered in one and two dimensions and the challenge in computing good weights

for higher order derivatives was illustrated. The set of one and two dimensional

weights on regular grids were shown. Their accuracy was compared to Taylor

series based FD weights. With MSNFD, much higher orders of accuracy were

obtained and stencils of arbitrary sizes were generated with ease. Accuracies of

up to 15 digits for the Laplacian and 11 digits for the biharmonic operator were

shown to be attainable. Another important feature also a key point of this thesis,

namely that of FD weights on irregular grids were considered. As an illustration

of this, a clever choice of an irregular grid was shown to further improve the

accuracy for the biharmonic operator using MSNFD. These experiments are key

to deciding the operating point for the PDE Solver to be discussed in the next

chapter. Elementary PDE concepts were presented in the introduction as a part

of the motivation. The next chapter deals with the implementation aspects and

presents extensive numerical results from solving several classes of PDEs using

MSNFD.
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Solving PDEs using MSN :

Numerical Results

I think, therefore I am. Descartes

5.1 Construction of the MSNFD PDE Solver

In the previous chapter, we introduced PDEs and their discretization using

MSNFD. Extensive numerical evidence and some theory was presented about the

generation of Finite Difference type weights using MSN. In this chapter, we use

these higher order weights to solve several PDEs. Before entering the realm of

numerical results, we first describe the architecture of the PDE Solver including

some software aspects.
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The PDE Solver we are about to describe is for two dimensions and targets el-

liptic PDEs. We shall not concern ourselves with any PDE theory, but rather con-

sider well-posed problems. That is not to say that these are easy problems. In fact

there many well-posed seemingly innocuous PDEs that are numerical nightmares,

for example the exterior problems, and the biharmonic type problems. Given a

PDE specification such as the geometry, coefficients, boundary conditions etc, a

PDE Solver has two main components. The first is the construction of MSNFD

weights corresponding to the derivative terms in the PDE over the specified ge-

ometry. The second is that of assembling a large sparse matrix corresponding to

the PDE using the coefficients and the computed weights. Subsequently, the large

sparse system is solved and the solution is thus computed.

We had introduced the notation of specification points, at which the PDE

is specified, and grid points at which the solution is to be computed. The first

sub-task of a PDE Solver concerns of computing the stencil points in a given

neighborhood of each specification point from the grid points. Once the stencil

points have been found, the local WLS system to compute the MSNFD weights

is then setup and solved. These are the weights that are used to approximate the

PDE at that specification point. The process is repeated for each specification

point. For a reasonably dense grid, the stencil at any specification point overlaps

with that of neighboring specification points. Hence we get a coupled system of
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equations. If an irregular grid may cause decoupling for a fixed stencil size, one

needs to adapt the size of the stencil to achieve this coupling. The MSNFD Solver

implemented has the provision to adapt the grid size to include at least a specified

number of grid points in the smallest possible stencil. This possibility of adaption

is important in irregular grids particularly, wherein local gradients in grid density

may case extreme variations in mesh norm, and subsequent ill-conditioning and

instability. Each stencil is scaled to occupy the interval [−1,−1] × [−1, 1] before

computing the weights. The Chebyshev polynomials are a stable basis in this

interval and hence this operation.

The time taken to compute the weights for the given domain involves multiple

SVDs over matrices of dimension around 100 × 1000 at each point say. This is a

moderately intensive task, and in practice computing weights over a large number

of specification points over a fine grid can take a very long time. However, as

is observed, the computation of weights is readily parallel. Each of the WLS

computations is independent of each other. Also, these weights once computed

for a given geometry over the specified grid points and specification points are re-

usable over several PDEs. In fact, if all higher order weights are also computed,

then several order PDEs may be solved using the same weights as well. For regular

grids, these weights need to computed at only one point in the far-interior of the

domain where there are no boundary influences. This far-interior optimization
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can further save weight computation time for particular geometries and grids.

The PDE Solver implemented provides for this feature as well, but for the sake of

generality, we do not use it by default.

While our initial software of choice was Matlab by Mathworks [29], in our

experience, Matlab does not scale well for parallelism. While through its C Mex

interface one can make use of Matlab and an underlying MPI layer to do parallel

computations, we wanted an easier higher level solution. Our answer came in

the form of the Python programming language. Python through its numerous

packages such as Numpy, Scipy and Sympy makes the transition from Matlab

a breeze [23]. In addition to being sufficiently high level by providing ready

data representations for matrices and arrays, it also have an excellent parallelism

interface through its iPython parallel feature [31]. iPython at first glance is merely

a shell interface to Python, but with it is the Multi-Engine Client (MEC) interface

that facilitates parallelism.

Figure 5.1 illustrates the key ideas behind the parallelism in the MSNFD

assembly stage. iPython uses the idea of an iPython Controller (ipcontroller) and

several iPython engines (ipengine). Each iPython engine is essentially a worker,

that can interpret Python code and run commands. Almost all of our parallel

computing resources were through the NSF Teragrid initiative, and through the

UCSB Super Computing resource support due to Dr.Stefan Borieu. In a parallel

113



Chapter 5. Solving PDEs using MSN : Numerical Results

Figure 5.1: MSNFD Assembly process
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computing environment, a single ipcontroller and several ipengines, perhaps one

per core depending on the memory needs are launched. The ipengines register

with a controller, specified at the time of launch or by means of a controller file

present in a known common path. This needs a shared file system access between

the host node running the ipcontroller and the clients running the ipengines.

The controller-engine communication happens through socket secure or unsecure

socket communication over ssh or rsh.

iPython parallelism uses the simple notions of scatter, execute and gather.

To elucidate further, the specification points, at each of which a WLS system is

solved using CODA, are distributed amongst the several engines by the controller.

The data slicing is automatic in our case; the specification points are equally split

up amongst all the engines except perhaps the last, which may have the reminder

after an equal split. In addition to scattering the specification points, a function

calls enables the broadcast of functions, and global parameters needed for the

local function execution. An execute call again as part of the MEC interface

executes the local WLS computation in core over a subset of specification points

assigned to that core. While asynchronous calls are possible, we use the simpler

synchronous blocking parallel call, in which the total time taken is the time taken

by the longest running process. Thus, after all the weight computations are over,

the execute call returns. We then call the gather function over all the local weight
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variables. The gather function stacks these weights each of which is an array as a

list. We post process these lists into matrices as needed by us. Since the order of

the scatter is the same as the order of the gather, there is no need for extensive

book-keeping. The result of the assembly call is a data file that contains the input

PDE specifications, grid points and specification points, stencil sizes, as well as

the weights. The weights are stored as ordered triplets (i, j, w), where each triplet

corresponds to the ith specification point, jth grid point and the corresponding

weight for the operator in question. This is also the most natural form to create

and store a sparse matrix later on.

Since each of the SVDs computationally intensive compared to communication

overheads corresponding to scatter and gather, we do not concern ourselves with

those aspects. However I wish to point out a caveat with regard to SVDs in

lapack. The default SVD function called by packages such as Matlab or Python’s

scipy is the dgesdd call. This function is the divide-and-conquer based SVD that

is faster that its cousin, dgesvd. However for our purposes of CODA, note that

we never have to compute the Us corresponding to the column space and right

null-space. We are only interested in the singular values and the right singular

vectors in V . The divide-and-conquer function call does not provide for this

option. As easily seen, this causes huge memory overheads for tall-skinny matrices

particularly. Hence we use the somewhat slower, albeit more memory efficient
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(in our case) and robust dgesvd function call. Python provides an easily usable

Foreign Function Interface library as well. Using its ctypes package, one can

easily interface C library functions such as lapack. Thus from an installed clapack

library, the desired function call can be exported to Python. The Enthought

Python Distribution is a free-for-academic use enterprise Python package that

readily comes with all the necessary packages and libraries. It provides a one-shot

install in several platforms and using this to install Python on all of the super

computers we used was a breeze. Mayavi in Enthought’s python is an excellent

scientific visualization tool [32].

Once the weights have been generated and stored, the reminder of the PDE

Solver concerns itself with assembling the large sparse matrix corresponding to the

PDE. This matrix is constructed as a diagonally scaled linear combination of finite-

difference type banded matrices corresponding to the various derivative terms in

the PDE. Another aspect here is that of choosing the boundary weights and

equations at the appropriate specification points. Once the sparse matrix and the

RHS have been assembled, we perform a row-norm equilibration. We consider each

row of the matrix and divide it by its row norm. Since the norms of the weights

for each row are also precomputed and stored, this is an inexpensive operation

as well. Row equilibration was experimentally observed to improve the condition

number by a few orders and hence important. In contrast column equilibration
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was not observed to give a similar advantage and hence not performed. The

scaled system is them solved using SuperLU’s sparse LU factorization algorithm

[26]. For our purposes we do not consider any fill-reducing orderings but for the

ones provided by SuperLU on the fly although for more complicated cases, we do

use a geometric nested dissection ordering facilitated by the mesh part library due

to Gilbert et al [18], as well as Metis [24]. If one needs to solve tall-skinny systems

as against square systems, then SuiteSparse provides the necessary tools through

UMFPACK [14], [13]. Last but not the least, a few rounds of iterative refinement

are performed. For computing the residue, the various weight matrices, each at

a different scale of h are applied separately to improve accuracy. Also, the LU

factors are applied to the PDE term and the boundary term of the RHS separately

and the solution is then added. For iterative refinement, these components are

subtracted separately. The over solution is this computed and returned to the

testing script. For the purpose of estimating the condition number, we use the

Laub-Kenney type of condition number estimate, as described in [25].

With such a set up, a wrapper script tests the assemble and solves. Several as-

pects such as geometry generation, and coefficient generation, as well as symbolic

computation of the RHS using any known solution are in place. Components of

geometry generation and coefficient generation are parallelized. Grid geometries
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are saved and reused if available. Having described the tools of our trade, we now

being to look at the numerical results.

5.2 Problems on the Square

We start with two numerical examples on the Square. The first is a standard

second order equation, with a negative definite leading term. This is a nice PDE

is this sense. The right hand side of the PDE is chosen to satisfy the solution given

by a Runge function u = 1
1+x2+y2 . The problem description is as per Figure 5.2.

Figure 5.3 depicts the Runge function used as the solution as well. From this ba-

sic example, we clearly see that the solver works correctly. The numerical results

below comprise of the local discretization error, the condition number, and the

solution accuracy, in addition to the accuracy in the least square solution to MSN

weights over this geometry. In Table 5.1 the grid spacing shown in the first col-

umn is decreased by increasing the number of grid points in the interval defined

by the geometry. The next four columns present the local discretization error.

This error is measure by using the actual solution and the finite-difference matrix

to compute the RHS. The maximum relative error in the RHS is the maximum

error due to local approximations. Each of the first four columns contains the

local discretization error for varying local stencil sizes. The stencil sizes are varied
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to roughly correspond to 3×3, 7×7, 13×13, 17×17 stencils respectively. The last

four columns contain the condition number estimate corresponding to these stencil

sizes. It can be observed that increasing stencil size causes only a small increase

in the condition number. However, the accuracy of weight computations drops

for larger stencils due to the ill-conditioned nature of the local MSN systems, as

was seen in the previous chapter. Figure 5.4 shows the LS error in weight compu-

tations. This is nothing but the worst case error in differentiating the Chebyshev

polynomials with the MSNFD weights. As we had observed in the previous chap-

ter, accuracy drops with increasing stencil sizes due to ill-conditioning. However,

this does not necessarily mean that the PDE solution suffers in accuracy as is

observed below. However, if the PDE itself has a high condition number, then the

sensitivity of these weights being to matter.

Table 5.2 contains the maximum relative error in the solution for varying

stencil sizes, and the computed order of the solution. The accuracy at the smallest

grid spacing is the chosen reference. We see that increasing stencil sizes increases

the order of the accuracy as expected. We have a 7th order accurate solution,

and the best over all accuracy of 14 digits is obtained with this. In contrast the

lower first order method has only half the digits at even five times the grid size.

For the example illustrated, the order drops for higher order stencils at smaller

grid spacings. This is because, we are already close to the machine precision and
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any instability in weight computations exhibits itself very blatantly at such fine

accuracies. Nevertheless, we expect the accuracy to just saturate in the vicinity

of 12 digits for decreasing grid spacing, until the maximum. In contrast, future

examples shall make it clear that there is a great benefit in higher order stencils

indeed, as expected, sans this saturation phenomenon.

Figure 5.2: Square Domain, nice
problem

∇2u − u = f, in Ω

u = g, in ∂Ω

u =
1

1 + x2 + y2

Table 5.1: Discretization Error and Condition Number for Square Domain

Local Discretization Error Condition Number Estimate
1
h

9 49 169 289 9 49 169 289
30 9.5e-4 4.1e-5 1.6e-07 9.3e-09 1.3e+4 1.9e+4 2.2e+4 2.2e+4
100 8.2e-5 8.5e-7 2.8e-10 4.0e-11 9.6e+5 1.4e+6 1.5e+6 1.6e+6
200 2.0e-5 1.1e-7 4.8e-11 7.6e-11 1.1e+7 1.6e+7 1.8e+7 1.8e+7
500 1.2e-5 7.7e-9 3.1e-10 9.8e-10 2.7e+8 3.9e+8 4.4e+8 4.5e+8

As a second example, we consider a much harder Helmholtz problem. This

problem in indefinite, since the large positive term in the PDE makes the spectrum

two-sided. These problems are potentially singular, nevertheless ill-conditioned.
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Figure 5.3: The Runge function for the nice problem
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Table 5.2: Solution Error and Order for nice problem on the Square

9 49 169 289
1
h

Error Order Error Order Error Order Error Order
30 1.9e-04 - 2.2e-07 - 1.2e-09 - 6.9e-11 -
100 1.6e-05 2.1 3.8e-10 5.3 1.8e-13 7.3 4.5e-14 6.1
200 4.0e-06 2.0 1.3e-11 5.1 1.4e-12 3.6 9.9e-13 2.2
500 6.3e-07 2.0 4.5e-12 3.8 3.2e-12 2.1 1.7e-12 1.3

Figure 5.4: Maximum Least Square Error in MSN weight computations
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In addition to the problem being Helmholtz, we also have a rather nasty solution

of choice as in Figures 5.6 and 5.7. Figure 5.5 shows the geometry and the

PDE details. We solve this PDE subject to Neumann boundary conditions, i.e.,

we prescribe normal components of the solution’s gradient on the boundary. At

this point, I wish to point out a shortcoming the implemented wrapper to test

the solver. We do not have the code to compute arbitrary normal derivative

components to the boundary. The current solver code can handle arbitrary robin

type boundary conditions though.

The results below contain the error in the solution and the order for varying

stencil sizes. Since the solution is so rough (see the logarithmic plot of the solution

in Figure 5.7 being so rough!), the Nyquist rate needed is pretty high. The lower

order method (which we know is close to using FD type weights) has a hard time

converging at all, while the higher order stencils obtain 6 digits of accuracy at 1
500

grid spacing. Note that the largest stencil we have, 17× 17 has a maximum order

closer to 7!. However, these are still problems on a regular square grid. We shall

demonstrate our key point, that of obtaining higher orders on irregular geometries

below. However, before we move, a comment on the weight computations near the

boundary is in order. At the boundary, we do not do anything special. Rather,

we still pick a stencil centered at the specification point and solve a WLS system.

These one-sided weights are all we use at the boundary. It would be reasonable to
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attribute the condition number of the over-all system to the scale in the weights

close to the boundary. This is perhaps the only manner in which the geometry of

the domain expresses itself in the condition number of the system.

Figure 5.5: Square Domain, Helmholtz
problem ∇2u + 10000u = f, in Ω

∇u.n̂ = g, in ∂Ω

u =
sin (10x + 201y2)

1 + 900(x2 + y − 0.1)2

+
1

1 + 721(x + y − 0.3)2

+
e−x2

1 + 1000(x + y2 − 0.25)2

+
1

1 + 1120(x2 + y2 − 0.5)2

Table 5.3: Solution Error and Order for Helmholtz Problem on the Square

9 49 169 289
1
h

Error Order Error Order Error Order Error Order
30 2.8e-01 - 7.8e-01 - 9.0e+00 - 2.5e+02 -
100 1.9e-01 0.3 1.3e-01 1.6 1.6e-01 3.4 2.1e-01 6.0
200 4.4e-01 -0.2 1.0e-02 2.3 5.2e-03 4.0 2.9e-03 6.0
500 2.2e-02 0.9 1.1e-03 2.3 3.3e-05 4.0 2.6e-06 6.5
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Figure 5.6: The rough function for the Helmholtz problem - Top View
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Figure 5.7: The rough function for the Helmholtz problem - Prespective
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5.3 Variable Coefficient Problems

Having numerically established the order of our solver in a Square domain,

we now consider more complex geometries. In addition, we consider variable

coefficient PDEs, with positive coefficients that oscillate. If at all we chose the

RHS not to be oscillatory, then we have a multi-scale problem. We discuss an

example of such a problem in a later section. The first variable coefficient example

we consider is given by Figure 5.8. The solution considered to this problem, also

oscillatory, is shown in Figure 5.9.

Figure 5.8: Non-Square Domain, vari-
able coefficient a11

∂2u

∂x2
+ a22

∂2u

∂y2
− u = f, in Ω

u = g, in ∂Ω

a11 =
1

1 + cos 0.01x2 + tan 0.01y2

a22 =
1

1 + sin 0.01x2 + cos 0.01y2

u =
sin (2y cos 6x)

1 + 10x2 + 10y2

+
cos (10x sin 6y)

1 + 10x2 + 10y2

Table 5.4 presents the solution error, and the order for two different stencil

sizes. From this table it is evident that higher order of convergence is observed

in the solution using MSNFD even on this non-uniform grid case. In addition,
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Figure 5.9: Solution to variable coefficient problems
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the fact that we have variable coefficients posed little or no change in the way

the problem is discretized or solved. This is a well-known advantage of FD type

methods over other methods such as FEM or integral equation based methods,

which have a hard time even setting up these kind of problems. The grid chosen

for this case (and for all cases) is just an equi-spaced, except that we restrict the

grid points to those in the geometry. Also, a simple cleanup routine is used the

boundary to prevent an interior grid point chosen too close a boundary point. We

thus are left with a non-uniform grid.

Table 5.4: Solution Error and Order for Variable Coefficient Problem 1

30 130
1
h

Error Order Error Order
30 2.2e-02 - 8.5e-02 -
100 1.5e-04 4.1 2.9e-04 4.7
200 9.6e-06 4.1 2.1e-07 6.8
500 2.0e-07 4.1 3.5e-10 6.9
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Figure 5.10 presents the variable coefficient example on a second non-square

geometry. The solution considered is the same as in Figure 5.9. The geometry is

almost an annulus but for sharp corners in the out and inner boundaries. Once

again, we restrict an equi-spaced grid to the interior of this geometry and discard

grid points too close to the boundaries. This example as with the previous case

is computed using Dirichlet boundary conditions.

Figure 5.10: Non-Square Domain, vari-
able coefficient a11

∂2u

∂x2
+ a22

∂2u

∂y2
− u = f, in Ω

u = g, in ∂Ω

a11 =
1

1 + cos 0.01x2 + tan 0.01y2

a22 =
1

1 + sin 0.01x2 + cos 0.01y2

u =
sin (2y cos 6x)

1 + 10x2 + 10y2

+
cos (10x sin 6y)

1 + 10x2 + 10y2

Table 5.5 presents the solution error and order for this second variable co-

efficient example. Note the solution accuracy of 11 digits, corresponding to an

order of 6 or more! The above two variable coefficient examples on non-square

geometries serve to illustrate the key advantaged of MSNFD. Firstly, the method

achieves higher order on non-uniform grids as well. Secondly, it can tackle vari-
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Table 5.5: Solution Error and Order for Variable Coefficient Problem 2

60 200
1
h

Error Order Error Order
30 2.2e-03 - 5.2e-04 -
100 3.0e-07 7.4 5.9e-08 7.5
200 7.0e-09 6.7 2.3e-09 6.5
500 7.0e-11 6.1 7.0e-11 5.6

able coefficient problems with the same ease as any other problem. We shall later

consider more complex variable coefficient examples with the exterior problems.

We next consider more complex geometries for second order problems.

5.4 Other Complicated Geometries

We first consider the problem shown in Figure 5.11. This is a simple nega-

tive definite equation with Dirichlet data. However the geometry comprises of

multiple holes in it! The solution which is oscillatory is shown in Figure 5.12.

The corresponding results are as per Table 5.6. Note the large condition number.

Nevertheless, we get to accuracies of 5 digits. The order of convergence for the

largest stencil shown is 5. The point in this example is again that we are able to

handle very complicated domains of choice, as well as get to higher order on these

domains using our method.

We consider a much more trick domain, namely a Spiral. The solution is

peaky runge type function shown in Figure 5.14. The geometry induced condition
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Figure 5.11: A Complex Geometry
with multiple holes ∇2u − u = f, in Ω

u = g, in ∂Ω

u =
sin (10x + 21y2)

1 + 10(x2 + y − 0.1)2

+
1

1 + 11(x + y − 0.3)2

+
e−x2

1 + 10(x + y2 − 0.25)2

+
1

1 + 20(x2 + y2 − 0.5)2

Figure 5.12: Solution to problem on complex geometry
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Table 5.6: Results Geometry with Multiple Holes

30 90
1
h

Error Order Cond No Error Order Cond No
30 1.0e+01 - 1.3e+05 9.2e+01 - 6.8e+06
100 2.4e-01 3.1 2.0e+05 3.5e-01 4.6 1.1e+07
200 1.9e-02 3.3 1.3e+06 1.9e-02 4.5 1.3e+08
500 7.7e-04 3.4 3.1e+07 9.1e-05 4.9 6.5e+07

number is high. While this may be alleviated to an extent by a more conservative

cleanup of grid points close to the boundary, we make no special efforts. This

is to illustrate that we can get to accuracies as large as 7 digits even on such

complicate geometries. The order of the method is also shown below. The order

is a maximum of 3.3, but saturates and drops. However, this is expected since

the stencil sizes used did not increase themselves. Although we increased stencil

sizes, the increase in the grid density needed to increase the stencil size used is

much larger than what we tried. Also, due to large condition number, the law of

diminishing returns kicks in and since we are close to the best possible accuracy,

the error begins to saturate, stalling the order. In comparison, a FEMs will

drop order near the ever curving boundary. Since the curvature varies from one

point to another, even circular elements would not allow exact boundary condition

specification with FEMs.
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Figure 5.13: Spiral Geometry,
Helmholtz problem

∇2u + 105u = f, in Ω

u = g, in ∂Ω

u =
1

1 + 100x2 + 100y2

Figure 5.14: Solution to problem on complex geometry
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Table 5.7: Solution Error, Condition Number and Order for Spiral Problem
1
h

Solution Err Order Cond No Stencil Size
30 3.7e-05 - 5.5e+05 34
100 1.2e-06 3.1 1.9e+07 58
200 5.7e-06 3.3 1.0e+10 60
500 3.7e-07 1.6 4.8e+10 64
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5.5 Summary

A more extensive set of numerical results are available in our paper [7] and

technical report [6]. In [7], we have presented comparison of MSNFD with dealii, a

higher order FEM package. From the results it is clear that we have a more robust

higher order method than dealii. Note that we compare quite favorably with deallii

in terms of a coarser grid in Figure 12 in [7]. For the sake of completeness, we

republish those results here. Figure 5.15 compares MSNFD and dealii on the

following problem as given in the dealii tutorial step 7.

−∇2u + u = f, (x, y) ∈ [−1, 1]2 (5.1)

u = g1, x = 1 or y = 1 (5.2)

∇u.n̂ = g2, x = −1 or y = −1. (5.3)

We let the solution to be u =
∑3

i=1 e−
|x−xi|

σ2 , with the centers for the exponentials

being
(−1

2
, 1

2

)
,
(−1

2
, −1

2

)
,
(

1
2
, −1

2

)
, and σ = 1

3
. However, instead of the L2 and H1

errors we are interested in the maximum errors, since these are capture boundary

losses if any. Figure 5.15 below plots the solution error with reducing grid spacing

for MSNFD for varying stencil sizes. We also dealii with increasing refinement,

and the grid spacing is chosen commensurate with the number of triangles chosen

by dealii. The order of the dealii quadrilateral elements is increased until Q5. Both

were run until the solver ran out of memory and swap space (total of 56GB) in the
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same computer. Firstly, this test provides credibility to MSNFD as a higher order

method, capable of competing quite well with deallii. Although we compare only

on square geometries, we have shown that we retain our higher order properties

on very general geometries including the spiral. Further, dealii’s advantage on

curved geometries using higher order element mappings provide only a constant

improvement in the errors and not a boost in order. Thus the order of the methods

remains the same even with custom elements. Secondly, the boundary conditions

used by dealii are modified. Since the boundary is approximated by boundary

elements, the boundary conditions are also modified and reevaluated on this new

boundary. This in our opinion is not correct. In practical situations, one would

not have a function to evaluate these values at the new boundary, and some

kind of interpolation is the only inaccurate possibility. The MSNFD method

has no such problems. While our method approximates boundaries as decided

by the sampling rate, it reliably uses the provided boundary conditions on the

boundary and not modify it in any way. In this sense, we calculate a solution to

the exact problem and not an approximate problem. Thus while higher order FEs

possible, they are not as efficient in representing the PDE discretely compared

MSNFD, since MSNFD required a coarser grid compared to dealii to get to a

target accuracy. Further the MSNFD method is quite robust and required little

or no code modifications, except for choice of a larger stencil size to scale to higher
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order. Also, in situations such as variable coefficient scenarios or singular PDEs,

the theoretical drudgery often precludes the use of higher order elements as with

the biharmonic PDEs.

Figure 5.15: MSNFD Vs dealii
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We do not present a direct comparison of time to target accuracy, since dealii is

a C++ package, much more efficient in its implementation. We believe the Matlab

comparison to be fairer, both Python and Matlab are at sufficiently similar level of

abstraction. We also present comparison with the Matlab FEM toolbox, in several

figures in [7] and again we compare quite favorably. We also present our results

for another extremely hard problem, namely the multi-scale problem in section
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5.4 of [7]. Multi scale problems and the difficulty with them and numerical results

are dealt with in [41] by Shu et al. We have thus tested our mettle sufficiently

for second order problems. We have thus garnered extensive numerical evidence

in favor of the MSNFD method for solving PDEs. Through these second order

PDE examples, we have shown the efficacy of MSNFD as a higher order method

on complex non-uniform geometries and grids. What remains is to consider the

hardest problems of the lot, namely exterior problems and biharmonic problems.

We consider these in the next chapter.
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Chapter 6

Numerical Results for Special

Problems

To strive, to seek, to find, and not to yield. Alfred Lord Tennyson

6.1 The Exterior Laplace Problem

The Exterior Laplace problem is where we solve for Laplace’s equation outside

of a domain [28]. This means that we are dealing with an infinite domain for

solving our PDE. Formally we specify the problem as below. in equation 6.1. In

Figure 6.1 the hashed region is the infinite exterior in which the PDE needs to be
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solved.

