
Tips for using ATS Anairiats

by S. Chandrasekaran

Email: shiv@ece.ucsb.edu

September 1, 2011

ATS demands a lot more than other functional languages. Here I have assembled some tips that
I mostly gathered by observing Hongwei Xi debug my programs. My hope is that this docu-
ment will grow with contributions from all ATS users.

1. Interchanging template type parameters and polymorphic type parameters.
Instead of fun foo {a:nat} (...): void = ... you type fun {a:nat} foo (...):

void = This can pass the type-checker and still fail to compile. Pay close attention
to mixing these two types of parameters. Template parameters are only needed when the
size of the type needs to be known in the code. When using templated code pass the tem-
plate parameters explicitly: goo<double> (), etc.

2. Obvious type errors. Sometimes the compiler will say some type is not right, even
though you think the correct type can be derived. Sometimes this is because some of the
polymorphic variables need to be supplied. Remember you need to enumerate them from
left to right as they occur in their definition. For example this is frequently needed
array_ptr_initialize_clo_tsz {double} (pf | ...). That {double} specification is
the key here.

3. Something is not found. There are three ways to include .sats (1) and .dats (2)
files.

1. staload “fname.sats”

2. staload _(*anonymous*) = “fname.dats”

3. dynload “fname.dats”

These are distinct forms. Sometimes you will need all three. If you need to use functions
in goo.sats in foo.dats, then in foo.dats use the first form of goo.sats. The last two
forms are usually only needed in the main program, say main.dats. If goo.dats contains
full template implementations then you will use form 2 of goo.dats in main.dats. If the
goo library require initialization then you will use form 3 of goo.dats in main.dats. If
the compiler says that some template definition cannot be found, then you need form 2.
If it complains about dynload_flag not being available instead then you need form 3.
There is one more rule about partial template definitions. A full template definition looks
like implementation{a} foo {..} ... (..., whereas a partial template definition
looks like implementation foo<T> {...} ... (.... When you use a partial template
definition then in the main program you need to include that definition as follows

local (* empty *) in

#include “goo.dats”

end

You can put as many #include’s as needed in the local statement