∇2u = 0, (x, y) ∈ R2\Ω (6.1)

u = g, (x, y) ∈ ∂Ω. (6.2)

However, in order for the solution to be meaningful at ∞, an additional homoge-

nous Dirichlet or Neumann condition is specified as in Equations 6.3, 6.4.

u = 0, x = ±∞ or y = ±∞ (6.3)

or

∇u.n̂ = 0, x = ±∞ or y = ±∞. (6.4)

Ω

∂Ω

∞

Figure 6.1: Domain of Exterior Laplace problem

Since we are dealing with an infinite domain which are infeasible to discretize,

we either need to compactify the domain using some mapping, or as FEM ap-
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proaches indicate, approximate the infinite boundary conditions using a finite

boundary layer in the vicinity of the domain, and solve a finite domain problem

now. I do not prefer the latter approach, since in my view, it works around the

problem by approximating it rather than solving it directly. Related work in the

field of VLSI that applying FD methods for capacitance computations solve an

exterior poisson problem, for example, see [43], [15] and these approaches too find

approximation solutions rather than exact ones. We consider a rather simple con-

traction mapping using inverse tangent functions. We also translate the boundary

conditions appropriately so that they continue to be exact. We then solve the re-

sultant PDE using MSNFD. This rather seemingly naive technique seems to yield

very good results as is shown in a later section.

6.1.1 Compactification and the Resultant PDE

Let x, y denote the variables in the infinite domain. Consider the transfor-

mation of variables x = tanx, y = tan y. Under this transformation the partial

derivative terms are modified as under,

∂

∂x
→ cos2 x

∂

∂x
(6.5)

∂2

∂x2
→ cos4 x

∂2

∂x2
− 2 cos3 x sin x

∂

∂x
. (6.6)
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Subsequently, the interior boundary is transformed, ∂Ω → tan−1 ∂Ω, and the

infinite exterior boundary is now mapped into a square
[

−π

2
,
π

2

]2

as in Figure 6.2

below.

tan−1 Ω

tan−1 ∂Ω

y = π
2

y = −π
2

x = −π
2

x = π
2

Figure 6.2: Compactified Domain of Exterior Laplace problem

Let

E{u} = cos4 x
∂2u

∂x2
+ cos4 y

∂2u

∂y2
− (2 cos3 x sin x − cos2 x)

∂u

∂x
(6.7)

−(2 cos3 y sin y − cos2 y)
∂u

∂y
. (6.8)

The original exterior Laplace problem is now of the form

E{u} = 0 (6.9)

(x, y) ∈
[

−π

2
,
π

2

]2

\ tan−1 Ω

u = g, (x, y) ∈ tan−1 ∂Ω (6.10)

u = 0, x = ±π

2
or y = ±π

2
. (6.11)
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Instead of Dirichlet condition at the exterior boundary, we could also use an

appropriate homogenous Neumann condition.

The original rather nice problem is now a much harder variable coefficient

problem, which is singular on the exterior boundary. Although we do not discretize

the PDE on the exterior boundary, we do so in its vicinity, making it an ill-

conditioned problem. In addition, we have the first derivative term with variable

coefficients which makes the problem indefinite again. However, the MSNFD

method was seen to perform quite well in the case of variable coefficients as well

as singular problems. The following section on numerical results indicates that

the MSNFD method can be used to solve exterior Laplace problems as well with

ease.

6.1.2 Numerical Results

We first consider the solution in the exterior of a circular geometry. The com-

pactified domain and the grid are as shown in Figure 6.3 below. A known solution

to the Laplace’s equation is its Green Function at the origin, which takes the form

G(x, y) = log r (see [36] page 273). Since this function is unbounded at r = ∞,

this cannot be a solution to the exterior Laplace problem. We therefore consider

its derivatives, which are bounded at ∞ and have bounded normal derivatives

as well. With these as test functions, we compute the numerical solution given
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Dirichlet data on the interior boundary and homogenous data on the exterior

boundary and measure the accuracy.

Figure 6.3: Compactified domain corresponding to exterior of a circle
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Boundary Point

In the domain above, we assume the solution to be

u =
x + y

x2 + y2
=

∂G

∂x
+

∂G

∂y
, (6.12)

where G is the Green’s function for the two dimensional Laplace’s equation. The

domain is the exterior of the circle defined by
√

x2 + y2 ≥ 0.5.

Table 6.1 below documents the solution error obtained for the above problem.

The first column contains the grid spacing used, while the next two columns

present the solution error obtained using homogenous Neumann and Dirichlet

conditions in that order. The last two columns compare the condition number

obtained with the two types of boundary conditions. Note the large condition
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numbers associated with this problem. We therefore do not carry any further

results with larger stencils at this point. However, the below example does make

the point that the MSNFD method can deal with such extremely ill-conditioned

PDEs quite well and converge to the right solution. Following this basic example,

we consider more complicated geometries, and PDEs.

Table 6.1: Exterior Laplace outside a circle with a 39 point stencil

Solution Error Condition No
1
h

Neumann Dirichlet Neumann Dirichlet
100 2.4e-02 1.1e-03 1.6e+08 5.0e+07
200 1.2e-02 5.5e-04 4.4e+09 1.2e+09
500 4.7e-03 2.2e-04 3.2e+11 8.0e+10

As a second example we consider the exterior of a half tear-drop domain as

shown below in Figure 6.4. The choice of this shape is due to its similarity to

an airfoil. We consider the same problem as in the previous domain, with just

the homogenous Dirichlet condition on the exterior boundary. Table 6.2 below

presents the convergence results and the condition number.

Table 6.2: Exterior Laplace outside a half tear-drop with a 42 point stencil
1
h

Solution Error Condition No Local Discretization Error
30 2.3e-02 4.0e+05 1.4e+00
100 1.4e-03 3.9e+07 3.0e-02
200 7.0e-04 9.5e+08 7.8e-03
500 2.8e-04 6.4e+10 1.3e-03
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Figure 6.4: Compactified exterior of half tear-drop shape
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We now consider a variable coefficient example of an exterior problem. We

consider a negative definite second order PDE, given by

E{u} − u

1 + x2 + y2
= f, (6.13)

where u is chosen to be the same function corresponding to the derivative of the

Green’s function. We solve this problem in the exterior of the half tear-drop shape

as in Figure 6.4. Table 6.3 below summarizes the condition numbers, the solution

errors as well as the local discretization errors for this problem. Note that for

this example, due to the extremely difficult nature of the problem the solution

error saturates, although the local discretization error continues to converge. The

condition number is getting larger all the same, and it would be a wise guess to
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assume the stalling to be due to increasing accuracy battling increasing numerical

errors.

Table 6.3: Exterior Variable coefficient outside a half tear-drop, 42 pt stencil
1
h

Solution Error Condition No Local Discretization Error
30 2.2e-02 3.5e+05 1.4e+00
100 2.7e-05 9.3e+06 3.0e-02
200 1.4e-05 1.1e+07 7.8e-03
500 1.4e-05 2.7e+08 1.3e-03

As a final example of the exterior Laplace type problem, we consider the

domain with multiple holes, as in Figure 6.5.

Figure 6.5: Compactified domain corresponding to exterior of multiple objects

In this geometry, we first consider the variable coefficient problem,

E{u} − (1.0 + sin
x

100
+ sin

y

100
) = f, (6.14)
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where u is chosen to be the same function corresponding to the derivative of the

Green’s function. About 5 digits of accuracy was obtained, and no special setup

was required to handle this kind of problem.

Table 6.4: Exterior Variable coefficient outside multiple objects, 45 pt stencil
1
h

Solution Error Condition No Local Discretization Error
30 2.3e-02 2.5e05 1.3e+00
100 2.8e-05 4.7e06 3.0e-02
200 1.4e-05 2.3e07 7.8e-03
500 1.4e-05 8.4e08 1.3e-03

As a second example, we present a positive shift to the spectrum to mimic

a Helmholtz type setup the PDE. The problem takes the form in equation 6.15

below.

E{u} + 10000u = f. (6.15)

The chosen solution is the same as previously mentioned in equation 6.12. For

this example, we obtained surprisingly good results. Perhaps the shift in spectrum

was not as harmful as expected, although the Helmholtz problems themselves are

much harder than this. The primary difficulty with the actual Helmholtz problem

(zero RHS) is that the Green’s function is oscillatory and very slowly decaying.

Further the boundary conditions at ∞ are not as simple as with the Laplace case

(see [10] page 65). We shall discuss this briefly in the concluding chapter, but in

short, a more elaborate mechanism is need if we need to solve the true exterior

Helmholtz problem. Table 6.5 below presents the numerical solution convergence
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together with the condition numbers. Note the continued improvement in residue

and the stalling of accuracy around 5 digits.

Table 6.5: Exterior indefinite problem
1
h

Solution Error Condition No Local Discretization Error
30 2.9e-04 4.7e+03 2.1e-04
100 8.7e-05 2.9e+05 3.2e-06
200 7.8e-05 1.2e+08 8.1e-07
500 1.4e-05 5.7e+08 1.3e-07

Finally we consider a much harder problem, with the same variable coefficients,

but the chosen solution is,

u = − 3y

(x2 + y2)1.5 =
∂2G

∂y2
. (6.16)

The solution error is as shown in Table 6.4. We see that the method gets to

a single digit of accuracy, something significant for such difficult problems, and

perhaps in engineering applications in the presence of noise in measurements.

Table 6.6: Hard Exterior Variable coefficient problem
1
h

Solution Error Condition No
30 0.15 2.8e+05
100 0.43 3.7e+06
200 0.18 2.5e+07
500 0.18 7.5e+08

6.1.3 Summary

We thus have garnered sufficient numerical evidence to showcase the MSNFD

approach to solve the tough exterior Laplace problem in a variety of situations
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as may arise in practice. This is still only a proof-of-concept level of detail. For

particular applications, several optimizations may be possible as needed, such as

specific scalings, adaption of grid sizes, other compactifications, etc.These are all

possible extensions and perhaps part of future work in this topic. The concluding

chapter discusses the exterior Helmholtz problems.

6.2 Fourth Order problems

In this last section on numerical results, we present those corresponding to

fourth order PDEs which we call the biharmonic type problems. Strictly, speaking

the term ‘biharmonic’ corresponds to PDEs with the leading term

∇4 =
∂4

∂x4
+

∂4

∂y4
+ 2

∂4

∂x2y2
. (6.17)

We however misuse it only harmlessly, to refer to any PDE with fourth order

leading terms. Of course, the actual biharmonic equation’s leading term is positive

definite and the cross-term serves to make it more so. Nevertheless, for the sake of

simplicity, we shall refer to fourth order PDEs as being biharmonic. A biharmonic

PDE needs two boundary conditions in conjunction with the PDE in order to be

well-posed. These boundary conditions are usually picked to be one of Dirichlet

type and an other of Neumann type, although general robin boundary pair could

be used as well.
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A biharmonic PDE thus takes the following form for us,

h11
∂4

∂x4
+ h22

∂4

∂y4
+ a11

∂2

∂x2
+ a22

∂2

∂y2
+ b1

∂

∂x
+ b2

∂

∂y
+ cu = f (6.18)

e11
∂

∂x
+ e12

∂

∂y
+ d1u = g1 (6.19)

e21
∂

∂x
+ e22

∂

∂y
+ d2u = g2 (6.20)

where equation 6.18 holds in the interior of a domain Ω and the other two equa-

tions 6.19 and 6.20 hold on the boundary ∂Ω. Biharmonic equations play a very

important role in several engineering problems. For example, the Navier Stokes

equation, elasticity equations, diffusion equations, all have fourth order spatial

components. A lot of work has been done on specific fourth order problems;

we attempt to remain general and understand the performance of the MSNFD

method, and in general higher order methods for these higher order PDEs. The

work by Greer et all is a good reference on this topic [21]. They however discuss a

level set approach to converting three dimensional geometries into a level set sur-

face and using a finite difference scheme to solve it. The paper however considers

only convergence of the iterative solver for solution, and not the convergence of

the computed solution to the actual solution! The paper mentions first and second

order convergence for these problems. Our MSNFD method can be used in their

framework as well and may in fact provide for a very powerful method to handle

implicit geometries through level sets. For ill-conditioned situations such as this,
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the iteratively computed solution may have no semblance to the actual solution,

since the the eigen vectors and values may have little or no separation between

them. Hence any Krylov subspace method would have problems, except in the

presence of very good pre-conditioners perhaps. Another reference [2] generates

Taylor series type grid weights symbolically. But no effort is made to tackle the

Runge phenomenon and one may not expect the method to generalize to higher

order. The emphasis of the paper is in the implementation of a Multigrid type of

method to handle it [4]. We do not in this work pay particular attention to the

solver part while this is certainly possible, and in fact something is important for

complicated two dimensional cases as well as three dimensional PDEs.

There are two key challenges to higher order PDE problems. First is that of a

right discretization. In its continuous form as in equations 6.18 to 6.20, biharmonic

PDEs are well-posed and solvable. However we need to make sure the discrete

form continues to remain so. Further, for practical computational considerations,

one may wish to retain a square system of equations to yield a unique solution.

Both the under-determined and over determined setups may need specialized care

to the solver, at least a much more computationally intensive QR factorization

for sparse matrices. The second is related to the condition number of the discrete

system. The condition number associated with a fourth order PDE is O(N4).

This means that if we have a regular grid of size 1000 × 1000, then the condition

150



Chapter 6. Numerical Results for Special Problems

number is already 1012. The quantity ǫmachκ, the product of the machine precision

and the condition number is the best floating point accuracy one can hope out of

the solution, which is now 10−4. Any numerical results we obtain at such large

grid sizes are very susceptible to numerical errors. 10000 × 10000 grid, there

is no hope of any numerical accuracy at all! These are short-comings of any

direct discretization of such an ill-conditioned operator. However, there is a black

magic effect called regularization by discretization which may still save us in some

situations.

With a second order method, the best accuracy we hope to obtain O(10−6).

But at this point numerical errors themselves are as large as 10−4. So the solution

we obtained may all be meaningless! However with a higher order method, there

is still some hope, as we may obtain a much larger accuracy at coarser grids.

Nevertheless, the fact that we are directly discretizing a fourth order PDE may

not be correct. This is something we are investigating further. In this section, we

consider a direct discretization of biharmonic PDEs using MSNFD. We present

numerical results of convergence. We also make the observation regarding a turn-

around of the solution accuracy due to increasing numerical instability. In the

concluding chapter, we then attempt to fix the solution using a naive approach

to drop the condition number of the system. We then carry on a discussion that

reveals at the heart of such approach lie the ‘Div-Curl’ problem, which needs a
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very careful treatment, not addressed by us in this thesis and part of our future

work perhaps.

6.2.1 Numerical Results

We now begin with a simple example of solving a biharmonic PDE in a square

domain. Consider a discretization with ni interior points and nb boundary points

as the grid points. Let the grid points serve as specification points as well. Then

we would be left with a tall-skinny system, since we would have ni +nb unknowns

and ni + 2nb equations, since at each boundary point we have two boundary

equations. In order to avoid having a specialized solver, we use a rather simple

idea to get a square system. We peel off a layer of the interior specification points

close to the boundary points. This layer, which we call a Ghost layer is now used

to place stencils and enforce boundary conditions at nearby boundary points. For

each of these Ghost points, we find the nearest boundary point and we specify

that point’s equation, only that we use a stencil centered at the Ghost point. At

these Ghost points, the PDE is not specified, as these are coupled to the boundary

equations through the stencil.

Our first example, as shown in Figure 6.6 shows the interior points, bound-

ary points and the Ghost points. The PDE solved over this grid is given in

equations 6.21 through 6.23. We have chosen to use a Dirichlet condition and
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a Neumann condition on the boundary. As a solution, we chose the smooth

Runge function u = 1
1+x2+y2 . Tables 6.2.1 and 6.2.1 below provides the numeri-

cal results for this problem. Table 6.2.1 presents the condition number and local

discretization errors. We consider two different stencil sizes , 5 × 5 and 7 × 7.

The high condition number of these problems is the first important observation.

As expected, increasing the stencil size increases the local discretization accuracy.

However, due to the large condition number, the solution error does not exhibit

the same trend. While we are able to achieve an accuracy of 9 digits with a 49

point stencil, the solution accuracy turns around at the smallest grid spacing we

consider, 1
500

. This is because the numerical errors involved in inverting the asso-

ciated sparse matrix are penalizing us more severely than the gain we have with

our larger stencil. However, it is important to note that we managed to get to 9

digits which may be sufficient for most applications, and perhaps even the best

possible for this problem.

∂4u

∂x4
+

∂4u

∂y4
+ u = f, in [−0.5, 0.5]2 (6.21)

u = g1, x = ±0.5, y = ±0.5 (6.22)

∇u.n̂ = g2, x = ±0.5, y = ±0.5 (6.23)
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Figure 6.6: Ghost points in a square domain
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Table 6.7: Numerical Results for biharmonic PDE on a Square

Condition No Discretization Error
1
h

25 49 25 49
30 1.0e+06 1.8e+06 5.7e-03 1.4e-03
100 8.5e+08 1.4e+09 4.3e-04 8.8e-05
200 4.0e+10 7.1e+10 5.2e-05 1.0e-05
500 6.1e+12 1.0e+13 6.0e-05 2.2e-05

Table 6.8: Numerical Results for biharmonic PDE on a Square

25 49
1
h

Error Order Error Order
30 2.1e-04 - 2.5e-06 -
100 1.4e-05 2.7 9.2e-09 4.7
200 7.1e-07 3.0 6.0e-09 3.2
500 2.8e-06 1.5 4.5e-07 0.6
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As far as comparable methods with FEM techniques go, there are two com-

ments. Firstly, the complexity of conformal finite elements needed is much higher.

In typically used weak-formulations, the PDE is integrated twice by parts, to

search for a local solution in H2 space. Further, one needs to match sufficient

number of moments at the edges of the elements for the over-all solution to be

sufficiently smooth. The overall function we are looking for though is four-times

differentiable. Hence the search space for the solution is pretty large and this is

inefficient. On the other hand, one could use a H3 local discretization, but this

is so complicated that it is almost never used. The most common approach to

enforcing smoothness of the overall solution is to use a weak continuity of the

normal derivative, as needed by the discontinuous Galerkin methods. A recent

reference on the topic of solving such higher order PDEs using an immersed FEM

technique is [27]. In an exhaustive search of existing results, it was not possi-

ble to find a comparable example for the biharmonic PDE. A recent interaction

with a researcher regarded to be an expert on higher order FEM techniques also

confirmed this difficulty. However, our examples are absolute in their own right.

We pick known solutions and measure the errors and the orders, which are golden

standard in any case. The reference mention above, discusses an approach to han-

dle discontinuity in the domain corresponding to jumpy coefficients in the PDE.

Note that such a variable coefficient case is quite easy and natural to handle with
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our FD type approach. Together with its high order, it can solve such compli-

cated problems without the need for any specialized setup. Note that in general, a

variable coefficient case is not even amenable to a weak representation, precluding

the use of any higher order conformal elements.

The second example we present is a variable coefficient biharmonic PDE on

a square domain. The problem is as per equations 6.24 to 6.26. The solution

used to test this problem was u = 1+sin (10x+10y+0.25)2

1+10(x2+y−0.3)2
. Numerical accuracy and

order are documented in Table 6.2.1 below. A quartic order of convergence was

observed for this problem using a 49 point stencil and an accuracy of 7 digits was

obtained.

(1 + x2 + y2)
∂4u

∂x4
+ (1 + x2 + y2)

∂4u

∂y4
+ u = f, in [−0.5, 0.5]2 (6.24)

u = g1, x = ±0.5, y = ±0.5 (6.25)

∇u.n̂ = g2, x = ±0.5, y = ±0.5 (6.26)

Table 6.9: Numerical Results for variable coefficient biharmonic PDE

25 49
1
h

Error Order Error Order
30 3.5e-02 - 1.7e-02 -
100 2.6e-03 2.1 8.2e-05 4.5
200 5.8e-04 2.2 4.4e-06 4.4
500 7.3e-05 2.2 4.0e-07 3.8
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A third example with a much rougher solution over the square domain is

considered next. The solution to the PDE in equation 6.24 is now

u =
1

1 + 1000(x2 + y − 0.3)2
+

1

1 + 1000(x + y − 0.4)2
+

1

1 + 1000(x + y − 0.4)2
+

1

1 + 1000(x + y2 − 0.5)2
+

1

1 + 1000(x2 + y2 − 0.25)2
. (6.27)

This extremely rough function is as per Figure 6.7. The PDE itself as per equa-

tions 6.21 to 6.23 and Figure 6.6. The corresponding solution convergence and

order as in Table 6.2.1. Note the order to be as high as 6 for the problem.

Figure 6.7: Rough Runge function
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Table 6.10: Numerical Results for hard Runge problem

25 49
1
h

Error Order Error Order
30 3.5e+02 - 3.6e+02 -
100 2.3e-01 6.1 3.5e-01 5.8
200 4.8e-02 4.7 9.7e-03 5.5
500 5.0e-03 4.0 2.6e-04 5.0

We present one final example for the biharmonic case, namely a more compli-

cated domain as in Figure 6.8. We now have two Ghost layers corresponding to

the two boundaries. Solving the standard biharmonic problem which we had as

the first example on this geometry yielded an accuracy of 7 digits with h = 1
200

.

We are restricted in software to square domains, since we do not have the code in

place to compute the normal derivatives for arbitrary boundaries.

6.3 Summary

We thus have considered several numerical results that stand evidence to the

power MSNFD in handling two hard classes of problems in the form of Exterior

Laplace problems and biharmonic PDEs. As with the exterior problem, we are

not attempting to specialize our solver to a particular PDE, but rather have a

general purpose higher order solver. At this point we take up on the turn-around

in accuracy that was observed with Table 6.2.1. The accuracy of the solution

from a grid spacing of 1
200

to 1
500

reduced by two digits due to the numerical errors.
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Figure 6.8: Domain with a hole for the biharmonic PDE solution
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We attribute this to the high condition number of the biharmonic system. As

an effort to alleviate this, one may attempt to rewrite the fourth order PDE as a

system of first order PDEs. If done right, this would drop the condition number of

the system to first order, although leading to a much larger tall-skinny system of

equations. An initial attempt to lift this biharmonic equation to a square system

led to a system that was 7 times larger. Since the memory requirements were

prohibitive (> 512GB) for the solver, single precision experiments were resorted

to. While this partially alleviated the problem of turn around by postponing it,

the condition number remained high. A correctly lifted system as per the FOLS

idea (see [35]) would involve a Div-Curl system. In our initially lifting attempt,

this was not understood, and so the additional homogenous curl condition on

a gradient term was not incorporated and hence unsuccessful. The next chapter

discusses this further, summarizes the key ideas presented in this thesis, and draws

the straws for the future.
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Conclusions and Extensions

Through this thesis, a robust solution has been proposed for the problem of

producing higher order finite difference weights on scattered grids. The problem

with traditional finite difference weights was demonstrated, their shortcomings be-

ing non-uniqueness, non-convergence, and non-generalizability to scattered grids.

Finite element based ideas have difficulty handling cases of variable coefficients

and the order of these methods is dependent on having matching elements for exact

boundary conditions. In many if not most situations, an approximate boundary

condition is imposed and a nearby problem is solved. The MSNFD approach

on the other hand, being a finite difference type approach handles the variable

coefficient case effectively. In addition, the order of the method was shown to

be high on various geometries and problems through sufficient numerical exper-
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iments. Beginning with extensive numerical results for higher order MSN inter-

polation, theory and results were provided for the process of computing higher

order MSNFD weights. The show-case application of our interpolation technique

was a PDE Solver. In the absence of a proof of convergence of the global solu-

tion using MSNFD, a variety or second order problems were first considered, and

results of convergence, condition number and discretization error were provided.

Following these, we consider two extremely hard problems, namely, the exterior

Laplace problem and the biharmonic problem. The former problem is very im-

portant in circuit design, magneto hydro dynamics and several other applications.

The biharmonic problem is important for elasticity, diffusion and several other

applications. While each of these cases deserve a special investigation, we put

the MSNFD method to test using these hard problems to confirm its promise as

a viable, and practical higher order FD method. It would be fair to say that

the MSNFD method indeed withstands these tests and in fact goes beyond. At

present, my research is directed towards solving the scattering problem using

MSNFD approach. The problem is known to be extremely hard, and deserves

specialized setup. In this section, we consider a brief overview of attempts and a

summary of the current status. We also give a little more detail concerning our

efforts towards lifting and resolving the turn around for the biharmonic problem.

These clearly provide the road map for possible extensions.
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7.1 Lifting the BiHarmonic Problem

7.1.1 Lifting a fourth order ODE

Consider a simple fourth order ODE of the form

u′′′′ + u = f, x ∈ [−1, 1] (7.1)

u(−1) = g−1, u′(−1) = h−1, u(1) = g1, u′(1) = h1, (7.2)

where g and h are appropriate boundary functions.

Upon lifting, we rewrite the above equation as the system,

u = u0 (7.3)

u′ = u1 = u′
0 (7.4)

u′′ = u2 = u′
1 (7.5)

u′′′ = u3 = u′
2 (7.6)

u′
3 + u0 = f. (7.7)

The key difference here is that we are solving a system of first order equations.

In order to construct a square system once again, we use the Ghost point idea

for the ODE and the boundary conditions. For the auxiliary equations that re-

late the various lifted variables, we use all the specification points (same as grid

points), so that the overall system is still square. Note that this is a self imposed
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Figure 7.1: Condition Number of the fourth order ODE
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Figure 7.2: Error and residual of the fourth order ODE
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Figure 7.3: Condition Number of the lifted fourth order ODE
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Figure 7.4: Error and residual of the lifted fourth order ODE
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restriction. There is no strict need for us to solve only a square system, except

that of computational ease and that of a unique solution. Figures 7.1 through 7.4

compare the solution error and condition number due to lifting. From these fig-

ures, we clearly see the advantage of lifting, in terms of condition number and the

subsequent alleviation of the turn around in accuracy. While this proved simple

enough in one dimension, things are not especially so in higher dimensions.

7.1.2 Lifting the two dimensional biharmonic PDEs

We now try to adopt a similar approach of lifting a biharmonic PDE using

first order terms. The biharmonic PDE we consider is

∂4u

∂x4
+

∂4u

∂y4
+ u = f, (x, y) ∈ Ω (7.8)

u = g, (x, y) ∈ ∂Ω (7.9)

∇u.n̂ = h, (x, y) ∈ ∂Ω, (7.10)

where n̂ is the unit normal to the boundary. We rewrite this equation using first

order terms as follows.
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u = u0 (7.11)

u1 = ∇u =







∂u
∂x

∂u
∂y







=







u11

u12







(7.12)

u2 =
∂u11

∂x
=

∂2u

∂x2
u3 =

∂u12

∂y
=

∂2u

∂y2
(7.13)

u4 =
∂u2

∂x
=

∂3u

∂x3
(7.14)

u5 =
∂u3

∂y
=

∂3u

∂y3
(7.15)

∂u4

∂x
+

∂u5

∂y
+ u0 = f. (7.16)

This system is 7 times larger than the original system of equations. Due to the

extremely large nature of the system, and considerable bandwidth, the memory

requirements needed to carry out an LU factorization could not be met by any

of the super computers we have access to. We thus needed an alternative way to

verify our hypothesis. We therefore resorted to single precision arithmetic. With

single precision, the accuracy of floating point numbers is about 9 digits. The

tolerable condition number therefore is reduced a lot, and the turn around could

be simulated much more easily. Table 7.1 below shows the error and condition

number for the biharmonic PDE problem with u = 1
1+x2+y2 as the solution, in

single precision arithmetic. Table 7.2 provides these results after lifting the sys-

tem as above. We see that, while the turn around has been postponed and the
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maximum possible accuracy has been improved by 3 digits, the condition number

is still to high. Even though the discretization error converges, the large condi-

tion number causes the solution to computed incorrectly. Thus, the turn around

problem remains! An important take away from these experiments is that the

condition number increase has not yet been alleviated as expected with lifting; we

still observe N4 order of scaling. We believe this is because the system has not

been lifted correctly.

Table 7.1: Biharmonic error in Single Precision
1
h

Solution Error Cond No Discretization Err
30 3.2e-04 9.9e+05 2.7e-02
100 1.1e-01 8.1e+08 5.3e+00
200 1.1e+00 5.6e+09 7.2e+01

Table 7.2: Biharmonic error in Single Precision with Lifting
1
h

Solution Error Cond No Discretization Err
30 5.7e-04 7.8e+07 2.5e-04
100 1.5e-04 2.3e+10 1.7e-05
200 1.4e+00 1.0e+16 4.5e-06

Perhaps the problem with above lifted system is that linear dependencies are

still present in the lifted system. For example, the gradient term u1 also has a

zero curl,

∇× u1 = 0. (7.17)

This leads to an implicit Div-Curl system that needs to be resolved. Thus our

focus is now Div-Curl systems. In fact, as we shall see, in any lifted procedure,
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one would have to invariably employ a Div-Curl setup and hence, handling this

problem is quite important.

7.2 The Exterior Helmholtz Problem

The exterior Helmholtz problem is primary to all scattering and inverse scat-

tering problems. A fundamental difference between the exterior Laplace and

Helmholtz problems is that the former continues to be definite, whereas the latter

is indefinite. Also, the fundamental solution, also called the Green’s function is

smooth for the Laplacian, whereas for the Helmholtz problem, the fundamental

solution is that Hankel function, whose real and imaginary parts are oscillatory

Bessel functions. In the presence of a compactification, all these oscillations are

compressed into a finite domain, leading to an accordion type compression. In ad-

dition, the maximum frequency in the compressed domain is infinite and so is the

Nyquist rate to resolve it. However, one may consider the fact that the Green’s

function decays, and so for a given tolerance, one may be able to adequately

sample it so that any aliasing cause is smaller than the tolerance. However, the

Hankel function decays extremely slowly as O(
√

r). Thus, one would need to be

at r = 106 for 3 digits relative amplitude. At such a distance, the compressed

frequency would be very large and adequate sampling would be impossible.
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All hope is not lost though. Since we know that the Green’s function is oscil-

latory, we can assume the solution to contain these oscillations, and instead solve

the PDE for the much smoother far-field pattern and other components. The

exterior Helmholtz problem takes the form below.

∇2u + k2u = 0, (x, y) ∈ R2\Ω (7.18)

u = ui + us = 0, (x, y) ∈ ∂Ω, (7.19)

where ui is the incident wave component, us is the scattered wave component. In

addition, we have Sommerfiled Radiation condition to make sure we retrieve the

out-going scattered wave solution instead of the standing wave solution, as below.

lim
r→∞

√
r

(
∂u

∂r
+ iku

)

= 0. (7.20)

We solve the exterior Helmholtz equation for the scattered wave, given the incident

wave. The boundary condition is to enforce zero total radiation on the surface of

the conductor. While setting up and solving a polar Helmholtz solver, assuming

that the solution takes the form

u =
eikr

√
r
û, (7.21)

subject to the compactification r → tan r.
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We now consider the modification of the Polar Helmholtz PDE under the above

transformations. The polar Helmholtz equation is given by

urr +
1

r
ur + uθθ + k2u = 0. (7.22)

If u = eikr√
r
û, the above equation becomes

ûrr + 2ikûr +
1

r2
ûθθ +

û

4r2
= 0. (7.23)

We compactify the domain here using the transformation r → tan r. There for the

infinite exterior maps to the region
{
[0, π

2
] × [0, 2π]

}
\Ω. Note that the exterior

boundary is naturally skewed, with the height being 6 times the length due to

our transformation. We could handle this either through a scaled transformation,

or just different rate of sampling along one axis. We tried the latter approach in

our experiments. Under the inverse tangent compactification, the equation above

further changes as below,

cos2 rûrr − 2 cos r sin rûr + 2ik sin2 rûr + ûθθ +
û

4
= 0 (7.24)

in the compactified domain.Another important point to note is that the Sommer-

field radiation conditions also naturally transform to the exact conditions given

by,

sin r cos rûr −
û

2
= 0, |r| =

π

2
. (7.25)
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By rewriting the scattering equation in the compactified notation, after captur-

ing the oscillations explicitly, we are assured that there is only a finite Nyquist

frequency to be met. The solution for the scattering is known to take the form

(see 3.63 in [10]),

u =
eikr

√
r

{

u∞(r̂) + O

(
1

r

)}

, r → ∞. (7.26)

By capturing all the oscillations and the slowly decaying components in the solu-

tion, we are left with a much smoother part, which actually is accelerated in its

decay by the compactification. However, the problem is still singular and highly

ill-conditioned. The severe ill-conditioning of the system, combined with the high

Nyquist rate required has made this problem quite formidable. The obvious way

out is once again to lift and solve a system of equations including a Div-Curl

system. Thus once again, we see that the Div-Curl system plays a crucial role

in solving lifted ill-conditioned systems and hence deserves further investigation.

In addition, the elusive proof of convergence of the MSNFD solution is also an

important work for the future.

7.3 Concluding Remarks

We have thus shown that the MSNFD method and hence the MSN idea is

an important one. The potential applications of such a fundamental idea are
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numerous, ranging from Image processing, to PDE solutions. We have showcased

the most important perhaps easy to reach application of the MSN interpolation

idea, through a PDE solver. The solver in three dimensions is of great industrial

significance and of substantial commercial value.

The biharmonic problem in particular has been dealt well by MSNFD. Another

difficult problem which I think has been solved through MSNFD is the exterior

Laplace problems. I hope that this benefits the semiconductor industry for circuit

parameter calculations and Magneto Hydrodynamic problems. Other industrial

applications may now be considered and solved using MSNFD.

However, the hardest of the problems, namely, the biharmonic and the exterior

Helmholtz problems need further work to be dealt with completely. Our expe-

rience with these hardest problems also brings out the importance of first order

Div-Curl systems for handling the large condition number. It has been my fortune

and privilege to work on this idea during the course of my PhD. Besides learn-

ing so much, it has provided me the great opportunity of contributing something

useful for all! The battle won perhaps, but the war goes on!
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Appendix A

The MSN Interpolation Kernel

The idea of an MSN Kernel was introduced in the MSN interpolation chapter,
where equation 2.19 could be rewritten as,

pM(x) = V (x)D−2
s V T (V D−2

s V T )−1f (A.1)

=
N−1∑

i=0

K(x, xi)fi. (A.2)

In turn the kernel can written as a summation,

K(θi, θj) = 1 +

M−1∑

m=1

cos mθi cos mθj

(m)2s
, θi = cos−1 xi (A.3)

= 1 + 0.5
M−1∑

m=1

cos (0.5m(θi + θj)) + cos (0.5m|θi − θj |)
(m)2s

(A.4)

Summations of the form

Sr(t) =

∞∑

m=1

cos mt

mr
(A.5)

occur as representation of the Clausen’s Integral (see [1] page 1005). Thus, our
kernel for infinite order interpolants, for integer values of s can be written in
closed form as polynomials of order 2s. For example, with s = 2, we can write
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the infinite order kernel matrix entries as the summation

Ki,j = 1 + 0.5 {S2s(0.5(θi + θj)) + S2s(0.5|θi − θj |)} (A.6)

= 1 + 0.5

{
π4

90
− π2(θi + θj)

2

48
+

π(θi + θj)
3

96
− (θi + θj)

4

768

}

+0.5

{
π4

90
− π2|θi − θj |2

48
+

π|θi − θj |3
96

− |θi − θj |4
768

}

. (A.7)

The odd powers in the second summation term S2s(0.5|θi − θj |) behave like
the |x| function about the diagonal θi = θj . Away from the diagonal, these
terms are extremely smooth. This leads to a dense diagonal and low-rank off
diagonal structure for the kernel matrix K. An example indicating block ranks
is shown in Figure ?? for a 200 point kernel. Using this fact, one can construct
fast interpolation algorithms as well as techniques to solve PDEs using the idea
of Fast Multipole Methods.

Figure A.1: Block rank structure, 20 × 20 blocks

In the paper [8], results of a HSS based implementation for MSN interpolation
is discussed. However, the algorithm implemented is just an LU factorization
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based solver, which as we know is extremely unstable given the ill-conditioned
nature of such systems. One needs a much more sophisticated implementation of
a WLS solver using CODA through HSS or FMM for numerical stability. The
paper referenced above also discuss an interesting and powerful extension of MSN
interpolation to an approximation scheme by a regularization. This approximation
scheme called the Generalized MSN (GMSN) has been applied to perform a basic
image segmentation as discussed in the paper.
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Software Details

B.1 Code organization

All functions of the PDE solver, starting from geometry generation, to the
sparse solve are exported by a python module file, called the ‘core’ file. For
each kind of PDE we’d like to solve, we thus have a wrapper that calls the core
file functions, and set the problem up. The stages for setting up and solving a
PDE system are as follows. The problem is defined by setting up the solution
(if known) and generating the appropriate RHS function, symbolically. At this
time, the coefficients of the PDE if analytically known may be specified, although
not necessary. The coefficients may be set to unity and the actual coefficients be
employed only at the solving stage. The next step is the generation of interior and
boundary points corresponding to the problem’s geometry. Several geometries are
available in the core, and the module is easily extensible to add new geometry. The
geometry generation is parametric and the boundary points are ordered to form
closed polygon. The core also supplies a parallel point-in-polygon test for help
with geometry generation. Once the geometry is generated, the assembly routine
can be called with the unity coefficients, to generate the weights and save them.
A simple flag is used to enable the weight generation. Otherwise, to assemble a
sparse matrix and solve the PDE, the various function evaluations, corresponding
to the coefficients of the PDE and the RHS are carried out. The reference solution
is also evaluated to compute the residue. The evaluation is carried out in parallel
on as many ipengine instances as available. Once all the requisite evaluations
are in place, the solver function is called. The function returns the computed
solution, the condition number estimate, the residue as well as the time taken for
the various stages. Additional diagnostics may be added with ease as well. The
wrapper then computes the solution error and saves the results into a data file.

182



Appendix B. Software Details

The coefficients are compressed as saved as a gzip file, due to their large size.
Pickling as provided by python is used to marshal a variety of data formats and
structures.

B.2 Core python functions

In this section, we publish the various functions in the MSNFD’s core module.
We make extensive use of Numpy, Scipy and iPython’s MEC interfaces. The
python scripts that follow in order are the second order core modules, the exterior
Laplace test wrapper and the biharmonic wrapper. These capture the essential
functionality and method for extending the implementation to other problems, and
higher dimensions perhaps. The core module contains extensions to a Hyperbolic
solver, that tackles a one dimensional hyperbolic wave equation as a fully implicit
two dimensional problem. The core also contains an implementation of a multi-
grid type of approach, although it is not investigated further. All python modules
and wrappers are available in our website http://scg.ece.ucsb.edu/software.html.
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B.1 Second Order Core Function . . . . . . . . . . . . . . . . . . . . . 184
B.2 Exterior Laplace Wrapper . . . . . . . . . . . . . . . . . . . . . . 221
B.3 Biharmonic Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . 230

Listing B.1: Second Order Core Function
import numpy as np
import time as tm
import s c ipy as sp
import s c ipy . spa r s e as sps
import s c ipy . spa r s e . l i n a l g as sp la
import numpy . l i n a l g as l a
import sympy as sym
from IPython . ke rne l import c l i e n t
from ctypes import ∗
#mkl = c d l l . LoadLibrary (” c lapack . so ”)
mkl = c d l l . LoadLibrary ( ”/Library/Frameworks/Python . framework/ Vers ions

/2 .7/ l i b /python2 .7/ s i t e −packages/ s c ipy / l i b / lapack / c lapack . so ” )
dgesvd = mkl . dgesvd
import pylab as p l
import cP i ck l e as pkl
import gz ip as gz

###NEW SVD using DGESVD
def c type s svd (B, jobU , jobVt ) :

#Row major to colun major convers ion
m = B. shape [ 0 ]
n = B. shape [ 1 ]
A = np . r a v e l (B, order=’F ’ )
i f jobU == ’N ’ :

U = np . ar ray ( ’ ’ )
else :

U = np . z e r o s ( [m,m] , o rder = ’F ’ )

S = np . z e r o s ( [ 1 , min (m, n) ] , o rder = ’F ’ )
i f jobVt == ’N ’ :
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VT = np . ar ray ( ’ ’ )
else :

VT = np . z e r o s ( [ n , n ] , o rder = ’F ’ )

INFO = c i n t (0 )
LWORK = −1
WORK = ( c double ∗1) ( )

dgesvd ( byr e f ( c cha r ( jobU ) ) , by r e f ( c cha r ( jobVt ) ) , by r e f ( c i n t (m) ) ,
by r e f ( c i n t (n ) ) , A. ctypes . data as ( c vo id p ) , by r e f ( c i n t (m) ) ,

S . c types . data as ( c vo id p ) , U. ctypes . data as ( c vo id p ) , by r e f (
c i n t (m) ) , VT. ctypes . data as ( c vo id p ) , by r e f ( c i n t (n ) ) ,WORK,
byr e f ( c i n t (LWORK) ) , by r e f (INFO) )

LWORK =in t (WORK[ 0 ] )

WORK = ( c double ∗ LWORK) ( )

dgesvd ( byr e f ( c cha r ( jobU ) ) , by r e f ( c cha r ( jobVt ) ) , by r e f ( c i n t (m) ) ,
by r e f ( c i n t (n ) ) , A. ctypes . data as ( c vo id p ) , by r e f ( c i n t (m) ) ,

S . c types . data as ( c vo id p ) , U. ctypes . data as ( c vo id p ) , by r e f (
c i n t (m) ) , VT. ctypes . data as ( c vo id p ) , by r e f ( c i n t (n ) ) , WORK,
byr e f ( c i n t (LWORK) ) , by r e f (INFO) )

return np . mat(U) . copy ( ) , S . copy ( ) , np . mat(VT) . copy ( )

#Outermost func t ion d e f i n i t i o n , CODA WLS
#Accepts the i l l −s c a l e d matrix D, and the t a l l −sk inny matrix
#A. I t r e tu rns the t hree f a c t o r s , q , r and v , such t ha t
#DA = qrvT ( b a s i c a l l y from an svd ) , bu t the qr are der i eved from a
#more ’ manageable ’ matrix .
def CODA WLS(D, A, eta ) :

Av , v = r e f i n e v (D∗A, eta ) ;
q , r = l a . qr (Av) ;
return q , r , v

def r e f i n e v (A, eta ) :
#u , s , vh = la . svd (A, f u l l m a t r i c e s=False )
u , s , vh = ctype s svd (A, ’N ’ , ’A ’ )
v = vh .H
Av = A∗v
Ao = np . matrix ( ’ ’ )
vo = np . matrix ( ’ ’ )
i t e r = 0
while True :

A1 , A2 , v1 , v2 , s , term = compute r e f ine (Av , v , eta , s )
# pr in t i t e r
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i t e r = i t e r + 1
i f Ao . nbytes == 0 :

Ao = np . bmat( ’A1 ’ )
e l i f A1 . nbytes != 0 :

Ao = np . bmat( ’Ao ,A1 ’ )
# Ao = [Ao A1 ]

i f vo . nbytes == 0 :
vo = np . bmat( ’ v1 ’ )

e l i f v1 . nbytes != 0 :
vo = np . bmat( ’ vo , v1 ’ )

# vo = [ vo v1 ]
Av = A2
v = v2
i f term == 1 :

break

i f Ao . nbytes == 0 :
Ao = np . bmat( ’A2 ’ )

e l i f A2 . nbytes != 0 :
Ao = np . bmat( ’Ao ,A2 ’ )

# Ao = [Ao A2]
i f vo . nbytes == 0 :

vo = np . bmat( ’ v2 ’ )
e l i f v2 . nbytes != 0 :

vo = np . bmat( ’ vo , v2 ’ )
# vo = [ vo v2 ]

return Ao , vo

def compute r e f ine (Av, v , eta , s ) :
s = s . f l a t t e n ( )
t o l = s [ 0 ] / eta
k = np . nonzero ( s<t o l )
i f np . any (k ) == False :

A1 = Av
A2 = np . matrix ( ’ ’ )
v1 = v
v2 = np . matrix ( ’ ’ )
term = 1
return A1 , A2 , v1 , v2 , s , term

k = k [ 0 ] [ 0 ]
A1 = np . matrix (Av [ : , 0 : k ] )
A2 = np . matrix (Av [ : , k : ] )
v1 = np . matrix (v [ : , 0 : k ] )
v2 = np . matrix (v [ : , k : ] )
i f np . any (A2) == False :

term = 1
else :
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term = 0
#u , s , vh = la . svd (A2, f u l l m a t r i c e s=False )
u , s , vh = ctype s svd (A, ’N ’ , ’A ’ )
v = vh .H
A2 = A2∗v
v2 = v2∗v
return A1 , A2 , v1 , v2 , s , term

#Solve s the weighted LS system DAx ˜ Db
def WLS Solve (D, A, b) :

#Sort D
d = np . diag (D)
s r t i n d = np . a r g s o r t (d )
i f s r t i n d . shape [ 0 ] == 1 :

s r t i n d = np . f l i p l r ( s r t i n d )
else :

s r t i n d = np . f l i p ud ( s r t i n d )
Ds = D[ s r t i nd , : ]
q , r , v = CODA WLS(Ds , A, 1 0 . 0∗ ∗ 2 . 0 )
#DAx = qrv .Tx = Db
#v .T∗x = r \( q .T∗D∗b )
#x = v ∗( r \( q .T∗D∗b ) )
Db = Ds∗b
z = q .T∗Db
w = la . s o l v e ( r , z )
x = v∗w
return x

def test CODA WLS Unit ( s ) :
M = 6400
N = 400
P = 10
e r r = np . z e r o s ( [ s . s i z e , 1 ] )
e r r r e f = np . z e r o s ( [ s . s i z e , 1 ] )
for i in np . arange (0 , s . s i z e , 1 ) :

D = np . diag (np . arange (1 ,M+1 ,1 .)∗∗(− s [ i ] ) )
A = np . mat(np . random . rand (M,N) )
xo = np . mat(np . random . rand (N,P) )
b = A∗xo
x = WLS Solve (D, A, b)
e r r [ i ] = np .max(np . abs (x−xo ) ) /np .max(np . abs ( xo ) )
x r e f = l a . l s t s q (D∗A, D∗b) [ 0 ]
e r r r e f [ i ] = np .max(np . abs ( x r e f−xo ) ) /np .max(np . abs ( xo ) )

return er r , e r r r e f , s

#Sca l e s 2D coord ina t e s to the range −1,1
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def sca le 2D (x , y , ax , bx , ay , by ) :
xs = 2 . 0 ∗ (x−ax ) /(bx−ax ) − 1
ys = 2 . 0 ∗ (y−ay ) /(by−ay ) − 1
return xs , ys

#Computes the 2D Vandermonde Matrix
def vandermonde2D(x , y ,Mx,My) :

V = np . z e r o s ( [ x . s i z e ,Mx∗My] )
for i in range (x . s i z e ) :

V[ i , : ] = np . kron (np . cos (np . a r c co s ( x [ i ] ) ∗ range (Mx) ) ,np . cos (np .
a r c co s ( y [ i ] ) ∗ range (My) ) )

return np . mat(V)

#Computes the meshnorm corresponding to x , y
def meshnorm2D(xa , ya ) :

x = np . a r c co s ( xa )
y = np . a r c co s ( ya )
#We use Numpy ’ s b roadcas t c a p a b i l i t y ! ! Awesome Numpy, way to go .
#expec t ing column arrays / v e c t o r s
i f x . shape [ 1 ] != 1 or y . shape [ 1 ] != 1 :

print ’ Error in dimension ’
dx = x−x . f l a t t e n ( )
dy = y−y . f l a t t e n ( )
d = (np . ar ray (dx ) ∗∗2 .0 + np . ar ray (dy ) ∗∗2 .0 ) ∗ ∗ ( 0 . 5 )
dmin = np . min (np . min(d [ d>1e−6]) )
mnorm = in t ( round (3 .∗ np . p i /dmin ) )
return mnorm

#Computes the MSN Weight ob t a ined by s o l v i n g the MSN−LS system with
the g iven

#s , t ha t ’ i n t e r p o l a t e s ’ the func t ion in b , at xk , yk us ing the va lu e s
at x , y

def MSN2DWt(x , y , ax , bx , ay , by , s , b , Mx, My) :
#Using the same polynomia l l e n g t h s − t h i s may be was t e f u l . Need

to r e f i n e t h i s .
V = vandermonde2D(x , y , Mx, My)
#Set up the d iagona l we igh t s
D = np . z e r o s ( [Mx∗My,Mx∗My] )
p=0
for m in range (Mx) :

for n in range (My) :
D[ p , p ] = (1+m∗∗2+n∗∗2) ∗∗(−0.5∗ s )
p = p + 1

xo = np . mat(np . random . rand (V. shape [ 0 ] , 10) )
bo = V.T∗xo
b1 = np . bmat( ’b , bo ’ )
#Get we igh t s us ing the CODA WLS So lver
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w = WLS Solve (D, V.T, b1 )
x WLS = w[ : , b . shape [ 1 ] : ]
errLS = np .max(np . abs (x WLS−xo ) ) /np .max(np . abs ( xo ) )
return w, errLS

#Computes p a r i a l d e r i v a t i v e s o f the Vandermonde matrix upto 4 th order
and e va l u a t e s i t a t po in t s

#x , y , order o f po lynomia ls i s Mx, My; assumes x , y are s ca l e d and in
range [−1 ,1]

def computeVanderFunctionals2D ( xc , yc ,Mx,My) :
N = xc . s i z e
i f N != 1 :

print ’ Only s i n g l e p o i n t computation i s supported as o f now
f o r f u n c t i o n a l s o f V2 ’

return −1

#Compute the degree 0 Vandermonde
Vkx = np . mat(np . cos (np . a r c co s ( xc ) ∗ range (Mx) ) )
Vky = np . mat(np . cos (np . a r c co s ( yc ) ∗ range (My) ) )

V1k = np . z e r o s ( [N, Mx] ) ; V2k = np . z e r o s ( [N, Mx] ) ;
V3k = np . z e r o s ( [N, Mx] ) ; V4k = np . z e r o s ( [N, Mx] ) ;

V1k [ : , 0 ] = 0 ; V1k [ : , 1 ] = 1 ;
V2k [ : , 0 ] = 0 ; V2k [ : , 1 ] = 0 ;
V3k [ : , 0 ] = 0 ; V3k [ : , 1 ] = 0 ;
V4k [ : , 0 ] = 0 ; V4k [ : , 1 ] = 0 ;
for m in np . arange (1 ,Mx−1 ,1) :

V1k [ : , m+1] = (2∗ xc∗V1k [ : , m] − V1k [ : , m−1] + 2∗Vkx [ : , m] )
V2k [ : , m+1] = (2∗ xc∗V2k [ : , m] − V2k [ : , m−1] + 4∗V1k [ : , m] )
V3k [ : , m+1] = (2∗ xc∗V3k [ : , m] − V3k [ : , m−1] + 6∗V2k [ : , m] )
V4k [ : , m+1] = (2∗ xc∗V4k [ : , m] − V4k [ : , m−1] + 8∗V3k [ : , m] )

Vxxxx = np . kron (V4k , Vky) ; Vxxx = np . kron (V3k , Vky) ;
Vxx = np . kron (V2k , Vky) ; Vx = np . kron (V1k , Vky) ;

V1kx = V1k ; V2kx = V2k ;
V3kx = V3k ; V4kx = V4k ;

V1k = np . z e r o s ( [N, My] ) ; V2k = np . z e r o s ( [N, My] ) ;
V3k = np . z e r o s ( [N, My] ) ; V4k = np . z e r o s ( [N, My] ) ;

V1k [ : , 0 ] = 0 ; V1k [ : , 1 ] = 1 ;
V2k [ : , 0 ] = 0 ; V2k [ : , 1 ] = 0 ;
V3k [ : , 0 ] = 0 ; V3k [ : , 1 ] = 0 ;
V4k [ : , 0 ] = 0 ; V4k [ : , 1 ] = 0 ;
for m in np . arange (1 ,My−1 ,1) :

189



LISTINGS

V1k [ : , m+1] = (2∗ yc∗V1k [ : , m] − V1k [ : , m−1] + 2∗Vky [ : , m] )
V2k [ : , m+1] = (2∗ yc∗V2k [ : , m] − V2k [ : , m−1] + 4∗V1k [ : , m] )
V3k [ : , m+1] = (2∗ yc∗V3k [ : , m] − V3k [ : , m−1] + 6∗V2k [ : , m] )
V4k [ : , m+1] = (2∗ yc∗V4k [ : , m] − V4k [ : , m−1] + 8∗V3k [ : , m] )

Vyyyy = np . kron (Vkx , V4k) ; Vyyy = np . kron (Vkx , V3k) ;
Vyy = np . kron (Vkx , V2k) ; Vy = np . kron (Vkx , V1k) ;

V1ky = V1k ; V2ky = V2k ;
V3ky = V3k ; V4ky = V4k ;

V1xy = np . kron (V1kx , V1ky) ; V2xy = np . kron (V2kx , V2ky) ;
V3xy = np . kron (V3kx , V3ky) ; V4xy = np . kron (V4kx , V4ky) ;
Vk = np . kron (Vkx , Vky) ;
return Vxx , Vx , Vyy , Vy, V1xy , Vk, Vxxxx , Vyyyy , V2xy

#The weight genera t ion func t ion f o r computing the MSN−FD weigh t s
corresponding to

#var iou s d i f f e r e n t i a l opera t or s
def compute MSN weight (x , y , xk , yk , ax , bx , ay , by , s , a11 , a12 , a21 , a22 , a11 x ,

a12 x , a21 y , a22 y ) :
#sca l e the po in t s to th range
xs , ys = sca le 2D (x , y , ax , bx , ay , by )
xks , yks = sca le 2D (xk , yk , ax , bx , ay , by )

# xs = x ; ys = y ; xks = xk ; yks = yk ;
mnorm = meshnorm2D( xs , ys ) ; Mx = mnorm ; My = mnorm ;
#Compute the f u n c t i o n a l s at xc , yc
Vxx , Vx, Vyy , Vy , V1xy , Vk , Vxxxx , Vyyyy , V2xy =

computeVanderFunctionals2D ( xks , yks ,Mx,My)
lx = 0 . 5∗ (bx−ax ) ; l y = 0 . 5∗ (by−ay ) ;
VxxT = ( lx ∗∗−2.)∗Vxx .T; VyyT = ( ly ∗∗−2.)∗Vyy .T; V1xyT = ( lx ∗ l y )

∗∗(−1.)∗V1xy .T;
VxT = ( lx ∗∗−1.)∗Vx.T;VyT = ( ly ∗∗−1)∗Vy .T;VkT = Vk .T;
rhs = np . bmat( ’VxxT, VxT , VyyT, VyT, V1xyT,VkT ’ )
w, errLS = MSN2DWt( xs , ys , ax , bx , ay , by , s , rhs , Mx, My)
cxx = w[ : , 0 ]
cx = w [ : , 1 ]
cyy = w[ : , 2 ]
cy = w [ : , 3 ]
cxy = w[ : , 4 ]
c = w [ : , 5 ]
t11 = a11∗cxx + a11 x∗cx
t12 = a12∗cxy + a12 x∗cy
t21 = a21∗cxy + a21 y∗cx
t22 = a22∗cyy + a22 y∗cy
c2 = t11+t12+t21+t22
return c2 , cxx , cyy , cx , cy , c , errLS
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def get MSN weights Unit (x , y , xo , yo , ax , bx , ay , by , s , a11 , a12 , a21 , a22 ,
a11 x , a12 x , a21 y , a22 y ) :
#Evaluate the f u n c t i o n a l s d/dx ˆ2 , d/dx , d/dy ˆ2 , d/dy at xo , yo

us ing x , y
#Try the e x ponen t i a l funct ion , t h i s i s the e a s i e s t !
c2mat = np . z e r o s ( [ xo . s i z e , x . s i z e ] )
cxxmat = np . z e r o s ( [ xo . s i z e , x . s i z e ] )
cxmat = np . z e r o s ( [ xo . s i z e , x . s i z e ] )
cyymat = np . z e r o s ( [ xo . s i z e , x . s i z e ] )
cymat = np . z e r o s ( [ xo . s i z e , x . s i z e ] )
cimat = np . z e r o s ( [ xo . s i z e , x . s i z e ] )
e r rLS i = np . z e r o s ( xo . shape )

for i in range ( xo . s i z e ) :
c2 , cxx , cyy , cx , cy , c , errLS = compute MSN weight (x , y , xo [ i ] , yo [ i

] , ax , bx , ay , by , s , a11 [ i ] [ 0 ] , a12 [ i ] [ 0 ] , a21 [ i ] [ 0 ] , a22 [ i ] [ 0 ] ,
a11 x [ i ] [ 0 ] , a12 x [ i ] [ 0 ] , a21 y [ i ] [ 0 ] , a22 y [ i ] [ 0 ] )

c2mat [ i ] [ : ] = c2 .T;
cxxmat [ i ] [ : ] = cxx .T; cxmat [ i ] [ : ] = cx .T;
cyymat [ i ] [ : ] = cyy .T; cymat [ i ] [ : ] = cy .T;
cimat [ i ] [ : ] = c .T;
e r rLS i [ i ] = errLS

return np . mat( c2mat) , np . mat( cxxmat ) , np . mat( cxmat ) , np . mat(
cyymat ) , np . mat( cymat ) , np . mat( cimat ) , e r rLS i

def get MSNWts Parallel ( x , y , xo , yo , ax , bx , ay , by , s , a11 , a12 , a21 , a22 , a11 x
, a12 x , a21 y , a22 y ) :
#Now the p a r a l l e l par t !
#import a l l l i b r a r i e s in the engines
mec = c l i e n t . Mult iEng ineCl ient ( )
mec . execute ( ’ import numpy as np ’ )
mec . execute ( ’ import s c ipy as sp ’ )
mec . execute ( ’ import numpy . l i n a l g as l a ’ )
mec . execute ( ’ from sc ipy import spa r s e ’ )
mec . execute ( ’ import sympy as sym ’ )
mec . execute ( ’ from ctypes import ∗ ’ )
mec . execute ( ’mkl = c d l l . LoadLibrary (” c lapack . so ”) ’ )
mec . execute ( ’ dgesvd = mkl . dgesvd ’ )

#push a s l l f u n c t i on s to the engines
mec . push func t i on ( d i c t (WLS Solve=WLS Solve ) )
mec . push func t i on ( d i c t ( compute r e f ine=compute r e f ine ) )
mec . push func t i on ( d i c t ( r e f i n e v=r e f i n e v ) )
mec . push func t i on ( d i c t (CODA WLS=CODA WLS) )
mec . push func t i on ( d i c t ( sca le 2D=sca le 2D ) )
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mec . push func t i on ( d i c t ( vandermonde2D=vandermonde2D) )
mec . push func t i on ( d i c t (meshnorm2D=meshnorm2D) )
mec . push func t i on ( d i c t (MSN2DWt=MSN2DWt) )
mec . push func t i on ( d i c t ( c type s svd=ctype s svd ) )
mec . push func t i on ( d i c t ( computeVanderFunctionals2D=

computeVanderFunctionals2D ) )
mec . push func t i on ( d i c t ( compute MSN weight=compute MSN weight ) )
mec . push func t i on ( d i c t ( get MSN weights Unit=get MSN weights Unit )

)
mec . push ( d i c t ( x=x ) )
mec . push ( d i c t ( y=y ) )
mec . push ( d i c t ( ax=ax ) )
mec . push ( d i c t (bx=bx ) )
mec . push ( d i c t ( ay=ay ) )
mec . push ( d i c t (by=by ) )
mec . push ( d i c t ( s=s ) )

mec . s c a t t e r ( ’ xo ’ , xo )
mec . s c a t t e r ( ’ yo ’ , yo )
mec . s c a t t e r ( ’ a11 ’ , a11 )
mec . s c a t t e r ( ’ a12 ’ , a12 )
mec . s c a t t e r ( ’ a21 ’ , a21 )
mec . s c a t t e r ( ’ a22 ’ , a22 )
mec . s c a t t e r ( ’ a11 x ’ , a11 x )
mec . s c a t t e r ( ’ a12 x ’ , a12 x )
mec . s c a t t e r ( ’ a21 y ’ , a21 y )
mec . s c a t t e r ( ’ a22 y ’ , a22 y )

mec . execute ( ’ c2mat , cxxmat , cxmat , cyymat , cymat , cimat , e r rLS i =
get MSN weights Unit (x , y , xo , yo , ax , bx , ay , by , s , a11 , a12 , a21 , a22

, a11 x , a12 x , a21 y , a22 y ) ’ )

c2mat = mec . gather ( ’ c2mat ’ )
cxxmat = mec . gather ( ’ cxxmat ’ )
cxmat = mec . gather ( ’ cxmat ’ )
cyymat = mec . gather ( ’ cyymat ’ )
cymat = mec . gather ( ’ cymat ’ )
cimat = mec . gather ( ’ cimat ’ )
e r rLS i = mec . gather ( ’ e r rLS i ’ )

return c2mat , cxxmat , cxmat , cyymat , cymat , cimat , e r rLS i

#jsm :
#The neares t ne ighbor f i n d in g a l gor i t hm
def f ind nn2 (x , y , xk , yk , L , b s t a r t i ndx ) :

#Find the neares t ne ighbours in a window of hald−width L , centered
at xk , yk
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ax = xk − L ; bx = xk + L ;
ay = yk − L ; by = yk + L ;

#x , y t ha t f a l l in t h i s window are the neighbours
b1 = x > ax ; b2 = x < bx ; b3 = y > ay ; b4 = y < by ;
biL = np . a l l (np . bmat( ’ b1 b2 b3 b4 ’ ) , a x i s=1)

iL = np . mat( range (x . s i z e ) )
iL = iL [ biL .T]

#i f a l l iL indeces are l e s s than b s t a r t i n d x then we are f a r
i n t e r i o r ( f i )

#s ince nothing in the s t e n c i l touches a boundary ( assuming
i n t e r i o r equi−g r i dd in g )

i f iL . s i z e == 0 :
#Empty neighborhood
f i = Fa lse

else :
f i = iL .max( ) < b s t a r t i ndx

xL = x [ biL ] ; yL = y [ biL ] ;
xL . r e s i z e (np . s i z e (xL) , 1 ) ; yL . r e s i z e (np . s i z e (yL) , 1 ) ;
return xL , yL , iL , f i

#Computes the MSN weigh t s us ing the neares t ne ighbors , ob t a ined us ing
the f ind nn2 func t ion

def compute MSNWts nn2 (x , y , xo , yo , ind xo , l , s , a11 , a12 , a21 , a22 , a11 x ,
a12 x , a21 y , a22 y , c2FI , cxxFI , cyyFI , cxFI , cyFI , cFI , errLSFI ,
b s t a r t i ndx ) :
c2L i s t = l i s t ( )
cxxL i s t = l i s t ( )
cxL i s t = l i s t ( )
cyyL i s t = l i s t ( )
cyL i s t = l i s t ( )
c i L i s t = l i s t ( )
j L i s t = l i s t ( )
i L i s t = l i s t ( )
e r rLS i = np . z e r o s ( xo . shape )
norm2 = np . z e r o s ( xo . shape )
normxx = np . z e r o s ( xo . shape )
normx = np . z e r o s ( xo . shape )
normyy = np . z e r o s ( xo . shape )
normy = np . z e r o s ( xo . shape )
normi = np . z e r o s ( xo . shape )
bandWidth = np . z e r o s ( xo . shape )

adaption = False
d l = 0 .25∗ l #Set the adapt ion parameter
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Wsize = 9 ;
for i in range ( xo . s i z e ) :

i f adaption == True :
#Adaption

while (1 ) :
xL , yL , jL , f i f l a g = f ind nn2 (x , y , xo [ i ] , yo [ i ] , l ,

b s t a r t i ndx )
xL1 , yL1 , jL1 , f i f l a g 1 = f ind nn2 (x , y , xo [ i ] , yo [ i ] , l−dl

, b s t a r t i ndx ) #Test one s i z e sma l l e r
xL2 , yL2 , jL2 , f i f l a g 2 = f ind nn2 (x , y , xo [ i ] , yo [ i ] , l+dl

, b s t a r t i ndx ) #Test one s i z e sma l l e r

print xL . s i z e , xL1 . s i z e , xL2 . s i z e
i f xL . s i z e == Wsize :

break

#Now we have a s t e n c i l t ha t i s b i g or smal l . I t s t i l l may
be the sma l l e s t s t e n c i l to t ake a t l e a s t 9 po in t s .

#Check
i f xL . s i z e > Wsize :

i f xL1 . s i z e < Wsize :
break

e l i f xL1 . s i z e == Wsize :
(xL , yL , jL , f i f l a g ) = (xL1 , yL1 , jL1 , f i f l a g 1 )
l = l−dl ;
break

else :
l = l−dl ;
continue ;

else :
i f xL2 . s i z e >= Wsize :

(xL , yL , jL , f i f l a g ) = (xL2 , yL2 , jL2 , f i f l a g 2 )
l = l+dl ;
break ;

else :
l = l + dl ;
continue ;

#Turn o f f the FI f l a g
f i f l a g = False

else :
xL , yL , jL , f i f l a g = f ind nn2 (x , y , xo [ i ] , yo [ i ] , l ,

b s t a r t i ndx )
f i f l a g = False

# ax = np .min(xL) ; ay = np .min(yL) ;
# bx = np .max(xL) ; by = np .max(yL) ;

ax = xo [ i ,0]− l ; bx = xo [ i ,0 ]+ l ;
ay = yo [ i ,0]− l ; by = yo [ i ,0 ]+ l ;
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i f f i f l a g == True :
c2=c2FI
cxx=cxxFI
cyy=cyyFI
cx=cxFI
cy=cyFI
c=cFI
errLS=errLSFI

else :
c2 , cxx , cyy , cx , cy , c , errLS = compute MSN weight (xL , yL , xo [ i ] , yo [

i ] , ax , bx , ay , by , s , a11 [ i ] [ 0 ] , a12 [ i ] [ 0 ] , a21 [ i ] [ 0 ] , a22 [ i ] [ 0 ] ,
a11 x [ i ] [ 0 ] , a12 x [ i ] [ 0 ] , a21 y [ i ] [ 0 ] , a22 y [ i ] [ 0 ] )

c2L i s t . append ( c2 )
cxxL i s t . append ( cxx )
cxL i s t . append ( cx )
cyyL i s t . append ( cyy )
cyL i s t . append ( cy )
c i L i s t . append ( c )
j L i s t . append ( jL )
i L i s t . append ( ind xo [ i ]∗np . ones ( jL . shape ) )
e r rLS i [ i ] = errLS
norm2 [ i ] = l a . norm( c2 )
normxx [ i ] = l a . norm( cxx )
normx [ i ] = l a . norm( cx )
normyy [ i ] = l a . norm( cyy )
normy [ i ] = l a . norm( cy )
normi [ i ] = l a . norm( c )
bandWidth [ i ] = c2 . s i z e

c2mat = l i s t2mat ( c2L i s t )
cxxmat = l i s t2mat ( cxxL i s t )
cxmat = l i s t2mat ( cxL i s t )
cyymat = l i s t2mat ( cyyL i s t )
cymat = l i s t2mat ( cyL i s t )
cmat = l i s t2mat ( c i L i s t )
cjmat = l i s t2mat ( j L i s t )
cimat = l i s t2mat ( i L i s t )
return c2mat , cxxmat , cxmat , cyymat , cymat , cmat , cimat , cjmat ,

errLSi , norm2 , normxx , normx , normyy , normy , normi , bandWidth

#Convert a l i s t o f v e c t o r s in t o one long l i s t , t h i s s h a l l l a t e r be
used to assemble the sparse

#matrix
def l i s t2mat (x ) :

r = np . mat( ’ ’ ) . reshape (0 , 1 )
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#Converts the e n t r i e s in t h i e l i s t to matrix f l a t t e n i n g each
component .

while x != [ ] :
v = x . pop ( )
i f v . shape [ 0 ] != 1 and v . shape [ 1 ] != 1 :

print ’Non vec to r tup l e component . Cannot be f l a t t e n e d ’
return −1

#Is a row vec t or
i f v . shape [ 0 ] == 1 :

v = v .T

i f r . s i z e == 0 :
r = np . mat(v )

else :
r = np . bmat( ’ r ; v ’ )

return r

#Compute the MSN weigh t s wi th neares t ne igbour de t e c t i on in Pa r a l l e l
def get MSNWts nn2 Parallel (x , y , xo , yo , l , s , a11 , a12 , a21 , a22 , a11 x , a12 x

, a21 y , a22 y , c2FI , cxxFI , cyyFI , cxFI , cyFI , cFI , errLSFI , b s t a r t i ndx
) :
#Now the p a r a l l e l par t !
#import a l l l i b r a r i e s in the engines
mec = c l i e n t . Mult iEng ineCl ient ( )
mec . execute ( ’ import numpy as np ’ )
mec . execute ( ’ import s c ipy as sp ’ )
mec . execute ( ’ import numpy . l i n a l g as l a ’ )
mec . execute ( ’ import s c ipy . spa r s e as sps ’ )
##mec . ex ecu t e ( ’ import s c ipy . sparse . l i n a l g as s p l a ’)
mec . execute ( ’ import sympy as sym ’ )
mec . execute ( ’ from ctypes import ∗ ’ )
mec . execute ( ’mkl = c d l l . LoadLibrary (” c lapack . so ”) ’ )
mec . execute ( ’ dgesvd = mkl . dgesvd ’ )

#push a s l l f u n c t i on s to the engines
mec . push func t i on ( d i c t (WLS Solve=WLS Solve ) )
mec . push func t i on ( d i c t ( compute r e f ine=compute r e f ine ) )
mec . push func t i on ( d i c t ( r e f i n e v=r e f i n e v ) )
mec . push func t i on ( d i c t (CODA WLS=CODA WLS) )
mec . push func t i on ( d i c t ( sca le 2D=sca le 2D ) )
mec . push func t i on ( d i c t ( vandermonde2D=vandermonde2D) )
mec . push func t i on ( d i c t (meshnorm2D=meshnorm2D) )
mec . push func t i on ( d i c t ( c type s svd=ctype s svd ) )
mec . push func t i on ( d i c t (MSN2DWt=MSN2DWt) )
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mec . push func t i on ( d i c t ( computeVanderFunctionals2D=
computeVanderFunctionals2D ) )

mec . push func t i on ( d i c t ( compute MSN weight=compute MSN weight ) )
mec . push func t i on ( d i c t ( l i s t2mat=l i s t2mat ) )
mec . push func t i on ( d i c t ( f ind nn2=f ind nn2 ) )
mec . push func t i on ( d i c t ( compute MSNWts nn2=compute MSNWts nn2 ) )
mec . push ( d i c t ( x=x ) )
mec . push ( d i c t ( y=y ) )
mec . push ( d i c t ( s=s ) )
mec . push ( d i c t ( l=l ) )
mec . push ( d i c t ( c2FI=c2FI ) )
mec . push ( d i c t ( cxxFI=cxxFI ) )
mec . push ( d i c t ( cyyFI=cyyFI ) )
mec . push ( d i c t ( cxFI=cxFI ) )
mec . push ( d i c t ( cyFI=cyFI ) )
mec . push ( d i c t ( cFI=cFI ) )
mec . push ( d i c t ( errLSFI=errLSFI ) )
mec . push ( d i c t ( b s t a r t i ndx=b s ta r t i ndx ) )

mec . s c a t t e r ( ’ xo ’ , xo )
mec . s c a t t e r ( ’ yo ’ , yo )
mec . s c a t t e r ( ’ ind xo ’ , range ( xo . s i z e ) )
mec . s c a t t e r ( ’ a11 ’ , a11 )
mec . s c a t t e r ( ’ a12 ’ , a12 )
mec . s c a t t e r ( ’ a21 ’ , a21 )
mec . s c a t t e r ( ’ a22 ’ , a22 )
mec . s c a t t e r ( ’ a11 x ’ , a11 x )
mec . s c a t t e r ( ’ a12 x ’ , a12 x )
mec . s c a t t e r ( ’ a21 y ’ , a21 y )
mec . s c a t t e r ( ’ a22 y ’ , a22 y )

mec . execute ( ’ c2mat , cxxmat , cxmat , cyymat , cymat , cmat , cimat ,
cjmat , errLSi , norm2 , normxx , normx , normyy , normy , normi ,
bandWidth = compute MSNWts nn2 (x , y , xo , yo , ind xo , l , s , a11 , a12 ,
a21 , a22 , a11 x , a12 x , a21 y , a22 y , c2FI , cxxFI , cyyFI , cxFI , cyFI ,
cFI , errLSFI , b s t a r t i ndx ) ’ )

c2mat = mec . gather ( ’ c2mat ’ )
cxxmat = mec . gather ( ’ cxxmat ’ )
cxmat = mec . gather ( ’ cxmat ’ )
cyymat = mec . gather ( ’ cyymat ’ )
cymat = mec . gather ( ’ cymat ’ )
cmat = mec . gather ( ’ cmat ’ )
cimat = mec . gather ( ’ cimat ’ )
cjmat = mec . gather ( ’ cjmat ’ )
e r rLS i = mec . gather ( ’ e r rLS i ’ )
norm2 = mec . gather ( ’ norm2 ’ )
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normxx = mec . gather ( ’ normxx ’ )
normx = mec . gather ( ’normx ’ )
normyy = mec . gather ( ’ normyy ’ )
normy = mec . gather ( ’normy ’ )
normi = mec . gather ( ’ normi ’ )
bandWidth = mec . gather ( ’ bandWidth ’ )

return c2mat , cxxmat , cxmat , cyymat , cymat , cmat , cimat , cjmat ,
errLSi , norm2 , normxx , normx , normyy , normy , normi , bandWidth

def po in t i n po l y (x , y , po ly ) :
n = poly . shape [ 0 ]
i n s i d e = False

p1x = poly [ 0 , 0 ]
p1y = poly [ 0 , 1 ]
for i in range (n+1) :

p2x = poly [ i % n , 0 ]
p2y = poly [ i % n , 1 ]
i f y > min(p1y , p2y ) :

i f y <= max(p1y , p2y ) :
i f x <= max(p1x , p2x ) :

i f p1y != p2y :
x i n t e r s = (y−p1y ) ∗(p2x−p1x ) /(p2y−p1y )+p1x

i f p1x == p2x or x <= x i n t e r s :
i n s i d e = not i n s i d e

p1x , p1y = p2x , p2y

return i n s i d e

def p o i n t p o l y p a r a l l e l ( xe i1 , ye i1 , po l y i n ) :
mec = c l i e n t . g e t mu l t i e n g i n e c l i e n t ( )
mec . execute ( ’ import numpy as np ’ )
mec . execute ( ’ from numpy import ∗ ’ )
mec . push ( d i c t ( po l y i n=po l y i n ) )
mec . push func t i on ( d i c t ( po i n t i n po l y=po in t i n po l y ) )
mec . push func t i on ( d i c t ( po i n t po l y un i t=po in t po l y un i t ) )
mec . s c a t t e r ( ’ x e i 1 ’ , x e i 1 ) ; mec . s c a t t e r ( ’ y e i 1 ’ , y e i 1 ) ;
mec . execute ( ’ v=po in t po l y un i t ( xe i1 , ye i1 , po l y i n ) ’ )
v = mec . gather ( ’ v ’ )
return v

def po in t po l y un i t ( xe i1 , ye i1 , po l y i n ) :
v = np . z e r o s ( xe i 1 . shape ) == 1 . 0 ;
for i in range ( xe i 1 . s i z e ) :

v [ i ] = po i n t i n po l y ( xe i 1 [ i ] , y e i 1 [ i ] , p o l y i n ) ;
return v
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#Function t ha t performs the conformal mapping o f the g iven s e t o f
#Coordinates from s t a r t square to c i r c l e us ing the parameter p .
def mesh MapFromRect (x , y , p ) :

s = ( ( np . abs (x ) ∗∗p+np . abs (y ) ∗∗p) ∗∗ (1 . / p) ) /(0 .0001 + np . abs (x ) ∗∗2 .
+ np . abs (y ) ∗ ∗ 2 . ) ∗∗0 .5

xo = s∗x ; yo = s ∗y ;
return xo , yo

def g ene r a t e g r i d (Nx ,Ny , xo , yo ,w, h , type , p ) :
#xbh , ybh = morph square ( xo , yo , w, h ,4∗N−4,p )
xbh , ybh = morph square equi ( xo , yo , w, h , Nx, Ny , p)
poly = np . bmat( ’ xbh , ybh ’ )
ax = np . min(xbh ) ; bx = np .max(xbh ) ;
ay = np . min(ybh ) ; by = np .max(ybh ) ;

i f type == ’ random ’ :
x = ax+(bx−ax ) ∗np . random . rand (N∗N, 1 )
y = ay+(by−ay ) ∗np . random . rand (N∗N, 1 )

else :
x = np . l i n s pa c e ( ax , bx ,Nx)
y = np . l i n s pa c e ( ay , by ,Ny)
X,Y = np . meshgrid (x , y )
x = X. reshape (X. s i z e , 1)
y = Y. reshape (Y. s i z e , 1)

i s i n t e r i o r = p o i n t p o l y p a r a l l e l (x , y , po ly )

x i = x [ i s i n t e r i o r ]
y i = y [ i s i n t e r i o r ]

x i = x i . reshape ( x i . s i z e , 1)
y i = y i . reshape ( y i . s i z e , 1)

thr = 0 .5/min (Nx , Ny)
xs i , y s i = cleanup boundary (xbh , ybh , xi , yi , thr )
return xs i , ys i , xbh , ybh

def morph square equi ( xo , yo , w, h , Nx, Ny , p) :
Nx = 2∗Nx−2; Ny = 2∗Ny−2;
ax = xo−w/2 .0
ay = yo−h/2 .0
bx = xo+w/2 .0
by = yo+h/2 .0

bsx = 2#We have 2 x boundary segments and 2 y boundary segments .
bsy = 2
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bs = bsx+bsy

Nx = round (Nx/ f l o a t ( bsx ) )∗bsx
Ny = round (Ny/ f l o a t ( bsy ) )∗bsy

x = np . z e r o s ( [Nx+Ny , 1 ] )
y = np . z e r o s ( [Ny+Nx , 1 ] )

nbsx = Nx/bsx
nbsy = Ny/bsy
i f p==100.0:

nbsy=nbsx
theta = np . l i n s pa c e ( 3 . 0 / 2 . 0∗np . pi , 2∗np . pi , nbsx+1)

x [ 0 : nbsx , 0 ] = 0 .5∗np . cos ( theta [ 0 : ( nbsx ) ] )
y [ 0 : nbsx , 0 ] = 0 .5∗np . s i n ( theta [ 0 : ( nbsx ) ] )

theta = np . l i n s pa c e ( 0 . 0 , 0 . 5 ∗np . pi , nbsx+1)
y [ nbsx : nbsx+nbsy , 0 ] = 0 .5∗np . s i n ( theta [ 0 : ( nbsx ) ] )
x [ nbsx : nbsx+nbsy , 0 ] = 0 .5∗np . cos ( theta [ 0 : ( nbsx ) ] )

theta = np . l i n s pa c e ( 0 . 5∗np . pi , np . pi , nbsx+1)
x [ nbsx+nbsy :2∗ nbsx+nbsy , 0 ] = 0 .5∗np . cos ( theta [ 0 : ( nbsx ) ] )
y [ nbsx+nbsy :2∗ nbsx+nbsy , 0 ] = 0 .5∗np . s i n ( theta [ 0 : ( nbsx ) ] )

theta = np . l i n s pa c e (np . pi , 1 . 5 ∗ np . pi , nbsx+1)
y [2∗ nbsx+nbsy :2∗ nbsx+2∗nbsy , 0 ] = 0 .5∗np . s i n ( theta [ 0 : ( nbsx ) ] )
x [ 2∗ nbsx+nbsy :2∗ nbsx+2∗nbsy , 0 ] = 0 .5∗np . cos ( theta [ 0 : ( nbsx ) ] )

x = np . arctan (x ) ; y = np . arctan (y ) ;
e l i f p==200.0:#Hal f Tear drop

ax = −1.5
ay = 0 .0
bx = 2 .0
by = 0 .5

bsx = 1
bsy = 1
bs = bsx+bsy

Nx = round (Nx/ f l o a t ( bsx ) )∗bsx
Ny = round (2∗Ny/ f l o a t ( bsy ) ) ∗bsy

x = np . z e r o s ( [Nx+Ny , 1 ] )
y = np . z e r o s ( [Ny+Nx , 1 ] )
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nbsx = Nx/bsx
nbsy = Ny/bsy

#Bottom , s t a r t i n g at l e f t
NC = 400 ;
xth = np . l i n s pa c e ( ax , bx ,NC) . reshape ( [ 1 ,NC] )
yth = ax∗np . ones ( [ 1 ,NC] )

xth = np . arctan ( xth )
yth = np . arctan ( yth )

a l =(( xth [0 , 1 : ] − xth [0 , 0 : −1 ] ) ∗∗2.0+(yth [0 , 1 : ] − yth [0 , 0 : −1 ] ) ∗∗2 .0 )
∗∗0 .5

#a l t h i s a r c l en g t h corresponding o f each po in t on the curve
#from the morphed equisampled square
#th w i l l be the parameter va lu e s on the square which gave them
a l th = np . hstack ( [ 0 . 0 , np . cumsum( a l ) ] )
th = np . l i n s pa c e ( 0 . 0 , a l th [ −1] ,NC)
#t e q equ i spaced a r c l en g t h s
#p eq paramater va lu e s t ha t correspond to equ ispaced a r c l en g t h s

on
#the curve xth , y th
t eq = np . l i n s pa c e ( 0 . 0 , a l th [ −1] , nbsx+1)
p eq = sp . i n t e r p ( t eq , a lth , th )
p eq = p eq [0 : −1 ]/ p eq [−1]
p eq . reshape ( p eq . s i z e , 1)

x [ 0 : nbsx , 0 ] = (bx−ax ) ∗p eq+ax
y [ 0 : nbsx ] = ay∗np . ones ( [ p eq . s i z e , 1 ] )

#Now the h a l f t ear shape .
NC = 400 ;
th = np . l i n s pa c e (np . pi , 2∗np . pi , NC) ;
xth = (bx−ax ) ∗np . s i n ( th / 2 . 0 )+ax
yth = −np . s i n ( th )

xth = np . arctan ( xth )
yth = np . arctan ( yth )

a l =(( xth [1 : ] − xth [0 : −1 ] ) ∗∗2.0+(yth [1 : ] − yth [0 : −1 ] ) ∗∗2 .0 ) ∗∗0 .5
a l th = np . hstack ( [ 0 , np . cumsum( a l ) ] )

t eq = np . l i n s pa c e ( 0 . 0 , a l th [ −1] , nbsy+1)

p eq = np . i n t e r p ( t eq , a lth , th )
p eq = p eq [0 : −1 ]
p eq . reshape ( p eq . s i z e , 1)
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x [ nbsx : nbsx+nbsy , 0 ] = (bx−ax ) ∗(np . s i n ( p eq / 2 . 0 ) )+ax
y [ nbsx : nbsx+nbsy , 0 ] = −np . s i n ( p eq )

x = np . arctan (x ) −0.25; y = np . arctan (y ) −0.25;
else :

for i t e r in range ( bsx ) :
for j t e r in range ( bsy ) :

k = i t e r ∗bsx+j t e r ;
i f k==0:

#Bottom , s t a r t i n g at l e f t
NC = 400 ;
xth = np . l i n s pa c e ( ax , bx ,NC)
yth = ax∗np . ones ( [ 1 ,NC] )
xth , yth = mesh MapFromRect ( xth , yth , p)
a l =((xth [0 , 1 : ] − xth [0 , 0 : −1 ] ) ∗∗2.0+(yth [0 , 1 : ] − yth

[0 , 0 : −1 ] ) ∗∗2 .0 ) ∗∗0 .5
#a l t h i s a r c l en g t h corresponding o f each po in t on the

curve
#from the morphed equisampled square
#th w i l l be the parameter va lu e s on the square which

gave them
a l th = np . hstack ( [ 0 . 0 , np . cumsum( a l ) ] )
th = np . l i n s pa c e ( 0 . 0 , a l th [ −1] ,NC)
#t e q equ i spaced a r c l en g t h s
#p eq paramater va lu e s t ha t correspond to equ ispaced

a r c l en g t h s on
#the curve xth , y th
t eq = np . l i n s pa c e ( 0 . 0 , a l th [ −1] , nbsx+1)
p eq = sp . i n t e r p ( t eq , a lth , th )
p eq = p eq [0 : −1 ]/ p eq [−1]
p eq . reshape ( p eq . s i z e , 1)

x [ 0 : nbsx , 0 ] = (bx−ax ) ∗p eq+ax
y [ 0 : nbsx ] = ay∗np . ones ( [ p eq . s i z e , 1 ] )

e l i f k==1:
#Right , s t a r t i n g at bottom
NC = 400 ;
yth = np . l i n s pa c e ( ay , by ,NC)
xth = bx∗np . ones ( [ 1 ,NC] )
xth , yth = mesh MapFromRect ( xth , yth , p)

a l =((xth [0 , 1 : ] − xth [0 , 0 : −1 ] ) ∗∗2.0+(yth [0 , 1 : ] − yth
[0 , 0 : −1 ] ) ∗∗2 .0 ) ∗∗0 .5

a l th = np . hstack ( [ 0 , np . cumsum( a l ) ] )
th = np . l i n s pa c e (0 , a l th [ −1] ,NC)
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t eq = np . l i n s pa c e (0 , a l th [ −1] , nbsy+1)
p eq = sp . i n t e r p ( t eq , a lth , th )
p eq = p eq [0 : −1 ]/ p eq [−1]

p eq . reshape ( p eq . s i z e , 1)
y [ nbsx : nbsx+nbsy , 0 ] = (by−ay ) ∗p eq+ay
x [ nbsx : nbsx+nbsy ] = bx∗np . ones ( [ p eq . s i z e , 1 ] )

e l i f k==2:
#Top s t a r t i n g at r i g h t
NC = 400 ;
xth = np . l i n s pa c e (bx , ax ,NC)
yth = by∗np . ones ( [ 1 ,NC] )
xth , yth = mesh MapFromRect ( xth , yth , p)

a l =((xth [0 , 1 : ] − xth [0 , 0 : −1 ] ) ∗∗2.0+(yth [0 , 1 : ] − yth
[0 , 0 : −1 ] ) ∗∗2 .0 ) ∗∗0 .5

a l th = np . hstack ( [ 0 , np . cumsum( a l ) ] )
th = np . l i n s pa c e (0 , a l th [ −1] ,NC)

t eq = np . l i n s pa c e (0 , a l th [ −1] , nbsx+1)
p eq = np . i n t e r p ( t eq , a lth , th )
p eq = p eq [0 : −1 ]/ p eq [−1]

p eq . reshape ( p eq . s i z e , 1)
x [ nbsx+nbsy :2∗ nbsx+nbsy , 0 ] = −1.0∗(bx−ax ) ∗p eq+bx
y [ nbsx+nbsy :2∗ nbsx+nbsy ] = by∗np . ones ( [ p eq . s i z e , 1 ] )

else :
#Left , s t a r t i n g at top
NC = 400 ;
yth = np . l i n s pa c e (by , ay ,NC)
xth = ax∗np . ones ( [ 1 ,NC] )
xth , yth = mesh MapFromRect ( xth , yth , p)

a l =((xth [0 , 1 : ] − xth [0 , 0 : −1 ] ) ∗∗2.0+(yth [0 , 1 : ] − yth
[0 , 0 : −1 ] ) ∗∗2 .0 ) ∗∗0 .5

a l th = np . hstack ( [ 0 , np . cumsum( a l ) ] )
th = np . l i n s pa c e (0 , a l th [ −1] ,NC)

t eq = np . l i n s pa c e (0 , a l th [ −1] , nbsy+1)
p eq = np . i n t e r p ( t eq , a lth , th )
p eq = p eq [0 : −1 ]/ p eq [−1]

p eq . reshape ( p eq . s i z e , 1)
y [ 2∗ nbsx+nbsy :2∗ nbsx+2∗nbsy , 0 ] = −1.0∗(by−ay ) ∗p eq+by
x [2∗ nbsx+nbsy :2∗ nbsx+2∗nbsy ] = ax∗np . ones ( [ p eq . s i z e

, 1 ] )
x , y = mesh MapFromRect (x , y , p)
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return x , y

#Square geom
def Square ( xo , yo , w, h , N) :

ax = xo−w/2 .0
ay = yo−h/2 .0
bx = xo+w/2 .0
by = yo+h/2 .0

bs = 4
N = round (N/ f l o a t ( bs ) )∗bs
x = np . z e r o s ( [N, 1 ] )
y = np . z e r o s ( [N, 1 ] )
#The parameter
t = np . arange ( 0 , 1 , 1 . 0 /N)
nbs = N/bs
for k in range ( bs ) :

i f k==0:
#Bottom , s t a r t i n g at l e f t
t1 = t [ k∗nbs : ( k+1)∗nbs ]
a0 = t [ k∗nbs ]
b0 = t [ ( k+1)∗nbs ]
a1 = ax ;
b1 = bx ;
#Map [ a0 , b0 ] −> [ a1 , b1 ] us ing a l i n e a r transform
a = ( a1−b1 ) /( a0−b0 )
b = ( a0∗b1−b0∗a1 ) /( a0−b0 )
x [ k∗nbs : ( k+1)∗nbs , 0 ] = a∗ t1+b
y [ k∗nbs : ( k+1)∗nbs ] = ay∗np . ones ( [ t1 . s i z e , 1 ] )

e l i f k==1:
#Right , s t a r t i n g at bottom
t1 = t [ k∗nbs : ( k+1)∗nbs ]
a0 = t [ k∗nbs ]
b0 = t [ ( k+1)∗nbs ]
a1 = ay ;
b1 = by ;
#Map [ a0 , b0 ] −> [ a1 , b1 ] us ing a l i n e a r transform
a = ( a1−b1 ) /( a0−b0 )
b = ( a0∗b1−b0∗a1 ) /( a0−b0 )
y [ k∗nbs : ( k+1)∗nbs , 0 ] = a∗ t1+b
x [ k∗nbs : ( k+1)∗nbs ] = by∗np . ones ( [ t1 . s i z e , 1 ] )

e l i f k==2:
#Top s t a r t i n g at r i g h t
t1 = t [ k∗nbs : ( k+1)∗nbs ]
a0 = t [ k∗nbs ]
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b0 = t [ ( k+1)∗nbs ]
a1 = bx
b1 = ax
#Map [ a0 , b0 ] −> [ a1 , b1 ] us ing a l i n e a r transform
a = ( a1−b1 ) /( a0−b0 )
b = ( a0∗b1−b0∗a1 ) /( a0−b0 )
x [ k∗nbs : ( k+1)∗nbs , 0 ] = a∗ t1+b
y [ k∗nbs : ( k+1)∗nbs ] = by∗np . ones ( [ t1 . s i z e , 1 ] )

else :
#Right , s t a r t i n g at top
t1 = t [ k∗nbs : ( k+1)∗nbs ]
a0 = t [ k∗nbs ]
b0 = t [ ( k+1)∗nbs−1]+1.0/N
a1 = by
b1 = ay
#Map [ a0 , b0 ] −> [ a1 , b1 ] us ing a l i n e a r transform
a = ( a1−b1 ) /( a0−b0 )
b = ( a0∗b1−b0∗a1 ) /( a0−b0 )
y [ k∗nbs : ( k+1)∗nbs , 0 ] = a∗ t1+b
x [ k∗nbs : ( k+1)∗nbs ] = ax∗np . ones ( [ t1 . s i z e , 1 ] )

return x , y

#crea t e s morphed geometry ou t l i n e s
def morph square (xo , yo , w, h , N, p) :

x , y = Square (xo , yo ,w, h ,N)
x , y = mesh MapFromRect (x , y , p )
return x , y

#cleans up i n t e r i o r po in t s near the boundary
def c leanup boundary (xb , yb , xi , yi , t ) :

su rv ivo r = np . ones ( [ x i . s i z e , 1 ] ) > 0
for i in range ( xb . s i z e ) :

d = ( ( xi−xb [ i , 0 ] ) ∗∗2.0+(yi−yb [ i , 0 ] ) ∗∗2 .0 ) ∗∗0 .5
s = d > t
s = np . bmat( ’ s su rv ivo r ’ )
su rv ivo r = np . a l l ( s , 1 )

xs = x i [ su rv ivo r ]
ys = y i [ su rv ivo r ]
return xs . reshape ( xs . s i z e , 1) , ys . reshape ( ys . s i z e , 1)

#Function to compute the RHS of the genera l second order equat ion
#Uses symbol ic a r i t hme t i c
def varPDE2 Evalfg ( a11 , a12 , a21 , a22 , b1 , b2 , c , d , e1 , e2 , u ) :

f = sym . d i f f ( a11∗sym . d i f f (u , ’ x ’ ) , ’ x ’ ) + sym . d i f f ( a12∗sym . d i f f (u , ’
x ’ ) , ’ y ’ ) + sym . d i f f ( a21∗sym . d i f f (u , ’ y ’ ) , ’ x ’ ) + sym . d i f f ( a22∗
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sym . d i f f (u , ’ y ’ ) , ’ y ’ ) + b1∗sym . d i f f (u , ’ x ’ ) + b2∗sym . d i f f (u , ’ y ’
) + c∗u

g = e1∗sym . d i f f (u , ’ x ’ ) + e2∗sym . d i f f (u , ’ y ’ ) + d∗u
return f , g

def PDE2 Assemble ( xi , yi , xb , yb , a , b , c , d , e , f , g , l , s ,
MAGIC NUMBER, u r e f f l a g , u r e f ) :
a11 = a [ 0 ] ; a12 = a [ 1 ] ; a21 = a [ 2 ] ; a22 = a [ 3 ] ;
a11 x = a [ 4 ] ; a12 x = a [ 5 ] ; a21 y = a [ 6 ] ; a22 y = a [ 7 ] ;
x = np . bmat( ’ x i ; xb ’ ) ; y= np . bmat( ’ y i ; yb ’ ) ;
xo = x ; yo = y ;
N = x . s i z e ;
ind xo = range ( xo . s i z e )

#From jsm ’ s code ver s ion :
#Find some fa r i n t e r i o r po in t and compute i t s we igh t s
#I f the neares t neighbourhood does not have a boundary po in t
#We c a l l i t a far−i n t e r i o r po in t .
ni = x i . s i z e
for i i in range ( n i ) :

xL , yL , iL , f i = f ind nn2 (x , y , xo [ i i ] , yo [ i i ] , l , n i )
i f f i == True :

ax = xo [ i i ,0 ]− l ; bx = xo [ i i ,0 ]+ l ;
ay = yo [ i i ,0 ]− l ; by = yo [ i i ,0 ]+ l ;
c2FI , cxxFI , cyyFI , cxFI , cyFI , cFI , errLSFI=compute MSN weight

(xL , yL , xo [ i i ] , yo [ i i ] , ax , bx , ay , by , s , a11 [ i i ] [ 0 ] , a12 [ i i
] [ 0 ] , a21 [ i i ] [ 0 ] , a22 [ i i ] [ 0 ] , a11 x [ i i ] [ 0 ] , a12 x [ i i ] [ 0 ] ,
a21 y [ i i ] [ 0 ] , a22 y [ i i ] [ 0 ] )

break

i f f i==False :
( c2FI , cxxFI , cyyFI , cxFI , cyFI , cFI , errLSFI ) =

(−1,−1,−1,−1,−1,−1,−1)

#Get the c o e f f i c i e n t s
timea1 = tm . time ( )
#c2mat , cxxmat , cxmat , cyymat , cymat , cmat , cimat , cjmat , errLSi ,

norm2 , normxx , normx , normyy , normy , normi , bandWidth =
compute MSNWts nn2( x , y , xo , yo , ind xo , l , s , a11 , a12 , a21 , a22 , a11 x
, a12 x , a21 y , a22 y , c2FI , cxxFI , cyyFI , cxFI , cyFI , cFI , errLSFI ,
ni )

c2mat , cxxmat , cxmat , cyymat , cymat , cmat , cimat , cjmat , errLSi ,
norm2 , normxx , normx , normyy , normy , normi , bandWidth =
get MSNWts nn2 Parallel (x , y , xo , yo , l , s , a11 , a12 , a21 , a22 , a11 x ,
a12 x , a21 y , a22 y , c2FI , cxxFI , cyyFI , cxFI , cyFI , cFI , errLSFI , n i
)

timea2 = tm . time ( )
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c da ta o = ( c2mat , cxxmat , cxmat , cyymat , cymat , cmat , cimat ,
cjmat , errLSi , norm2 , normxx , normx , normyy , normy , normi ,
bandWidth , timea1 , timea2 )

c d a t a i = (x , y , xo , yo , l , s , a11 , a12 , a21 , a22 , a11 x , a12 x , a21 y , a22 y
, c2FI , cxxFI , cyyFI , cxFI , cyFI , cFI , errLSFI , n i )

c data = ( c da ta i , c da ta o )

cdata fname = ”PDE2 Solve cdata %s . cdata . gz” %(MAGIC NUMBER)
cda ta f o b j = gz . open ( cdata fname , ”wb” )
pkl . dump( c data , cda ta fob j , pkl .HIGHEST PROTOCOL)
cda ta f o b j . c l o s e
return c data

#Set up the PDE So lver
def PDE2 Solve ( xi , yi , xb , yb , a , b , c , d , e , f , g , l , s ,

MAGIC NUMBER, u r e f f l a g , u r e f ) :
a11 = a [ 0 ] ; a12 = a [ 1 ] ; a21 = a [ 2 ] ; a22 = a [ 3 ] ;
a11 x = a [ 4 ] ; a12 x = a [ 5 ] ; a21 y = a [ 6 ] ; a22 y = a [ 7 ] ;
x = np . bmat( ’ x i ; xb ’ ) ; y= np . bmat( ’ y i ; yb ’ ) ;
xo = x ; yo = y ;
N = x . s i z e ;
ind xo = range ( xo . s i z e )

cdata fname = ”PDE2 Solve cdata %s . cdata . gz” %(MAGIC NUMBER)
cda ta f o b j = gz . open ( cdata fname )
c data = pkl . load ( cda ta f o b j )
cda ta f o b j . c l o s e

( c da ta i , c da ta o ) = c data
( c2mat , cxxmat , cxmat , cyymat , cymat , cmat , cimat , cjmat , errLSi ,

norm2 , normxx , normx , normyy , normy , normi , bandWidth ,
timea1 , timea2 ) = c da ta o

#Create the sparse matr ices
S2mat = sps . coo matr ix ( ( np . a r ray ( c2mat .T) [ 0 ] , ( np . a r ray ( cimat .T)

[ 0 ] , np . a r ray ( cjmat .T) [ 0 ] ) ) , shape=(N, N) )
Sxxmat = sps . coo matr ix ( ( np . a r ray ( cxxmat .T) [ 0 ] , ( np . a r ray ( cimat .T

) [ 0 ] , np . a r ray ( cjmat .T) [ 0 ] ) ) , shape=(N, N) )
Sxmat = sps . coo matr ix ( ( np . a r ray ( cxmat .T) [ 0 ] , ( np . a r ray ( cimat .T)

[ 0 ] , np . a r ray ( cjmat .T) [ 0 ] ) ) , shape=(N, N) )
Syymat = sps . coo matr ix ( ( np . a r ray ( cyymat .T) [ 0 ] , ( np . a r ray ( cimat .T

) [ 0 ] , np . a r ray ( cjmat .T) [ 0 ] ) ) , shape=(N, N) )
Symat = sps . coo matr ix ( ( np . a r ray ( cymat .T) [ 0 ] , ( np . a r ray ( cimat .T)

[ 0 ] , np . a r ray ( cjmat .T) [ 0 ] ) ) , shape=(N, N) )
#se t up the d iagona l matr ices corresponding to b , c , d and e
b1 = b [ 0 ] ; b2 = b [ 1 ] ;
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e1 = e [ 0 ] ; e2 = e [ 1 ] ;

b1Diag = sps . spd iag s ( b1 . f l a t t e n ( ) ,0 ,N,N) ;
b2Diag = sps . spd iag s ( b2 . f l a t t e n ( ) ,0 ,N,N) ;
e1Diag = sps . spd iag s ( e1 . f l a t t e n ( ) ,0 ,N,N) ;
e2Diag = sps . spd iag s ( e2 . f l a t t e n ( ) ,0 ,N,N) ;
cDiag = sps . spd iag s ( c . f l a t t e n ( ) ,0 ,N,N) ;
dDiag = sps . spd iag s (d . f l a t t e n ( ) ,0 ,N,N) ;

#Set up the FD Matrix .
FDi = S2mat + b1Diag∗Sxmat + b2Diag∗Symat + cDiag
FDb = e1Diag∗Sxmat + e2Diag∗Symat + dDiag

#Now e x t r a c t equa t ion s from FDi corresponding to xi , y i and those
from FDb corresponding

#to xb , yb ‘
FDi = FDi [ 0 : x i . s i z e ] [ : ] ;
FDb = FDb[ x i . s i z e : ] [ : ] ;
FD = sps . bmat ( [ [ FDi ] , [ FDb ] ] ) ;
FD = FD. to c s c ( ) ;

#The FD Matrix i s se tup . Need to ba lance i t .
print norm2 . shape , b1 . shape , normx . shape , b2 . shape , normy . shape ,

c . shape
r ow s c l i = (norm2 + np . abs ( b1 ) ∗normx+np . abs ( b2 ) ∗normy+np . abs ( c ) )

∗∗(−1.0)
r ow sc lb = (np . abs ( e1 ) ∗normx+np . abs ( e2 ) ∗normy+np . abs (d) ) ∗∗(−1.0)
r ow s c l i = r ow s c l i [ 0 : x i . s i z e ] / x i . s i z e ∗ ∗ 0 . 5 ;
r ow sc lb = row sc lb [ x i . s i z e : ] / xb . s i z e ∗ ∗ 0 . 5 ;

r ow s c l = np . bmat( ’ r ow s c l i ; r ow sc lb ’ )
r ow sca l e = sps . spd iag s (np . a r ray ( r ow s c l ) . f l a t t e n ( ) ,0 ,N,N, ” c s r ” )

;

#Not column s c a l i n g ye t .RHS s c a l i n g
f = f [ 0 : x i . s i z e ] ; g = g [ x i . s i z e : ] ;

z i = np . z e r o s ( [ xb . s i z e , 1 ] )
rhs1 = np . bmat( ’ f ; z i ’ ) ;
zb = np . z e r o s ( [ x i . s i z e , 1 ] )
rhs2 = np . bmat( ’ zb ; g ’ ) ;

i f u r e f f l a g != −1:
f g r e f = FD∗ u r e f
r e s i d s = np . abs ( f g r e f −rhs1−rhs2 )
r e s i d = np .max( r e s i d s ) /np .max(np . abs ( rhs1+rhs2 ) )

else :
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r e s i d = 0 ;

#Row s c a l e the FD Matrix
FD = row sca l e ∗FD;

xo = np . mat(np . random . rand (N, 10) )
#Unit normal ize xo
for i in range (10) :

xo [ : , i ] = xo [ : , i ] / np .max(np . abs ( xo [ : , i ] ) )
#Compute the RHS
bo = FD∗xo
#compute the maximum in f norm
normFD = np .max(np .max(np . abs ( bo ) ) )

rhs1 = row sca l e ∗ rhs1
rhs2 = row sca l e ∗ rhs2

x1 = np . z e r o s ( [N, 1 0 ] )
#Solve the sparse system
timesp1 = tm . time ( )
LU = sp la . d so lv e . sp lu (FD)
#Apply the f a c t o r s to one RHS at a time .
u1 = LU. s o l v e (np . a r ray ( rhs1 ) . f l a t t e n ( ) )
u2 = LU. s o l v e (np . a r ray ( rhs2 ) . f l a t t e n ( ) )
timesp2 = tm . time ( )

Fim = ( row sca l e [ 0 : x i . s i z e , : ] ∗ S2mat , r ow sca l e [ 0 : x i . s i z e , : ] ∗
b1Diag∗Sxmat , r ow sca l e [ 0 : x i . s i z e , : ] ∗ b2Diag∗Symat , r ow sca l e
[ 0 : x i . s i z e , : ] ∗ cDiag )

Fbm = ( row sca l e [ x i . s i z e : , : ] ∗ e1Diag ∗Sxmat , r ow sca l e [ x i . s i z e
: , : ] ∗ e2Diag∗Symat , r ow sca l e [ x i . s i z e : , : ] ∗ dDiag )

u1r , r1 = i t e r r e f i n e FD (4 , 3 , Fim , Fbm, x i . s i z e , u1 , rhs1 , LU,
2)

u2r , r2 = i t e r r e f i n e FD (4 , 3 , Fim , Fbm, x i . s i z e , u2 , rhs2 , LU,
2)

u = u1+u2
ur = u1r + u2r

for i in range (1 , 11 ) :
x1 [ : , i −1] = LU. s o l v e (np . a r ray ( xo [ : , i −1]) . f l a t t e n ( ) )

normFDi = np .max(np .max(np . abs ( x1 ) ) )
w a l l i s = (np . p i ∗(N−1) ∗ 0 . 5 ) ∗∗0 .5
condNo = w a l l i s ∗normFD∗normFDi
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errLS =np .max( abs ( e r rLS i ) )

return ur , x , y , condNo , r e s id , errLS , np .max(bandWidth) , timea2−
timea1 , timesp2−timesp1

def PDE2 AssembleNSolve ( xi , yi , xb , yb , a , b , c , d , e , f , g , l , s ,
MAGIC NUMBER, u r e f f l a g , u r e f ) :

c data = PDE2 Assemble ( xi , yi , xb , yb , a , b , c , d , e , f , g , l , s ,
MAGIC NUMBER, u r e f f l a g , u r e f )

return PDE2 Solve ( xi , yi , xb , yb , a , b , c , d , e , f , g , l , s ,
MAGIC NUMBER, u r e f f l a g , u r e f )

def PDE2 HyperAssemble( xi , yi , xb , yb , a , b , c , d , e , f , g , h , bexcl ,
baddl , l , s , MAGIC NUMBER, u r e f f l a g , u r e f ) :
a11 = a [ 0 ] ; a12 = a [ 1 ] ; a21 = a [ 2 ] ; a22 = a [ 3 ] ;
a11 x = a [ 4 ] ; a12 x = a [ 5 ] ; a21 y = a [ 6 ] ; a22 y = a [ 7 ] ;
x = np . bmat( ’ x i ; xb ’ ) ; y= np . bmat( ’ y i ; yb ’ ) ;
xo = x ; yo = y ;
N = x . s i z e ;
ind xo = range ( xo . s i z e )

n i = x i . s i z e ;
ind = np . arange (x . s i z e )
i n d e x c l = ind [ bexc l . f l a t t e n ( ) ] #Indice s f o r ex c luded boundary

equa t ion s
i nd add l = ind [ baddl . f l a t t e n ( ) ] #Indice s f o r a d d i t i o n a l boundary

equa t ion s
nb2 = ind add l . s i z e ;
nb1 = x . s i z e − ni − nb2 ;
print ni , nb1 , nb2

g ex c l = g [ i n d e x c l ] ; g addl = h [ ind add l ] ;
g e x c l = g ex c l . reshape ( g ex c l . s i z e , 1) ; g addl = g addl .

reshape ( g addl . s i z e , 1) ;
zbb = np . z e r o s ( [ nb2 , 1 ] ) ; zb = np . z e r o s ( [ n i+nb1 , 1 ] ) ;
g = np . bmat( ’ g e x c l ; zbb ’ ) ; h = np . bmat( ’ zb ; g addl ’ ) ;

#From jsm ’ s code ver s ion :
#Find some fa r i n t e r i o r po in t and compute i t s we igh t s
#I f the neares t neighbourhood does not have a boundary po in t
#We c a l l i t a far−i n t e r i o r po in t .
for i i in range ( n i ) :

xL , yL , iL , f i = f ind nn2 (x , y , xo [ i i ] , yo [ i i ] , l , n i )
i f f i == True :

ax = xo [ i i ,0 ]− l ; bx = xo [ i i ,0 ]+ l ;
ay = yo [ i i ,0 ]− l ; by = yo [ i i ,0 ]+ l ;
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c2FI , cxxFI , cyyFI , cxFI , cyFI , cFI , errLSFI=compute MSN weight
(xL , yL , xo [ i i ] , yo [ i i ] , ax , bx , ay , by , s , a11 [ i i ] [ 0 ] , a12 [ i i
] [ 0 ] , a21 [ i i ] [ 0 ] , a22 [ i i ] [ 0 ] , a11 x [ i i ] [ 0 ] , a12 x [ i i ] [ 0 ] ,
a21 y [ i i ] [ 0 ] , a22 y [ i i ] [ 0 ] )

break

#Get the c o e f f i c i e n t s
timea1 = tm . time ( )
#c2mat , cxxmat , cxmat , cyymat , cymat , cmat , cimat , cjmat , errLSi ,

norm2 , normxx , normx , normyy , normy , normi , bandWidth =
compute MSNWts nn2( x , y , xo , yo , ind xo , l , s , a11 , a12 , a21 , a22 , a11 x
, a12 x , a21 y , a22 y , c2FI , cxxFI , cyyFI , cxFI , cyFI , cFI , errLSFI ,
ni )

c2mat , cxxmat , cxmat , cyymat , cymat , cmat , cimat , cjmat , errLSi ,
norm2 , normxx , normx , normyy , normy , normi , bandWidth =
get MSNWts nn2 Parallel (x , y , xo , yo , l , s , a11 , a12 , a21 , a22 , a11 x ,
a12 x , a21 y , a22 y , c2FI , cxxFI , cyyFI , cxFI , cyFI , cFI , errLSFI , n i
)

timea2 = tm . time ( )

c da ta o = ( c2mat , cxxmat , cxmat , cyymat , cymat , cmat , cimat ,
cjmat , errLSi , norm2 , normxx , normx , normyy , normy , normi ,
bandWidth , timea1 , timea2 )

c d a t a i = (x , y , xo , yo , l , s , a11 , a12 , a21 , a22 , a11 x , a12 x , a21 y , a22 y
, c2FI , cxxFI , cyyFI , cxFI , cyFI , cFI , errLSFI , n i )

c data = ( c da ta i , c da ta o )

cdata fname = ”PDE2Hyper Solve cdata %s . cdata . gz” %(MAGIC NUMBER)
cda ta f o b j = gz . open ( cdata fname , ”wb” )
pkl . dump( c data , cda ta fob j , pkl .HIGHEST PROTOCOL)
cda ta f o b j . c l o s e
return c data

def PDE2 HyperSolve ( xi , yi , xb , yb , a , b , c , d , e , f , g , h , bexcl ,
baddl , l , s , MAGIC NUMBER, u r e f f l a g , u r e f ) :
a11 = a [ 0 ] ; a12 = a [ 1 ] ; a21 = a [ 2 ] ; a22 = a [ 3 ] ;
a11 x = a [ 4 ] ; a12 x = a [ 5 ] ; a21 y = a [ 6 ] ; a22 y = a [ 7 ] ;
x = np . bmat( ’ x i ; xb ’ ) ; y= np . bmat( ’ y i ; yb ’ ) ;
xo = x ; yo = y ;
N = x . s i z e ;
ind xo = range ( xo . s i z e )

n i = x i . s i z e ;
ind = np . arange (x . s i z e )
i n d e x c l = ind [ bexc l . f l a t t e n ( ) ] #Indice s f o r ex c luded boundary

equa t ion s
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i nd add l = ind [ baddl . f l a t t e n ( ) ] #Indice s f o r a d d i t i o n a l boundary
equa t ion s

nb2 = ind add l . s i z e ;
nb1 = x . s i z e − ni − nb2 ;

g ex c l = g [ i n d e x c l ] ; g addl = h [ ind add l ] ;
g e x c l = g ex c l . reshape ( g ex c l . s i z e , 1) ; g addl = g addl .

reshape ( g addl . s i z e , 1) ;
zbb = np . z e r o s ( [ nb2 , 1 ] ) ; zb = np . z e r o s ( [ n i+nb1 , 1 ] ) ;
g = np . bmat( ’ g e x c l ; zbb ’ ) ; h = np . bmat( ’ zb ; g addl ’ ) ;

#Try to read from f i l e in s t ead .
cdata fname = ”PDE2Hyper Solve cdata %s . cdata . gz” %(MAGIC NUMBER)
cda ta f o b j = gz . open ( cdata fname )
c data = pkl . load ( cda ta f o b j )
cda ta f o b j . c l o s e

( c da ta i , c da ta o ) = c data
( c2mat , cxxmat , cxmat , cyymat , cymat , cmat , cimat , cjmat , errLSi ,

norm2 , normxx , normx , normyy , normy , normi , bandWidth ,
timea1 , timea2 ) = c da ta o

#TODO: Asser t i f the inpu t s match b e f o r e us ing the ou tpu t s .

#Create the sparse matr ices
S2mat = sps . coo matr ix ( ( np . a r ray ( c2mat .T) [ 0 ] , ( np . a r ray ( cimat .T)

[ 0 ] , np . a r ray ( cjmat .T) [ 0 ] ) ) , shape=(N, N) )
Sxxmat = sps . coo matr ix ( ( np . a r ray ( cxxmat .T) [ 0 ] , ( np . a r ray ( cimat .T

) [ 0 ] , np . a r ray ( cjmat .T) [ 0 ] ) ) , shape=(N, N) )
Sxmat = sps . coo matr ix ( ( np . a r ray ( cxmat .T) [ 0 ] , ( np . a r ray ( cimat .T)

[ 0 ] , np . a r ray ( cjmat .T) [ 0 ] ) ) , shape=(N, N) )
Syymat = sps . coo matr ix ( ( np . a r ray ( cyymat .T) [ 0 ] , ( np . a r ray ( cimat .T

) [ 0 ] , np . a r ray ( cjmat .T) [ 0 ] ) ) , shape=(N, N) )
Symat = sps . coo matr ix ( ( np . a r ray ( cymat .T) [ 0 ] , ( np . a r ray ( cimat .T)

[ 0 ] , np . a r ray ( cjmat .T) [ 0 ] ) ) , shape=(N, N) )
#se t up the d iagona l matr ices corresponding to b , c , d and e
b1 = b [ 0 ] ; b2 = b [ 1 ] ;
e1 = e [ 0 ] ; e2 = e [ 1 ] ;

b1Diag = sps . spd iag s ( b1 . f l a t t e n ( ) ,0 ,N,N) ;
b2Diag = sps . spd iag s ( b2 . f l a t t e n ( ) ,0 ,N,N) ;
e1Diag = sps . spd iag s ( e1 . f l a t t e n ( ) ,0 ,N,N) ;
e2Diag = sps . spd iag s ( e2 . f l a t t e n ( ) ,0 ,N,N) ;
cDiag = sps . spd iag s ( c . f l a t t e n ( ) ,0 ,N,N) ;
dDiag = sps . spd iag s (d . f l a t t e n ( ) ,0 ,N,N) ;

#Set up the FD Matrix .
FDi = S2mat + b1Diag∗Sxmat + b2Diag∗Symat + cDiag
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FDb = e1Diag∗Sxmat + e2Diag∗Symat + dDiag
FDb1 = Symat . to c s c ( )

FDb = FDb[ i n d e x c l ] [ : ]
FDb1 = FDb1 [ ind add l ] [ : ]

FDb = sps . bmat ( [ [ FDb ] , [ FDb1 ] ] ) . t o c s c ( ) ;

#Now e x t r a c t equa t ion s from FDi corresponding to xi , y i and those
from FDb corresponding

#to xb , yb ‘
FDi = FDi [ 0 : x i . s i z e ] [ : ] ;
FDb = FDb[ x i . s i z e : ] [ : ] ;

FD = sps . bmat ( [ [ FDi ] , [ FDb ] ] ) ;
FD = FD. to c s c ( ) ;

#The FD Matrix i s se tup . Need to ba lance i t .
r ow s c l i = (norm2 + np . abs ( b1 ) ∗normx+np . abs ( b2 ) ∗normy+np . abs ( c ) )

∗∗(−1.0)
r ow sc lb = (np . abs ( e1 ) ∗normx+np . abs ( e2 ) ∗normy+np . abs (d) ) ∗∗(−1.0)
row sc lb1= (normy) ∗∗(−1.0)

r ow sc lb = row sc lb [ i n d e x c l ] . reshape ( i n d e x c l . s i z e , 1)
row sc lb1 = row sc lb1 [ ind add l ] . reshape ( ind add l . s i z e , 1)
r ow sc lb = np . bmat( ’ r ow sc lb ; row sc lb1 ’ )

r ow s c l i = r ow s c l i [ 0 : x i . s i z e ] / x i . s i z e ∗ ∗ 0 . 5 ;
r ow sc lb = row sc lb [ x i . s i z e : ] / xb . s i z e ∗ ∗ 0 . 5 ;

r ow s c l = np . bmat( ’ r ow s c l i ; r ow sc lb ’ )
r ow sca l e = sps . spd iag s (np . a r ray ( r ow s c l ) . f l a t t e n ( ) ,0 ,N,N, ” c s r ” )

;

#Not column s c a l i n g ye t .RHS s c a l i n g
f = f [ 0 : x i . s i z e ] ; g = g [ x i . s i z e : ] ; h = h [ x i . s i z e : ] ;

z i = np . z e r o s ( [ xb . s i z e , 1 ] )
rhs1 = np . bmat( ’ f ; z i ’ ) ;
zb = np . z e r o s ( [ x i . s i z e , 1 ] )
rhs2 = np . bmat( ’ zb ; g ’ ) ;
rhs3 = np . bmat( ’ zb ; h ’ ) ;

i f u r e f f l a g != −1:
f g r e f = FD∗ u r e f
r e s i d s = np . abs ( f g r e f −rhs1−rhs2−rhs3 )
r e s i d = np .max( r e s i d s ) /np .max(np . abs ( rhs1+rhs2+rhs3 ) )
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else :
r e s i d = 0 ;

FDu = FD;
#Row s c a l e the FD Matrix
FD = row sca l e ∗FD;

xo = np . mat(np . random . rand (N, 10) )
#Unit normal ize xo
for i in range (10) :

xo [ : , i ] = xo [ : , i ] / np .max(np . abs ( xo [ : , i ] ) )
#Compute the RHS
bo = FD∗xo
#compute the maximum in f norm
normFD = np .max(np .max(np . abs ( bo ) ) )

rhs1 = row sca l e ∗ rhs1
rhs2 = row sca l e ∗ rhs2
rhs3 = row sca l e ∗ rhs3

x1 = np . z e r o s ( [N, 1 0 ] )
#Solve the sparse system
timesp1 = tm . time ( )

LU = sp la . d so lv e . sp lu (FD, ’MMD AT PLUS A ’ )
#Apply the f a c t o r s to one RHS at a time .
u1 = LU. s o l v e (np . a r ray ( rhs1 ) . f l a t t e n ( ) )
u2 = LU. s o l v e (np . a r ray ( rhs2 ) . f l a t t e n ( ) )
u3 = LU. s o l v e (np . a r ray ( rhs3 ) . f l a t t e n ( ) )
timesp2 = tm . time ( )

Fim = ( row sca l e [ 0 : x i . s i z e , : ] ∗ S2mat , r ow sca l e [ 0 : x i . s i z e , : ] ∗
b1Diag∗Sxmat , r ow sca l e [ 0 : x i . s i z e , : ] ∗ b2Diag∗Symat , r ow sca l e
[ 0 : x i . s i z e , : ] ∗ cDiag )

Fb1 = ( row sca l e [ n i : n i+nb1 , : ] ∗ e1Diag ∗Sxmat , r ow sca l e [ n i : n i+nb1
, : ] ∗ e2Diag ∗Symat , r ow sca l e [ n i : n i+nb1 , : ] ∗ dDiag )

Fb2 = ( row sca l e [ n i+nb1 : , : ] ∗ Symat)

u1r , r1 = i t e r r e f i ne FDHyper (4 , 3 , 1 , Fim , Fb1 , Fb2 , ni , nb1 ,
nb2 , u1 , rhs1 , LU, 2)

u2r , r2 = i t e r r e f i ne FDHyper (4 , 3 , 1 , Fim , Fb1 , Fb2 , ni , nb1 ,
nb2 , u2 , rhs2 , LU, 2)

u3r , r3 = i t e r r e f i ne FDHyper (4 , 3 , 1 , Fim , Fb1 , Fb2 , ni , nb1 ,
nb2 , u3 , rhs3 , LU, 2)

u = u1+u2+u3
ur = u1r + u2r + u3r
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for i in range (1 , 11 ) :
x1 [ : , i −1] = LU. s o l v e (np . a r ray ( xo [ : , i −1]) . f l a t t e n ( ) )

normFDi = np .max(np .max(np . abs ( x1 ) ) )
w a l l i s = (np . p i ∗(N−1) ∗ 0 . 5 ) ∗∗0 .5
condNo = w a l l i s ∗normFD∗normFDi

errLS =np .max( abs ( e r rLS i ) )
return u , x , y , condNo , r e s id , errLS , np .max(bandWidth) , timea2−

timea1 , timesp2−timesp1 , FD

#Solver customized f o r the Hyperbo l ic equa t ion s . Bas ica l l y , i n c l u de s
f l a g s f o r a d d i t i o n a l and exc luded

#boundary cond i t i on s . Add i t iona l boundary data in ’ h ’ .
def PDE2 HyperAssembleNSolve ( xi , yi , xb , yb , a , b , c , d , e , f , g , h ,

bexcl , baddl , l , s , MAGIC NUMBER, u r e f f l a g , u r e f ) :
c data = PDE2 HyperAssemble( xi , yi , xb , yb , a , b , c , d , e , f , g ,

h , bexcl , baddl , l , s , MAGICNUMBER, u r e f f l a g , u r e f )
return PDE2 HyperSolve ( xi , yi , xb , yb , a , b , c , d , e , f , g , h ,

bexcl , baddl , l , s , MAGIC NUMBER, u r e f f l a g , u r e f )

#I t e r a t i v e re f inement wi th two independent boundary s e t s
def i t e r r e f i ne FDHyper ( di , db1 , db2 , Fi , Fb1 , Fb2 , ni , nb1 , nb2 , x ,

b , LU, K) :
i f K == 0 :

r = np . z e r o s (b . shape )
#Al l o ca t e memory f o r the re s idue . Same as b
for k in range (K) :

r = b . copy ( )
for i in range ( d i ) :

t = Fi [ i ]∗ x
r [ 0 : n i ] = r [ 0 : n i ] − t . reshape ( t . s i z e , 1)

for j in range ( db1 ) :
t = Fb1 [ j ]∗ x
r [ n i : n i+nb1 ] = r [ n i : n i+nb1 ] − t . reshape ( t . s i z e , 1)

for j in range ( db2 ) :
t = Fb2 [ j ]∗ x
r [ n i+nb1 : ] = r [ n i+nb1 : ] − t . reshape ( t . s i z e , 1)

d = LU. s o l v e (np . a r ray ( r ) . f l a t t e n ( ) )
x = x + d

return x , r

#K step i t e r a t i v e re f inement f o r the FD case . I n vo l v e s some more
t r i c k s .

#Fi has d i component matrices , Fb has db components . x i s s p l i t [ n i ;
nb ]
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def i t e r r e f i n e FD ( di , db , Fi , Fb , ni , x , b , LU, K) :
i f K == 0 :

r = np . z e r o s (b . shape )
#Al l o ca t e memory f o r the re s idue . Same as b
for k in range (K) :

r = b . copy ( )
for i in range ( d i ) :

t = Fi [ i ]∗ x
r [ 0 : n i ] = r [ 0 : n i ] − t . reshape ( t . s i z e , 1)

for j in range (db ) :
t = Fb [ j ]∗ x
r [ n i : ] = r [ n i : ] − t . reshape ( t . s i z e , 1)

d = LU. s o l v e (np . a r ray ( r ) . f l a t t e n ( ) )
x = x + d

return x , r

#k s t ep i t e r a t i v e re f inement f o r a square system Ax=b
def i t e r r e f i n e (A, x , b , LU, k ) :

d = np . z e r o s ( x . shape )
for i in range (k ) :

r = b−A∗x
d = LU. s o l v e ( r . f l a t t e n ( ) )
x = x + d

return x , r

#Loca l l y i n t e r p o l a t e u , x , y at x1 , y1
def MSN loca l interp (x , y , x1 , y1 , l , s , u , n i ) :

xo = x1 ; yo = y1 ;
N = x . s i z e
N1 = x1 . s i z e
ind xo = range ( xo . s i z e )

a11 = np . z e r o s ( [ x1 . s i z e , 1 ] )
a12 = np . z e r o s ( [ x1 . s i z e , 1 ] )
a21 = np . z e r o s ( [ x1 . s i z e , 1 ] )
a22 = np . z e r o s ( [ x1 . s i z e , 1 ] )
a11 x = np . z e r o s ( [ x1 . s i z e , 1 ] )
a12 x = np . z e r o s ( [ x1 . s i z e , 1 ] )
a21 y = np . z e r o s ( [ x1 . s i z e , 1 ] )
a22 y = np . z e r o s ( [ x1 . s i z e , 1 ] )

for i i in range ( n i ) :
xL , yL , iL , f i = f ind nn2 (x , y , x [ i i ] , y [ i i ] , l , n i )
i f f i == True :

ax = x [ i i ,0 ]− l ; bx = x [ i i ,0 ]+ l ;
ay = y [ i i ,0 ]− l ; by = y [ i i ,0 ]+ l ;
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c2FI , cxxFI , cyyFI , cxFI , cyFI , cFI , errLSFI=compute MSN weight
(xL , yL , x [ i i ] , y [ i i ] , ax , bx , ay , by , s , a11 [ i i ] [ 0 ] , a12 [ i i
] [ 0 ] , a21 [ i i ] [ 0 ] , a22 [ i i ] [ 0 ] , a11 x [ i i ] [ 0 ] , a12 x [ i i ] [ 0 ] ,
a21 y [ i i ] [ 0 ] , a22 y [ i i ] [ 0 ] )

break

#Get the c o e f f i c i e n t s
c2mat , cxxmat , cxmat , cyymat , cymat , cmat , cimat , cjmat , errLSi ,

norm2 , normxx , normx , normyy , normy , normi , bandWidth =
get MSNWts nn2 Parallel (x , y , xo , yo , l , s , a11 , a12 , a21 , a22 , a11 x ,
a12 x , a21 y , a22 y , c2FI , cxxFI , cyyFI , cxFI , cyFI , cFI , errLSFI , n i
)

#Create the sparse matr ices
Imat = sps . coo matr ix ( ( np . a r ray ( cmat .T) [ 0 ] , (np . a r ray ( cimat .T)

[ 0 ] , np . a r ray ( cjmat .T) [ 0 ] ) ) , shape=(N1 , N) )
#Imat sho ld be an N1xN sparse matrix ; use i t to compute the

i n t e r p o l a t e d va lu e s .
u out = Imat∗u
return u out

def MSNFDMG PDE2Solve(param1 , param2) :
#Run at the coarser r e s o l u t i o n
xi1 , yi1 , xb1 , yb1 , a1 , b1 , c1 , d1 , e1 , f1 , g1 , l1 , s1 ,

MAGIC NUMBER, u r e f f l a g 1 , u r e f1 = param1
u1 , x1 , y1 , condNo1 , r e s id1 , errLS1 , bw1 , ta1 , ts1 , c data1 =

PDE2 Solve ( xi1 , yi1 , xb1 , yb1 , a1 , b1 , c1 , d1 , e1 , f1 , g1 , l1 ,
s1 , MAGIC NUMBER, u r e f f l a g 1 , u r e f1 )

#Run at the f i n e r r e s o l u t i o n and ob ta in the FD Matrix i t s e l f . This
does the i n t e r p o l a t i o n and re f inement

xi2 , yi2 , xb2 , yb2 , a2 , b2 , c2 , d2 , e2 , f2 , g2 , l2 , s2 ,
MAGIC NUMBER, u r e f f l a g 2 , u r e f2 = param2

u2 , x2 , y2 , u12 , u12r , condNo2 , r e s id2 , errLS2 , bw2 , ta2 , ts2 ,
c data2 = PDE2MG Solve ( xi2 , yi2 , xb2 , yb2 , a2 , b2 , c2 , d2 , e2
, f2 , g2 , l2 , s2 , u r e f f l a g 2 , ure f2 , x1 , y1 , u1 , l1 , s1 )

return u2 , x2 , y2 , u12 , u12r , condNo2 , r e s id2 , errLS2 , bw2 , ta2 , ts2 ,
c data2

#This i s the mu l t i s c a l e re f inement type o f PDE2 So l ve r .
def PDE2MG Solve ( xi , yi , xb , yb , a , b , c , d , e , f , g , l , s ,

MAGIC NUMBER, u r e f f l a g , ure f , x11 , y11 , u11 , l11 , s11 ) :
a11 = a [ 0 ] ; a12 = a [ 1 ] ; a21 = a [ 2 ] ; a22 = a [ 3 ] ;
a11 x = a [ 4 ] ; a12 x = a [ 5 ] ; a21 y = a [ 6 ] ; a22 y = a [ 7 ] ;
x = np . bmat( ’ x i ; xb ’ ) ; y= np . bmat( ’ y i ; yb ’ ) ;
xo = x ; yo = y ;
N = x . s i z e ;
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ind xo = range ( xo . s i z e )

#Orig ina l code base .
# #Get the c o e f f i c i e n t s
# #c2mat , cxxmat , cxmat , cyymat , cymat , cmat , cimat , cjmat ,

errLSi , norm2 , normxx , normx , normyy , normy , normi , bandWidth =
compute MSNWts nn2( x , y , xo , yo , ind xo , l , s , a11 , a12 , a21 , a22 , a11 x ,

a12 x , a21 y , a22 y )
# timea1 = tm . time ( )
# c2mat , cxxmat , cxmat , cyymat , cymat , cmat , cimat , cjmat , errLSi

, norm2 , normxx , normx , normyy , normy , normi , bandWidth =
get MSNWts nn2 Paral le l ( x , y , xo , yo , l , s , a11 , a12 , a21 , a22 , a11 x , a12 x
, a21 y , a22 y )

# timea2 = tm . time ( )

#From jsm ’ s code ver s ion :
#Find some fa r i n t e r i o r po in t and compute i t s we igh t s
#I f the neares t neighbourhood does not have a boundary po in t
#We c a l l i t a far−i n t e r i o r po in t .
ni = x i . s i z e
for i i in range ( n i ) :

xL , yL , iL , f i = f ind nn2 (x , y , xo [ i i ] , yo [ i i ] , l , n i )
i f f i == True :

ax = xo [ i i ,0 ]− l ; bx = xo [ i i ,0 ]+ l ;
ay = yo [ i i ,0 ]− l ; by = yo [ i i ,0 ]+ l ;
c2FI , cxxFI , cyyFI , cxFI , cyFI , cFI , errLSFI=compute MSN weight

(xL , yL , xo [ i i ] , yo [ i i ] , ax , bx , ay , by , s , a11 [ i i ] [ 0 ] , a12 [ i i
] [ 0 ] , a21 [ i i ] [ 0 ] , a22 [ i i ] [ 0 ] , a11 x [ i i ] [ 0 ] , a12 x [ i i ] [ 0 ] ,
a21 y [ i i ] [ 0 ] , a22 y [ i i ] [ 0 ] )

break

#Get the c o e f f i c i e n t s
timea1 = tm . time ( )
#c2mat , cxxmat , cxmat , cyymat , cymat , cmat , cimat , cjmat , errLSi ,

norm2 , normxx , normx , normyy , normy , normi , bandWidth =
compute MSNWts nn2( x , y , xo , yo , ind xo , l , s , a11 , a12 , a21 , a22 , a11 x
, a12 x , a21 y , a22 y , c2FI , cxxFI , cyyFI , cxFI , cyFI , cFI , errLSFI ,
ni )

c2mat , cxxmat , cxmat , cyymat , cymat , cmat , cimat , cjmat , errLSi ,
norm2 , normxx , normx , normyy , normy , normi , bandWidth =
get MSNWts nn2 Parallel (x , y , xo , yo , l , s , a11 , a12 , a21 , a22 , a11 x ,
a12 x , a21 y , a22 y , c2FI , cxxFI , cyyFI , cxFI , cyFI , cFI , errLSFI , n i
)

timea2 = tm . time ( )
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c d a t a i = ( c2mat , cxxmat , cxmat , cyymat , cymat , cmat , cimat ,
cjmat , errLSi , norm2 , normxx , normx , normyy , normy , normi ,
bandWidth)

c da ta o = (x , y , xo , yo , l , s , a11 , a12 , a21 , a22 , a11 x , a12 x , a21 y , a22 y
, c2FI , cxxFI , cyyFI , cxFI , cyFI , cFI , errLSFI , n i )

c data = ( c da ta i , c da ta o )

cdata fname = ”PDE2MG Solve cdata %s . cdata ” %(MAGIC NUMBER)
cda ta f o b j = gz . open ( cdata fname , ’wb ’ )
pkl . dump( c data , cda ta fob j , pkl .HIGHEST PROTOCOL)
cda ta f o b j . c l o s e

#Create the sparse matr ices
S2mat = sps . coo matr ix ( ( np . a r ray ( c2mat .T) [ 0 ] , ( np . a r ray ( cimat .T)

[ 0 ] , np . a r ray ( cjmat .T) [ 0 ] ) ) , shape=(N, N) )
Sxxmat = sps . coo matr ix ( ( np . a r ray ( cxxmat .T) [ 0 ] , ( np . a r ray ( cimat .T

) [ 0 ] , np . a r ray ( cjmat .T) [ 0 ] ) ) , shape=(N, N) )
Sxmat = sps . coo matr ix ( ( np . a r ray ( cxmat .T) [ 0 ] , ( np . a r ray ( cimat .T)

[ 0 ] , np . a r ray ( cjmat .T) [ 0 ] ) ) , shape=(N, N) )
Syymat = sps . coo matr ix ( ( np . a r ray ( cyymat .T) [ 0 ] , ( np . a r ray ( cimat .T

) [ 0 ] , np . a r ray ( cjmat .T) [ 0 ] ) ) , shape=(N, N) )
Symat = sps . coo matr ix ( ( np . a r ray ( cymat .T) [ 0 ] , ( np . a r ray ( cimat .T)

[ 0 ] , np . a r ray ( cjmat .T) [ 0 ] ) ) , shape=(N, N) )
#se t up the d iagona l matr ices corresponding to b , c , d and e
b1 = b [ 0 ] ; b2 = b [ 1 ] ;
e1 = e [ 0 ] ; e2 = e [ 1 ] ;

b1Diag = sps . spd iag s ( b1 . f l a t t e n ( ) ,0 ,N,N) ;
b2Diag = sps . spd iag s ( b2 . f l a t t e n ( ) ,0 ,N,N) ;
e1Diag = sps . spd iag s ( e1 . f l a t t e n ( ) ,0 ,N,N) ;
e2Diag = sps . spd iag s ( e2 . f l a t t e n ( ) ,0 ,N,N) ;
cDiag = sps . spd iag s ( c . f l a t t e n ( ) ,0 ,N,N) ;
dDiag = sps . spd iag s (d . f l a t t e n ( ) ,0 ,N,N) ;

#Set up the FD Matrix .
FDi = S2mat + b1Diag∗Sxmat + b2Diag∗Symat + cDiag
FDb = e1Diag∗Sxmat + e2Diag∗Symat + dDiag

#Now e x t r a c t equa t ion s from FDi corresponding to xi , y i and those
from FDb corresponding

#to xb , yb ‘
FDi = FDi [ 0 : x i . s i z e ] [ : ] ;
FDb = FDb[ x i . s i z e : ] [ : ] ;
FD = sps . bmat ( [ [ FDi ] , [ FDb ] ] ) ;
FD = FD. to c s c ( ) ;

#The FD Matrix i s se tup . Need to ba lance i t .
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r ow s c l i = (norm2 + np . abs ( b1 ) ∗normx+np . abs ( b2 ) ∗normy+np . abs ( c ) )
∗∗(−1.0)

r ow sc lb = (np . abs ( e1 ) ∗normx+np . abs ( e2 ) ∗normy+np . abs (d) ) ∗∗(−1.0)
r ow s c l i = r ow s c l i [ 0 : x i . s i z e ] / x i . s i z e ∗ ∗ 0 . 5 ;
r ow sc lb = row sc lb [ x i . s i z e : ] / xb . s i z e ∗ ∗ 0 . 5 ;

r ow s c l = np . bmat( ’ r ow s c l i ; r ow sc lb ’ )
r ow sca l e = sps . spd iag s (np . a r ray ( r ow s c l ) . f l a t t e n ( ) ,0 ,N,N, ” c s r ” )

;

#Not column s c a l i n g ye t .RHS s c a l i n g
f = f [ 0 : x i . s i z e ] ; g = g [ x i . s i z e : ] ;

z i = np . z e r o s ( [ xb . s i z e , 1 ] )
rhs1 = np . bmat( ’ f ; z i ’ ) ;
zb = np . z e r o s ( [ x i . s i z e , 1 ] )
rhs2 = np . bmat( ’ zb ; g ’ ) ;

i f u r e f f l a g != −1:
f g r e f = FD∗ u r e f
r e s i d s = np . abs ( f g r e f −rhs1−rhs2 )
r e s i d = np .max( r e s i d s ) /np .max(np . abs ( rhs1+rhs2 ) )

else :
r e s i d = 0 ;

#Row s c a l e the FD Matrix
FD = row sca l e ∗FD;

xo = np . mat(np . random . rand (N, 10) )
#Unit normal ize xo
for i in range (10) :

xo [ : , i ] = xo [ : , i ] / np .max(np . abs ( xo [ : , i ] ) )
#Compute the RHS
bo = FD∗xo
#compute the maximum in f norm
normFD = np .max(np .max(np . abs ( bo ) ) )

rhs1 = row sca l e ∗ rhs1
rhs2 = row sca l e ∗ rhs2

x1 = np . z e r o s ( [N, 1 0 ] )
#Solve the sparse system
timesp1 = tm . time ( )
LU = sp la . d so lv e . sp lu (FD)
#Apply the f a c t o r s to one RHS at a time .
u1 = LU. s o l v e (np . a r ray ( rhs1 ) . f l a t t e n ( ) )
u2 = LU. s o l v e (np . a r ray ( rhs2 ) . f l a t t e n ( ) )
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timesp2 = tm . time ( )

Fim = ( row sca l e [ 0 : x i . s i z e , : ] ∗ S2mat , r ow sca l e [ 0 : x i . s i z e , : ] ∗
b1Diag∗Sxmat , r ow sca l e [ 0 : x i . s i z e , : ] ∗ b2Diag∗Symat , r ow sca l e
[ 0 : x i . s i z e , : ] ∗ cDiag )

Fbm = ( row sca l e [ x i . s i z e : , : ] ∗ e1Diag ∗Sxmat , r ow sca l e [ x i . s i z e
: , : ] ∗ e2Diag∗Symat , r ow sca l e [ x i . s i z e : , : ] ∗ dDiag )

u1r , r1 = i t e r r e f i n e FD (4 , 3 , Fim , Fbm, x i . s i z e , u1 , rhs1 , LU,
2)

u2r , r2 = i t e r r e f i n e FD (4 , 3 , Fim , Fbm, x i . s i z e , u2 , rhs2 , LU,
2)

u = u1+u2
ur = u1r + u2r

for i in range (1 , 11 ) :
x1 [ : , i −1] = LU. s o l v e (np . a r ray ( xo [ : , i −1]) . f l a t t e n ( ) )

normFDi = np .max(np .max(np . abs ( x1 ) ) )
w a l l i s = (np . p i ∗(N−1) ∗ 0 . 5 ) ∗∗0 .5
condNo = w a l l i s ∗normFD∗normFDi

errLS =np .max( abs ( e r rLS i ) )

#The Mu l t i s c a l e re f inmenet par t beg in s here . F i r s t i n t e r p o l a t e
the lower r e s o l u t i o n

#s o l u t i o n to h igher r e s o l u t i o n .
u12 = MSN loca l interp ( x11 , y11 , x , y , l11 , s11 , u11 )

u12r , r12 = i t e r r e f i n e FD (4 , 3 , Fim , Fbm, x i . s i z e , u12 , rhs1+
rhs2 , LU, 0)

return ur , x , y , u12r , u12 , condNo , r e s id , errLS , np .max(bandWidth) ,
timea2−timea1 , timesp2−timesp1

Listing B.2: Exterior Laplace Wrapper
import numpy as np
import time as tm
import s c ipy as sp
import s c ipy . spa r s e as sps
import s c ipy . spa r s e . l i n a l g as sp la
import numpy . l i n a l g as l a
import pylab as p l
import sympy as sym
import p i c k l e as pkl
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from IPython . ke rne l import c l i e n t
from ctypes import ∗
mkl = c d l l . LoadLibrary ( ” c lapack . so ” )
dgesvd = mkl . dgesvd
from MSNFD CORE Split import ∗
#from enthought . mayavi import mlab

t0=0.0
GRID FILE = True
#GRID FILE = False
def e v a l c o e f f s e x tP a r (x , y , f f , gf , a11f , a12f , a21f , a22f , a11 xf ,

a12 xf , a21 yf , a22 yf , b1f , b2f , c f , df , e1 f , e2 f , uf , uxf , uyf )
:
mec = c l i e n t . g e t mu l t i e n g i n e c l i e n t ( )
mec . execute ( ’ import numpy as np ’ )
mec . execute ( ’ from numpy import ∗ ’ )
mec . push func t i on ( d i c t ( e v a l c o e f f s e x t = e v a l c o e f f s e x t ) )

mec . push func t i on ( d i c t ( f f=f f , g f=gf , a11 f=a11f , a12 f=a12f , a21 f=
a21f , a22 f=a22f , a 11 x f=a11 xf , a12 x f=a12 xf , a21 y f=a21 yf ,
a22 y f=a22 yf , b1f=b1f , b2f=b2f , c f=cf , df=df , e1 f=e1f , e2 f=

e2f , uf=uf , uxf=uxf , uyf=uyf ) )

mec . s c a t t e r ( ’ x ’ , x ) ; mec . s c a t t e r ( ’ y ’ , y ) ;

mec . execute ( ’ a11 , a12 , a21 , a22 , a11 x , a12 x , a21 y , a22 y , b1 , b2 ,
c , d , e1 , e2 , f , g , u r e f = e v a l c o e f f s e x t (x , y , f f , gf , a11f ,
a12f , a21f , a22f , a11 xf , a12 xf , a21 yf , a22 yf , b1f , b2f ,

c f , df , e1 f , e2 f , uf , uxf , uyf ) ’ )

a11 = mec . gather ( ’ a11 ’ )
a12 = mec . gather ( ’ a12 ’ )
a21 = mec . gather ( ’ a21 ’ )
a22 = mec . gather ( ’ a22 ’ )
a11 x = mec . gather ( ’ a11 x ’ )
a12 x = mec . gather ( ’ a12 x ’ )
a21 y = mec . gather ( ’ a21 y ’ )
a22 y = mec . gather ( ’ a22 y ’ )
b1 = mec . gather ( ’ b1 ’ )
b2 = mec . gather ( ’ b2 ’ )
c = mec . gather ( ’ c ’ )
d = mec . gather ( ’d ’ )
e1 = mec . gather ( ’ e1 ’ )
e2 = mec . gather ( ’ e2 ’ )
f = mec . gather ( ’ f ’ )
g = mec . gather ( ’ g ’ )
u r e f = mec . gather ( ’ u r e f ’ )
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a = ( a11 , a12 , a21 , a22 , a11 x , a12 x , a21 y , a22 y ) ;
b = (b1 , b2 ) ; e = ( e1 , e2 ) ;

return a , b , c , d , e , f , g , u r e f

def e v a l c o e f f s e x t (x , y , f f , gf , a11f , a12f , a21f , a22f , a11 xf ,
a12 xf , a21 yf , a22 yf , b1f , b2f , c f , df , e1 f , e2 f , uf , uxf , uyf )
:
a11 = np . z e r o s ( [ x . s i z e , 1 ] ) ;
a12 = np . z e r o s ( [ x . s i z e , 1 ] ) ;
a21 = np . z e r o s ( [ x . s i z e , 1 ] ) ;
a22 = np . z e r o s ( [ x . s i z e , 1 ] ) ;
a11 x = np . z e r o s ( [ x . s i z e , 1 ] ) ;
a12 x = np . z e r o s ( [ x . s i z e , 1 ] ) ;
a21 y = np . z e r o s ( [ x . s i z e , 1 ] ) ;
a22 y = np . z e r o s ( [ x . s i z e , 1 ] ) ;
b1 = np . z e r o s ( [ x . s i z e , 1 ] ) ;
b2 = np . z e r o s ( [ x . s i z e , 1 ] ) ;
c = np . z e r o s ( [ x . s i z e , 1 ] ) ;
d = np . z e r o s ( [ x . s i z e , 1 ] ) ;
e1 = np . z e r o s ( [ x . s i z e , 1 ] ) ;
e2 = np . z e r o s ( [ x . s i z e , 1 ] ) ;
f = np . z e r o s ( [ x . s i z e , 1 ] ) ;
g = np . z e r o s ( [ x . s i z e , 1 ] ) ;
u r e f = np . z e r o s ( [ x . s i z e , 1 ] ) ;

# a11 = a11f (np . array ( x ) , np . array ( y ) )
# a12 = a12f (np . array ( x ) , np . array ( y ) )
# a21 = a21f (np . array ( x ) , np . array ( y ) )
# a22 = a22f (np . array ( x ) , np . array ( y ) )
# a11 x = a11 x f ( np . array ( x ) , np . array ( y ) )
# a12 x = a12 x f ( np . array ( x ) , np . array ( y ) )
# a21 y = a21 y f (np . array ( x ) , np . array ( y ) )
# a22 y = a22 y f (np . array ( x ) , np . array ( y ) )
# b1 = b1 f (np . array ( x ) , np . array ( y ) )
# b2 = b2 f (np . array ( x ) , np . array ( y ) )
# c = c f (np . array ( x ) , np . array ( y ) )
# f = f f (np . array ( x ) , np . array ( y ) )

for i in range (x . s i z e ) :
a11 [ i ] = a11 f ( x [ i ] , y [ i ] )
a12 [ i ] = a12 f ( x [ i ] , y [ i ] )
a21 [ i ] = a21 f ( x [ i ] , y [ i ] )
a22 [ i ] = a22 f ( x [ i ] , y [ i ] )
a11 x [ i ] = a11 x f ( x [ i ] , y [ i ] )
a12 x [ i ] = a12 x f ( x [ i ] , y [ i ] )
a21 y [ i ] = a21 y f ( x [ i ] , y [ i ] )

223



LISTINGS

a22 y [ i ] = a22 y f ( x [ i ] , y [ i ] )
b1 [ i ] = b1f ( x [ i ] , y [ i ] )
b2 [ i ] = b2f ( x [ i ] , y [ i ] )
c [ i ] = c f ( x [ i ] , y [ i ] )
f [ i ] = f f ( x [ i ] , y [ i ] )
u r e f [ i ] = uf ( x [ i ] , y [ i ] )
i f np . a l l c l o s e ( x [ i ] , np . p i /2 , r t o l=1e−4) :

e1 [ i ] = 0 .0
e2 [ i ] = 0 .0
d [ i ] = 1 .0
g [ i ] = 0 . 0 ;#uxf ( x [ i ] , y [ i ] )#Should be zero a c t u a l l y ; some

error here bu t t h a t s what we ge t .
e l i f np . a l l c l o s e ( x [ i ] , −np . p i /2 , r t o l=1e−4) :

e1 [ i ] = 0 .0
e2 [ i ] = 0 .0
d [ i ] = 1 .0
g [ i ] = 0 . 0 ;#−ux f ( x [ i ] , y [ i ] )#Should be zero a c t u a l l y ; some

error here bu t t h a t s what we ge t .
e l i f np . a l l c l o s e ( y [ i ] , np . p i /2 , r t o l=1e−4) :

e1 [ i ] = 0 .0
e2 [ i ] = 0 .0
d [ i ] = 1 .0
g [ i ] = 0 . 0 ;#uyf ( x [ i ] , y [ i ] )#Should be zero a c t u a l l y ; some

error here bu t t h a t s what we ge t .
e l i f np . a l l c l o s e ( y [ i ] , −np . p i /2 , r t o l=1e−4) :

e1 [ i ] = 0 .0
e2 [ i ] = 0 .0
d [ i ] = 1 .0
g [ i ] = 0 . 0 ;#−uyf ( x [ i ] , y [ i ] )#Should be zero a c t u a l l y ; some

error here bu t t h a t s what we ge t .
else :

e1 [ i ] = e1 f ( x [ i ] , y [ i ] )
e2 [ i ] = e2 f ( x [ i ] , y [ i ] )
d [ i ] = df ( x [ i ] , y [ i ] )
g [ i ] = g f ( x [ i ] , y [ i ] )

return a11 , a12 , a21 , a22 , a11 x , a12 x , a21 y , a22 y , b1 , b2 , c , d ,
e1 , e2 , f , g , u r e f

#Test the PDE So lver f o r an e x t e r i o r problem
def PDE ExtTest (Nx ,Ny, p , L , asmbFlag , s l vF lag ) :

#MAGIC=” ExtLaplaceDum Nx%dNy%dp%dL%d” % (Nx ,Ny , p , L)
#MAGIC=” ExtLaplaceCyl Nx%dNy%dp%dL%d” % (Nx ,Ny , p , L)
MAGIC=” ExtLaplaceTRDrop Nx%dNy%dp%dL%d” % (Nx ,Ny , p , L)
GRID =” GridTRDropAct Nx%dNy%dp%d” % (Nx, Ny, p)
##############################TIMING

####################################
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print ” Sta r t ing the PDE ExtTest:% f ” % (tm . time ( ) − t0 )
##############################TIMING

####################################

x , y = sym . symbols ( ’ xy ’ , commutative=True )
#u = sym . s in ((10∗∗9) ∗2∗3.14∗ x+(10∗∗6) ∗2∗3.14∗ y )
#u = sym . cos (10.0∗ sym . tan ( x )+10.0∗sym . tan ( y ) )/(1+sym . tan ( x )∗∗2+

sym . tan ( y ) ∗∗2)
u = (sym . tan (x )+sym . tan (y ) ) /(sym . tan (x )∗∗2+sym . tan (y ) ∗∗2)
#u = (sym . tan ( x )∗sym . l o g ( ( sym . tan ( x ) ) ∗∗2 + (sym . tan ( y ) ) ∗∗2)+sym .

tan ( y )∗sym . atan (sym . tan ( y )/sym . tan ( x ) ) ) /(( sym . tan ( x ) ) ∗∗2 + (
sym . tan ( y ) ) ∗∗2) ∗∗2

#u = 1.0
#u = sym . cos ( ( sym . tan ( x )∗∗2+sym . tan ( y ) ∗∗2) ∗∗ (0 .5) ) /(sym . tan ( x )

∗∗2+sym . tan ( y ) ∗∗2) ∗∗ (0 .5)
#u = 1/(1+1000∗x∗∗2+1000∗y ∗∗2)
#u = 1/(1+1000∗( x∗∗2+y−0.3) ∗∗2) + 1/(1+1000∗( x+y−0.4) ∗∗2)+

1./(1+1000∗( x+y∗∗2−0.5) ∗∗2) + 1./(1+1000∗( x∗∗2+y∗∗2−0.25)∗∗2)
#############################################################
#EQUATION SETUP HERE:
#############################################################
#Standard he lmo l t z equat ion
#############################################################
a11 = sym . cos (x ) ∗∗4 ; a12 = 0 ; a21 = 0 ; a22 = sym . cos (y ) ∗∗4 ;

# a11 x = sym . d i f f ( a11 , ’ x ’) ; a12 x = sym . d i f f ( a12 , ’ x ’) ;
# a21 y = sym . d i f f ( a21 , ’ y ’) ; a22 y = sym . d i f f ( a22 , ’ y ’) ;

a11 x = 0 ; a12 x = 0 ;
a21 y = 0 ; a22 y = 0 ;
b1 = −2∗(sym . cos ( x ) ∗∗3) ∗sym . s i n (x ) ; b2 = −2∗(sym . cos ( y ) ∗∗3) ∗sym .

s i n (y ) ;
c = −1.0/(1.0+100∗x∗∗2+100∗y∗∗2) ;
d = 1 ;
e1 = 0 ; e2 = 0 ;
##############################################################

# f , g = varPDE2 Evalfg ( a11 , a12 , a21 , a22 , b1 , b2 , c , d , e1 , e2 , u)
#f = a11∗sym . d i f f ( sym . d i f f (u , ’ x ’ ) , ’ x ’ ) + a22∗sym . d i f f ( sym . d i f f (u

, ’ y ’) , ’ y ’ ) + b1∗sym . d i f f (u , ’ x ’ ) + b2∗sym . d i f f (u , ’ y ’) + c∗u
f = c∗u ;
#g = e1∗sym . d i f f (u , ’ x ’ ) + e2∗sym . d i f f (u , ’ y ’) + d∗u
g=u
ux = sym . d i f f (u , ’ x ’ ) ; uy = sym . d i f f (u , ’ y ’ ) ;
##############################################################
##############################TIMING

####################################
print ”Done with Symbolic s t u f f :% f ” % (tm . time ( ) − t0 )
##############################TIMING

####################################
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#Now f and g are a v a i l a b l e s ymbo l i c a l l y , need to e va l u a t e them
f f = sym . lambdify ( ( x , y ) , f )
g f = sym . lambdify ( ( x , y ) , g )
a11 f = sym . lambdify ( ( x , y ) , a11 )
a12 f = sym . lambdify ( ( x , y ) , a12 )
a21 f = sym . lambdify ( ( x , y ) , a21 )
a22 f = sym . lambdify ( ( x , y ) , a22 )
a11 x f = sym . lambdify ( ( x , y ) , a11 x )
a12 x f = sym . lambdify ( ( x , y ) , a12 x )
a21 y f = sym . lambdify ( ( x , y ) , a21 y )
a22 y f = sym . lambdify ( ( x , y ) , a22 y )
b1f = sym . lambdify ( ( x , y ) , b1 )
b2f = sym . lambdify ( ( x , y ) , b2 )
c f = sym . lambdify ( ( x , y ) , c )
df = sym . lambdify ( ( x , y ) , d )
e1 f = sym . lambdify ( ( x , y ) , e1 )
e2 f = sym . lambdify ( ( x , y ) , e2 )
uf = sym . lambdify ( ( x , y ) , u )
uxf = sym . lambdify ( ( x , y ) , ux )
uyf = sym . lambdify ( ( x , y ) , uy )
##############################TIMING

####################################
print ”Done with lamdi fy ing :% f ” % (tm . time ( ) − t0 )
##############################TIMING

####################################
##############################################################
#GEOMETRY SETUP HERE
##############################################################
#SQUARE REGION
##############################################################
xo = 0 . ; yo=0.#Center o f the square
width = 1 . 0 ; he ight = 1 . 0 ;

i f GRID FILE==False :
xi1 , yi1 , xb1 , yb1 = gene r a t e g r i d (Nx , Ny, xo , yo , np . pi , np . pi ,

’ r e gu l a r ’ ,p ) ;
xi2 , yi2 , xb2 , yb2 = gene r a t e g r i d (Nx/2 , Ny/2 , xo , yo , width ,

height , ’ r e gu l a r ’ , 2 0 0 . 0 ) ;
else :

gr idfname = ”%s . gz” %(GRID)
fGrid=gz . open ( gridfname , ” rb” ) ;
( xi , yi , xb1 , xb2 , yb1 , yb2 ) = pkl . load ( fGrid )
fGrid . c l o s e ( )

##############################TIMING
####################################

print ”Done with Input g r id g ene ra t i on :% f ” % (tm . time ( ) − t0 )
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##############################TIMING
####################################

i f GRID FILE==False :
po l y i n = np . bmat( ’ xb2 yb2 ’ ) ;
v = np . z e r o s ( x i1 . shape ) == 1 . 0 ;
for i in range ( x i1 . s i z e ) :

v [ i ] = po i n t i n po l y ( x i1 [ i ] , y i1 [ i ] , p o l y i n ) ;

##############################TIMING
####################################

print ”Done with Input po int in polygon:% f ” % (tm . time ( ) − t0 )
##############################TIMING

####################################

i f GRID FILE==False :
x s i = xi1 [ ˜ v ] ; y s i = yi1 [ ˜ v ] ;
x s i = x s i . reshape ( x s i . s i z e , 1)
y s i = y s i . reshape ( y s i . s i z e , 1)
thr = np . p i ∗0 .75/(2∗Nx)
xi , y i = cleanup boundary (xb2 , yb2 , xs i , y s i , thr )
gr idfname = ”%s . gz” %(GRID)
fGrid=gz . open ( gridfname , ”wb” ) ;
pkl . dump( ( xi , yi , xb1 , xb2 , yb1 , yb2 ) , fGr id )
fGrid . c l o s e ( )

xb = np . bmat( ’ xb1 ; xb2 ’ ) ; yb = np . bmat( ’ yb1 ; yb2 ’ ) ;
x = np . bmat( ’ x i ; xb ’ ) ; y = np . bmat( ’ y i ; yb ’ ) ;

# p l . f i g u r e ( )
# p l . s c a t t e r (np . array ( x i ) . f l a t t e n ( ) ,np . array ( y i ) . f l a t t e n ( ) ) ;
# p l . s c a t t e r (np . array ( xb ) . f l a t t e n ( ) ,np . array ( yb ) . f l a t t e n ( ) , c=’g ’)

;

##############################TIMING
####################################

print ”Done with input cleanup boundary:% f ” % (tm . time ( ) − t0 )
##############################TIMING

####################################

#a , b , c , d , e , f , g , u re f = e v a l c o e f f s e x t Pa r (x , y , f f , g f , a11f , a12f ,
a21f , a22f , a11 x f , a12 x f , a21 yf , a22 yf , b1f , b2f , cf , df

, e1f , e2f , uf , uxf , uy f )
a11 , a12 , a21 , a22 , a11 x , a12 x , a21 y , a22 y , b1 , b2 , c , d , e1 , e2 ,

f , g , u r e f = e v a l c o e f f s e x t (x , y , f f , gf , a11f , a12f , a21f ,
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a22f , a11 xf , a12 xf , a21 yf , a22 yf , b1f , b2f , c f , df , e1 f ,
e2 f , uf , uxf , uyf )

a = ( a11 , a12 , a21 , a22 , a11 x , a12 x , a21 y , a22 y ) ;
b = (b1 , b2 ) ; e = ( e1 , e2 ) ;

# mlab . f i g u r e ( )
# pt s = mlab . po in t s3d (np . array ( x ) . f l a t t e n ( ) , np . array ( y ) . f l a t t e n ( )

, np . array ( u re f ) . f l a t t e n ( ) , scale mode=’none ’ , s c a l e f a c t o r =0.01)
# mesh =mlab . p i p e l i n e . delaunay2d ( p t s )
# su r f =mlab . p i p e l i n e . su r face (mesh )

##############################TIMING
####################################

print ”Done with Eval c o e f f s :% f ” % (tm . time ( ) − t0 )
##############################TIMING

####################################

#Set up l , s
l = L/(x . s i z e ) ∗∗0 .5
s = 15

i f asmbFlag :
PDE2 Assemble ( xi , yi , xb , yb , a , b , c , d , e , f , g , l , s ,

MAGIC, 0 , u r e f )

##############################TIMING
####################################

print ”Done with Assemble:% f ” % (tm . time ( ) − t0 )
##############################TIMING

####################################

i f s l vF lag :
u MSN, x , y , condNo , res idue , errLS , maxBand , ta , ts , r e s i d s

= PDE2 Solve ( x i . s i z e , xb . s i z e , a , b , c , d , e , f , g , l , s
, MAGIC, 0 , u r e f )

e r r = np . abs (u MSN . reshape (u MSN. s i z e , 1 )−u r e f )
errMaxrel = np .max( e r r ) /np .max( u r e f )

else :
( errMaxrel , condNo , res idue , errLS , maxBand , u MSN, x , y , ta ,

t s ) = (−1 , −1, −1, −1, −1, −1, −1, −1,−1,−1)

##############################TIMING
####################################

print ”Done with So lve :% f ” % (tm . time ( ) − t0 )
##############################TIMING

####################################
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# p l . f i g u r e ( )
# p l . s c a t t e r (np . array ( x ) . f l a t t e n ( ) ,np . array ( y ) . f l a t t e n ( ) ) ;

return errMaxrel , condNo , res idue , errLS , maxBand , u MSN, x , y ,
ta , t s

def p o i n t p o l y p a r a l l e l ( xe i1 , ye i1 , po l y i n ) :
mec = c l i e n t . g e t mu l t i e n g i n e c l i e n t ( )
mec . execute ( ’ import numpy as np ’ )
mec . execute ( ’ from numpy import ∗ ’ )
mec . push ( d i c t ( po l y i n=po l y i n ) )
mec . push func t i on ( d i c t ( po i n t i n po l y=po in t i n po l y ) )
mec . push func t i on ( d i c t ( po i n t po l y un i t=po in t po l y un i t ) )
mec . s c a t t e r ( ’ x e i 1 ’ , x e i 1 ) ; mec . s c a t t e r ( ’ y e i 1 ’ , y e i 1 ) ;
mec . execute ( ’ v=po in t po l y un i t ( xe i1 , ye i1 , po l y i n ) ’ )
v = mec . gather ( ’ v ’ )
return v

def po in t po l y un i t ( xe i1 , ye i1 , po l y i n ) :
v = np . z e r o s ( xe i 1 . shape ) == 1 . 0 ;
for i in range ( xe i 1 . s i z e ) :

v [ i ] = po i n t i n po l y ( xe i 1 [ i ] , y e i 1 [ i ] , p o l y i n ) ;
return v

def PDEExt( asmbFlag , s l vF lag ) :
global t0
t0 = tm . time ( )
print ”Beginning ! ! . . . ” ; print tm . ctime ( ) ;
NList = np . ar ray ( [ 3 0 , 1 0 0 ] )#,200 ,500])
pLis t = np . ar ray ( [ 2 . 0 ] )
L l i s t = np . ar ray ( [ 6 . 0 ] )
errMaxrel = np . z e r o s ( [ pLis t . s i z e , NList . s i z e , L l i s t . s i z e ] )
condNo = np . z e r o s ( [ pLis t . s i z e , NList . s i z e , L l i s t . s i z e ] )
r e s i du e = np . z e r o s ( [ pLis t . s i z e , NList . s i z e , L l i s t . s i z e ] )
errLS = np . z e r o s ( [ pLis t . s i z e , NList . s i z e , L l i s t . s i z e ] )
bandwidth = np . z e r o s ( [ pLis t . s i z e , NList . s i z e , L l i s t . s i z e ] )
t imes = np . z e r o s ( [ pLis t . s i z e , NList . s i z e , L l i s t . s i z e ] )
timea = np . z e r o s ( [ pLis t . s i z e , NList . s i z e , L l i s t . s i z e ] )
timesp = np . z e r o s ( [ pLis t . s i z e , NList . s i z e , L l i s t . s i z e ] )
print ”Maximum Relative Error” , ”Condition Number” , ”Residue ” , ”

Error in LS System” , ”Bandwidth” , ” Wal l t ime in Seconds ”
for i t e r in range ( pLis t . s i z e ) :

for kte r in range ( L l i s t . s i z e ) :
for j t e r in range ( NList . s i z e ) :

PDE2Dump = open ( ’ PDEExtTrDrop Jun11 varcoeff1 . data ’ , ’
a ’ )

t1 = tm . time ( )
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errMaxrel [ i t e r , j t e r , k t e r ] , condNo [ i t e r , j t e r , k t e r ] ,
r e s i du e [ i t e r , j t e r , k t e r ] , errLS [ i t e r , j t e r , k t e r ] ,
bandwidth [ i t e r , j t e r , k t e r ] , uMSN, x , y , ta , t s =
PDE ExtTest ( NList [ j t e r ] , NList [ j t e r ] , pL i s t [ i t e r

] , L l i s t [ k t e r ] , asmbFlag , s l vF lag )
t2 = tm . time ( )
t imes [ i t e r , j t e r , k t e r ] = t2−t1
timea [ i t e r , j t e r , k t e r ] = ta
timesp [ i t e r , j t e r , k t e r ] = t s
print NList [ j t e r ] , L l i s t [ k t e r ] , pL i s t [ i t e r ] ,

errMaxrel [ i t e r , j t e r , k t e r ] , condNo [ i t e r , j t e r , k t e r ] ,
r e s i du e [ i t e r , j t e r , k t e r ] , errLS [ i t e r , j t e r , k t e r ] ,
bandwidth [ i t e r , j t e r , k t e r ] , t imes [ i t e r , j t e r ,
k t e r ] , ta , t s

i f s l vF lag :
PDE2Obj = ( NList [ j t e r ] , pL i s t [ i t e r ] , L l i s t [

k t e r ] , uMSN, x , y , errMaxrel [ i t e r , j t e r ,
k t e r ] , condNo [ i t e r , j t e r , k t e r ] , r e s i du e [ i t e r
, j t e r , k t e r ] , errLS [ i t e r , j t e r , k t e r ] ,
bandwidth [ i t e r , j t e r , k t e r ] , t imes [ i t e r ,
j t e r , k t e r ] , ta , t s )

pkl . dump(PDE2Obj , PDE2Dump)
PDE2Dump. c l o s e

return errMaxrel , condNo , res idue , errLS , bandwidth , times , timea
, timesp

#PDEExt(True , False )
PDEExt( False , True )

Listing B.3: Biharmonic Wrapper
import numpy as np
import time as tm
import s c ipy as sp
import s c ipy . spa r s e as sps
import s c ipy . spa r s e . l i n a l g as sp la
import numpy . l i n a l g as l a
import pylab as p l
import sympy as sym
import p i c k l e as pkl
from IPython . ke rne l import c l i e n t
from ctypes import ∗
mkl = c d l l . LoadLibrary ( ” c lapack . so ” )
dgesvd = mkl . dgesvd
from MSNFD CORE BiHarmonicSP import ∗

t0=0.0
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def e v a l c o e f f s e x tP a r (x , y , xGb , yGb , ax , bx , ay , by , f f , gf , a11f ,
a12f , a21f , a22f , a11 xf , a12 xf , a21 yf , a22 yf , b1f , b2f , c f ,
d1f , d2f , e1 f , e2 f , e3 f , e4 f , gGf , h1f , h2f , uf , uxf , uyf ) :
mec = c l i e n t . g e t mu l t i e n g i n e c l i e n t ( )
mec . execute ( ’ import numpy as np ’ )
mec . execute ( ’ import s c ipy . s p e c i a l as spsp ’ )
mec . execute ( ’ from numpy import ∗ ’ )
mec . push func t i on ( d i c t ( e v a l c o e f f s e x t = e v a l c o e f f s e x t ) )

mec . push func t i on ( d i c t ( f f=f f , g f=gf , a11 f=a11f , a12 f=a12f , a21 f=
a21f , a22 f=a22f , a 11 x f=a11 xf , a12 x f=a12 xf , a21 y f=a21 yf ,
a22 y f=a22 yf , b1f=b1f , b2f=b2f , c f=cf , d1f=d1f , d2f=d2f ,

e1 f=e1f , e2 f=e2f , e3 f=e3f , e4 f=e4f , gGf=gGf , h1f=h1f , h2f=h2f ,
uf=uf , uxf=uxf , uyf=uyf ) )

mec . s c a t t e r ( ’ x ’ , x ) ; mec . s c a t t e r ( ’ y ’ , y ) ;
mec . s c a t t e r ( ’xGb ’ ,xGb) ; mec . s c a t t e r ( ’yGb ’ ,yGb) ;
mec . push ( d i c t ( ax=ax , bx=bx , ay=ay , by=by ) )

mec . execute ( ’ a11 , a12 , a21 , a22 , a11 x , a12 x , a21 y , a22 y , b1 , b2 ,
c , d1 , d2 , e1 , e2 , e3 , e4 , f , g , gG, h1 , h2 , u r e f =

e v a l c o e f f s e x t (x , y , xGb , yGb, ax , bx , ay , by , f f , gf , a11f ,
a12f , a21f , a22f , a11 xf , a12 xf , a21 yf , a22 yf , b1f , b2f ,
c f , d1f , d2f , e1 f , e2 f , e3 f , e4 f , gGf , h1f , h2f , uf , uxf , uyf
) ’ )

a11 = mec . gather ( ’ a11 ’ )
a12 = mec . gather ( ’ a12 ’ )
a21 = mec . gather ( ’ a21 ’ )
a22 = mec . gather ( ’ a22 ’ )
a11 x = mec . gather ( ’ a11 x ’ )
a12 x = mec . gather ( ’ a12 x ’ )
a21 y = mec . gather ( ’ a21 y ’ )
a22 y = mec . gather ( ’ a22 y ’ )
b1 = mec . gather ( ’ b1 ’ )
b2 = mec . gather ( ’ b2 ’ )
c = mec . gather ( ’ c ’ )
d1 = mec . gather ( ’ d1 ’ )
d2 = mec . gather ( ’ d2 ’ )
e1 = mec . gather ( ’ e1 ’ )
e2 = mec . gather ( ’ e2 ’ )
e3 = mec . gather ( ’ e3 ’ )
e4 = mec . gather ( ’ e4 ’ )
f = mec . gather ( ’ f ’ )
g = mec . gather ( ’ g ’ )
gG = mec . gather ( ’gG ’ )
h1 = mec . gather ( ’ h1 ’ )
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h2 = mec . gather ( ’ h2 ’ )
u r e f = mec . gather ( ’ u r e f ’ )

a = ( a11 , a12 , a21 , a22 , a11 x , a12 x , a21 y , a22 y ) ;
b = (b1 , b2 ) ; e = ( e1 , e2 , e3 , e4 ) ;
h = (h1 , h2 ) ;
d = (d1 , d2 ) ;

return a , b , c , d , e , f , g , gG, h , u r e f

def e v a l c o e f f s e x t (x , y , xGb , yGb , ax , bx , ay , by , f f , gf , a11f , a12f
, a21f , a22f , a11 xf , a12 xf , a21 yf , a22 yf , b1f , b2f , c f , d1f ,
d2f , e1 f , e2 f , e3 f , e4 f , gGf , h1f , h2f , uf , uxf , uyf ) :

( ax1 , ax2 ) = ax ;
( ay1 , ay2 ) = ay ;
( bx1 , bx2 ) = bx ;
( by1 , by2 ) = by ;

N = x . s i z e ;
a11 = np . z e r o s ( [N, 1 ] , dtype=’ s i n g l e ’ ) ;
a12 = np . z e r o s ( [N, 1 ] , dtype=’ s i n g l e ’ ) ;
a21 = np . z e r o s ( [N, 1 ] , dtype=’ s i n g l e ’ ) ;
a22 = np . z e r o s ( [N, 1 ] , dtype=’ s i n g l e ’ ) ;
a11 x = np . z e r o s ( [N, 1 ] , dtype= ’ s i n g l e ’ ) ;
a12 x = np . z e r o s ( [N, 1 ] , dtype= ’ s i n g l e ’ ) ;
a21 y = np . z e r o s ( [N, 1 ] , dtype= ’ s i n g l e ’ ) ;
a22 y = np . z e r o s ( [N, 1 ] , dtype= ’ s i n g l e ’ ) ;
b1 = np . z e r o s ( [N, 1 ] , dtype=’ s i n g l e ’ ) ;
b2 = np . z e r o s ( [N, 1 ] , dtype=’ s i n g l e ’ ) ;
c = np . z e r o s ( [N, 1 ] , dtype=’ s i n g l e ’ ) ;

d1 = np . z e r o s ( [N, 1 ] , dtype=’ s i n g l e ’ ) ;
e1 = np . z e r o s ( [N, 1 ] , dtype=’ s i n g l e ’ ) ;
e2 = np . z e r o s ( [N, 1 ] , dtype=’ s i n g l e ’ ) ;
f = np . z e r o s ( [N, 1 ] , dtype=’ s i n g l e ’ ) ;
g = np . z e r o s ( [N, 1 ] , dtype=’ s i n g l e ’ ) ;
h1 = np . z e r o s ( [N, 1 ] , dtype=’ s i n g l e ’ ) ;
h2 = np . z e r o s ( [N, 1 ] , dtype=’ s i n g l e ’ ) ;
u r e f = np . z e r o s ( [N, 1 ] , dtype=’ s i n g l e ’ ) ;

for i in range (N) :
a11 [ i ] = a11 f ( x [ i ] , y [ i ] )
a12 [ i ] = a12 f ( x [ i ] , y [ i ] )
a21 [ i ] = a21 f ( x [ i ] , y [ i ] )
a22 [ i ] = a22 f ( x [ i ] , y [ i ] )
a11 x [ i ] = a11 x f ( x [ i ] , y [ i ] )
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a12 x [ i ] = a12 x f ( x [ i ] , y [ i ] )
a21 y [ i ] = a21 y f ( x [ i ] , y [ i ] )
a22 y [ i ] = a22 y f ( x [ i ] , y [ i ] )
b1 [ i ] = b1f ( x [ i ] , y [ i ] )
b2 [ i ] = b2f ( x [ i ] , y [ i ] )
e1 [ i ] = e1 f ( x [ i ] , y [ i ] )
e2 [ i ] = e2 f ( x [ i ] , y [ i ] )
c [ i ] = c f ( x [ i ] , y [ i ] )
d1 [ i ] = d1f ( x [ i ] , y [ i ] )
f [ i ] = f f ( x [ i ] , y [ i ] )
g [ i ] = g f ( x [ i ] , y [ i ] )
h1 [ i ] = h1f ( x [ i ] , y [ i ] )
h2 [ i ] = h2f ( x [ i ] , y [ i ] )
u r e f [ i ] = uf ( x [ i ] , y [ i ] )

nG = xGb. s i z e ;
e3 = np . z e r o s ( [ nG, 1 ] , dtype=’ s i n g l e ’ ) ;
e4 = np . z e r o s ( [ nG, 1 ] , dtype=’ s i n g l e ’ ) ;
gG = np . z e r o s ( [ nG, 1 ] , dtype=’ s i n g l e ’ ) ;
d2 = np . z e r o s ( [ nG, 1 ] , dtype=’ s i n g l e ’ ) ;

for i in range (nG) :
i f abs (xGb [ i ] − ax1 ) < 1e−4:

e3 [ i ] = 1 . 0 ;
gG[ i ] = uxf (xGb [ i ] , yGb [ i ] ) ;

e l i f abs (xGb [ i ] − bx1 ) < 1e−4:
e3 [ i ] = 1 . 0 ;
gG[ i ] = uxf (xGb [ i ] , yGb [ i ] ) ;

e l i f abs (yGb [ i ] − ay1 ) < 1e−4:
e4 [ i ] = 1 . 0 ;
gG[ i ] = uyf (xGb [ i ] , yGb [ i ] ) ;

e l i f abs (yGb [ i ] − by1 ) < 1e−4:
e4 [ i ] = 1 . 0 ;
gG[ i ] = uyf (xGb [ i ] , yGb [ i ] ) ;

e l i f abs (xGb [ i ] − ax2 ) < 1e−2:
e3 [ i ] = 1 . 0 ;
gG[ i ] = uxf (xGb [ i ] , yGb [ i ] ) ;

e l i f abs (xGb [ i ] − bx2 ) < 1e−2:
e3 [ i ] = 1 . 0 ;
gG[ i ] = uxf (xGb [ i ] , yGb [ i ] ) ;

e l i f abs (yGb [ i ] − ay2 ) < 1e−2:
e4 [ i ] = 1 . 0 ;
gG[ i ] = uyf (xGb [ i ] , yGb [ i ] ) ;

e l i f abs (yGb [ i ] − by2 ) < 1e−2:
e4 [ i ] = 1 . 0 ;
gG[ i ] = uyf (xGb [ i ] , yGb [ i ] ) ;
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return a11 , a12 , a21 , a22 , a11 x , a12 x , a21 y , a22 y , b1 , b2 , c , d1
, d2 , e1 , e2 , e3 , e4 , f , g , gG, h1 , h2 , u r e f

#Test the PDE So lver
def PDE2 Test (Nx,Ny , p , L , asmbFlag , s l vF lag ) :

#MAGIC=” ExtLaplaceDum Nx%dNy%dp%dL%d” % (Nx ,Ny , p , L)
MAGIC=” BH1 Nx%dNy%dp%dL%d” % (Nx,Ny , p , L)
GRID =” GridBH1 Nx%dNy%dp%d” % (Nx, Ny , p)

# MAGIC=” BH1TwB Nx%dNy%dp%dL%d” % (Nx ,Ny , p , L)
# GRID =” GridBH1TwB Nx%dNy%dp%d” % (Nx , Ny , p )

##############################TIMING
####################################

print ” Sta r t ing the PDE ExtTest:% f ” % (tm . time ( ) − t0 )
##############################TIMING

####################################

x , y = sym . symbols ( ’ xy ’ , commutative=True )
#u = 1/(1+1000∗( x∗∗2+y−0.3) ∗∗2) + 1/(1+1000∗( x+y−0.4) ∗∗2)+

1./(1+1000∗( x+y∗∗2−0.5) ∗∗2) + 1./(1+1000∗( x∗∗2+y∗∗2−0.25)∗∗2)
u = 1/(1+x∗∗2+y∗∗2)
ux = sym . d i f f (u , ’ x ’ ) ; uy = sym . d i f f (u , ’ y ’ ) ;
#############################################################
#EQUATION SETUP HERE:
#############################################################
#Standard he lmo l t z equat ion
#############################################################
a11 = 0 . ; a12 = 0 ; a21 = 0 ; a22 = 0 . ;
a11 x = sym . d i f f ( a11 , ’ x ’ ) ; a12 x = sym . d i f f ( a12 , ’ x ’ ) ;
a21 y = sym . d i f f ( a21 , ’ y ’ ) ; a22 y = sym . d i f f ( a22 , ’ y ’ ) ;
b1 = 0 ; b2 = 0 ;
c = 1 . 0 ;
d1 = 1 . ; d2=1. ;
e1 = 0 . ; e2 = 0 . ; e3 = 0 . ; e4 = 0 . ;
h1 = 1 . ; h2 = 1 . ;
##############################################################
f , g , gG = varPDE2 Evalfg (h1 , h2 , a11 , a12 , a21 , a22 , b1 , b2 , c ,

d1 , d2 , e1 , e2 , e3 , e4 , u )
##############################################################
##############################################################
##############################TIMING

####################################
print ”Done with Symbolic s t u f f :% f ” % (tm . time ( ) − t0 )
##############################TIMING

####################################
#Now f and g are a v a i l a b l e s ymbo l i c a l l y , need to e va l u a t e them
f f = sym . lambdify ( ( x , y ) , f )
g f = sym . lambdify ( ( x , y ) , g )
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gGf = sym . lambdify ( ( x , y ) ,gG)
h1f = sym . lambdify ( ( x , y ) , h1 )
h2f = sym . lambdify ( ( x , y ) , h2 )
a11 f = sym . lambdify ( ( x , y ) , a11 )
a12 f = sym . lambdify ( ( x , y ) , a12 )
a21 f = sym . lambdify ( ( x , y ) , a21 )
a22 f = sym . lambdify ( ( x , y ) , a22 )
a11 x f = sym . lambdify ( ( x , y ) , a11 x )
a12 x f = sym . lambdify ( ( x , y ) , a12 x )
a21 y f = sym . lambdify ( ( x , y ) , a21 y )
a22 y f = sym . lambdify ( ( x , y ) , a22 y )
b1f = sym . lambdify ( ( x , y ) , b1 )
b2f = sym . lambdify ( ( x , y ) , b2 )
c f = sym . lambdify ( ( x , y ) , c )
d1f = sym . lambdify ( ( x , y ) , d1 )
d2f = sym . lambdify ( ( x , y ) , d2 )
e1 f = sym . lambdify ( ( x , y ) , e1 )
e2 f = sym . lambdify ( ( x , y ) , e2 )
e3 f = sym . lambdify ( ( x , y ) , e3 )
e4 f = sym . lambdify ( ( x , y ) , e4 )
uf = sym . lambdify ( ( x , y ) , u )
uxf = sym . lambdify ( ( x , y ) , ux )
uyf = sym . lambdify ( ( x , y ) , uy )
##############################TIMING

####################################
print ”Done with lamdi fy ing :% f ” % (tm . time ( ) − t0 )
##############################TIMING

####################################
##############################################################
#GEOMETRY SETUP HERE
##############################################################
#SQUARE REGION
##############################################################
xo = 0 . ; yo=0.#Center o f the square
width = 1 . 0 ; he ight = 1 . 0 ;

try :
gr idfname = ”%s . gz” %(GRID)
fGrid=gz . open ( gridfname , ” rb” ) ;
( xi , yi , xb , yb ,xG,yG,xGb,yGb , nn i ) = pkl . load ( fGrid )
fGrid . c l o s e ( )

except IOError :
print ”Grid f i l e does not ex i s t , g ene ra t ing one . . . ”
gr idfname = ”%s . gz” %(GRID)
xi1 , yi1 , xb1 , yb1 = gene r a t e g r i d (Nx ,Ny, xo , yo , width , height ,

’ r e gu l a r ’ , p) ;

235



LISTINGS

xi2 , yi2 , xb2 , yb2 = gene r a t e g r i d (Nx ,Ny, xo , yo , 0 . 5 , 0 . 5 , ’
r e gu l a r ’ , p) ;

p o l y i n = np . bmat( ’ xb2 yb2 ’ ) ;
#v = np . z e ros ( x i1 . shape ) == 1 . 0 ;
#fo r i in range ( x i1 . s i z e ) :
# v [ i ] = po i n t i n p o l y ( x i1 [ i ] , y i1 [ i ] , p o l y in ) ;
v = p o i n t p o l y p a r a l l e l ( xi1 , yi1 , po l y i n )
x s i = xi1 [ ˜ v ] ; y s i = yi1 [ ˜ v ] ;
x s i = x s i . reshape ( x s i . s i z e , 1)
y s i = y s i . reshape ( y s i . s i z e , 1)
thr = 0 .75∗width/Nx
xi , y i = cleanup boundary (xb2 , yb2 , xs i , y s i , thr )
xb = np . ar ray (np . bmat( ’ xb1 ; xb2 ’ ) ) ; yb = np . ar ray (np . bmat( ’

yb1 ; yb2 ’ ) ) ;
xG, yG, nn i = f ind Ghost Layer ( xi , yi , xb , yb , L∗width /(2∗Nx

) ∗∗0 .5 )
nG = xG. s i z e ;
xG = xG. reshape (nG, 1)
yG = yG. reshape (nG, 1)
xGb = np . z e r o s ( [ nG, 1 ] ) ; yGb = np . z e r o s ( [ nG, 1 ] ) ;
#Find the neares t corresponding boundary po in t s .
for i t e r in range (nG) :

dk = (xG[ i t e r ]−xb ) ∗∗2+(yG[ i t e r ]−yb ) ∗∗2
dk = dk . reshape (dk . s i z e , 1)
ibk = np . a r g s o r t (dk , a x i s=0)
xGb [ i t e r ] = xb [ ibk [ 0 ] ] ; #Picks the c l o s e s t one
yGb [ i t e r ] = yb [ ibk [ 0 ] ] ;

fGr id=gz . open ( gridfname , ”wb” ) ;
pkl . dump( ( xi , yi , xb , yb ,xG,yG,xGb,yGb , nn i ) , fGr id )
fGrid . c l o s e ( )

##############################TIMING
####################################

print ”Done with Input g r id g ene ra t i on :% f ” % (tm . time ( ) − t0 )
##############################TIMING

####################################
# p l . f i g u r e ( )
# p l . s c a t t e r (np . array ( x i ) . f l a t t e n ( ) , np . array ( y i ) . f l a t t e n ( ) ,

marker=’x ’)
# p l . s c a t t e r (np . array ( xb ) . f l a t t e n ( ) , np . array ( yb ) . f l a t t e n ( ) ,

marker=’o ’ , c=’g ’)
# p l . s c a t t e r (np . array (xG) . f l a t t e n ( ) , np . array (yG) . f l a t t e n ( ) ,

marker=’o ’ , c=’b ’)
# p l . s c a t t e r (np . array (xGb) . f l a t t e n ( ) , np . array (yGb) . f l a t t e n ( ) ,

marker=’o ’ , c=’y ’)
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# p l . l e gend ( ( ’ I n t e r i o r po in t ’ , ’Boundary Point ’ , ’ Ghost I n t e r i o r
’ , ’GhostBoundary Point ’) , l o c=”lower r i g h t ” , bbox t o anchor
=(0.5 ,0 .5) )

# return −1

x = np . bmat( ’ x i ; xb ’ ) ; y = np . bmat( ’ y i ; yb ’ ) ;
n i = x i . s i z e ; nb = xb . s i z e ;

N = ni+nb ;
ax1 = xo − width / 2 . 0 ; bx1 = xo + width / 2 . 0 ;
ay1 = yo − he ight / 2 . 0 ; by1 = yo + he ight / 2 . 0 ;

ax2 = xo − 0 . 2 5 ; bx2 = xo + 0 . 2 5 ;
ay2 = yo − 0 . 2 5 ; by2 = yo + 0 . 2 5 ;

# pr in t ”%1.6e ,%1.6 e” %(ax1 , ay1 )
# pr in t ”%1.6e ,%1.6 e” %(ax2 , ay2 )
# pr in t ”%1.6e ,%1.6 e” %(bx1 , by1 )
# pr in t ”%1.6e ,%1.6 e” %(bx2 , by2 )

ax = ( ax1 , ax2 ) ;
bx = (bx1 , bx2 ) ;
ay = ( ay1 , ay2 ) ;
by = (by1 , by2 ) ;

a , b , c , d , e , f , g , gG, h , u r e f = e v a l c o e f f s e x tP a r (x , y , xGb , yGb , ax ,
bx , ay , by , f f , gf , a11f , a12f , a21f , a22f , a11 xf , a12 xf ,
a21 yf , a22 yf , b1f , b2f , c f , d1f , d2f , e1 f , e2 f , e3 f , e4 f ,
gGf , h1f , h2f , uf , uxf , uyf )

# p l . f i g u r e ( ) ; p l . p l o t ( e [2]+ e [ 3 ] )
zp = ( e [2 ]+ e [ 3 ] == 0 . 0 )
i f np . any ( zp ) :

print ” i n c o r r e c t Ghost setup ”
return −1

# pr in t zp
# p l . f i g u r e ( ) ; p l . s c a t t e r (xGb [ zp ] , yGb [ zp ] ) ; re turn −1

##############################TIMING
####################################

print ”Done with Eval c o e f f s :% f ” % (tm . time ( ) − t0 )
##############################TIMING

####################################

#Set up l , s
l = L/(x . s i z e ) ∗∗0 .5
s = 15
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i f asmbFlag :
PDE2 Assemble ( xi , yi , xb , yb , xG, yG, xGb, yGb , nn i , h , a , b

, c , d , e , f , g , gG, l , s , MAGIC, 0 , u r e f )

##############################TIMING
####################################

print ”Done with Assemble:% f ” % (tm . time ( ) − t0 )
##############################TIMING

####################################

i f s l vF lag :
u MSN, x , y , condNo , res idue , errLS , maxBand , ta , ts , r e s i d s

= PDE2 Solve ( xi , yi , xb , yb , xG, yG, xGb, yGb , nn i , h ,
a , b , c , d , e , f , g , gG, l , s , MAGIC, 0 , u r e f )

e r r = np . abs (u MSN . reshape (u MSN. s i z e , 1 )−u r e f )
errMaxrel = np .max( e r r ) /np .max( u r e f )

else :
( errMaxrel , u MSN, x , y , condNo , res idue , errLS , maxBand , ta ,

t s ) = (−1 , −1, −1, −1, −1, −1, −1, −1, −1,−1)

return errMaxrel , condNo , res idue , errLS , maxBand , u MSN, x , y ,
ta , t s

def PDE2( asmbFlag , s l vF lag ) :
global t0
t0 = tm . time ( )
print ”Beginning ! ! . . . ” ; print tm . ctime ( ) ;
NList = np . ar ray ( [ 1 0 0 ] )
#Used f o r Dec13 , 14 th 1 s t s e t o f data
#pLis t = np . array ( [ 1 . 0 , 2 . 0 , 2 0 . 0 ] )
pLis t = np . ar ray ( [ 2 . 0 ] )
L l i s t = np . ar ray ( [ 3 . 0 ] )
errMaxrel = np . z e r o s ( [ pLis t . s i z e , NList . s i z e , L l i s t . s i z e ] )
condNo = np . z e r o s ( [ pLis t . s i z e , NList . s i z e , L l i s t . s i z e ] )
r e s i du e = np . z e r o s ( [ pLis t . s i z e , NList . s i z e , L l i s t . s i z e ] )
errLS = np . z e r o s ( [ pLis t . s i z e , NList . s i z e , L l i s t . s i z e ] )
bandwidth = np . z e r o s ( [ pLis t . s i z e , NList . s i z e , L l i s t . s i z e ] )
t imes = np . z e r o s ( [ pLis t . s i z e , NList . s i z e , L l i s t . s i z e ] )
timea = np . z e r o s ( [ pLis t . s i z e , NList . s i z e , L l i s t . s i z e ] )
timesp = np . z e r o s ( [ pLis t . s i z e , NList . s i z e , L l i s t . s i z e ] )

print ”Maximum Relative Error” , ”Condition Number” , ”Residue ” , ”
Error in LS System” , ”Bandwidth” , ” Wal l t ime in Seconds ”

for i t e r in range ( pLis t . s i z e ) :
for j t e r in range ( NList . s i z e ) :

for kte r in range ( L l i s t . s i z e ) :
PDE2Dump = open ( ’BH1 May3 Dum. data ’ , ’ a ’ )
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t1 = tm . time ( )
errMaxrel [ i t e r , j t e r , k t e r ] , condNo [ i t e r , j t e r , k t e r ] ,

r e s i du e [ i t e r , j t e r , k t e r ] , errLS [ i t e r , j t e r , k t e r ] ,
bandwidth [ i t e r , j t e r , k t e r ] , uMSN, x , y , ta , t s =
PDE2 Test ( NList [ j t e r ] , NList [ j t e r ] , pL i s t [ i t e r ] ,
L l i s t [ k t e r ] , asmbFlag , s l vF lag )

t2 = tm . time ( )
t imes [ i t e r , j t e r , k t e r ] = t2−t1
timea [ i t e r , j t e r , k t e r ] = ta
timesp [ i t e r , j t e r , k t e r ] = t s
print NList [ j t e r ] , pL i s t [ i t e r ] , L l i s t [ k t e r ] , errMaxrel [

i t e r , j t e r , k t e r ] , condNo [ i t e r , j t e r , k t e r ] , r e s i du e [ i t e r
, j t e r , k t e r ] , errLS [ i t e r , j t e r , k t e r ] , bandwidth [ i t e r ,
j t e r , k t e r ] , t imes [ i t e r , j t e r , k t e r ] , ta , t s

PDE2Obj = ( NList [ j t e r ] , pL i s t [ i t e r ] , L l i s t [ k t e r ] , uMSN,
x , y , errMaxrel [ i t e r , j t e r , k t e r ] , condNo [ i t e r , j t e r ,

k t e r ] , r e s i du e [ i t e r , j t e r , k t e r ] , errLS [ i t e r , j t e r , k t e r
] , bandwidth [ i t e r , j t e r , k t e r ] , t imes [ i t e r , j t e r ,
k t e r ] , ta , t s )

pkl . dump(PDE2Obj , PDE2Dump)
PDE2Dump. c l o s e

return errMaxrel , condNo , res idue , errLS , bandwidth , times , timea
, timesp

#PDE2(True , True ) #Run with p a r a l l e l qsub
PDE2( False , True ) #Run with Largemem qsub
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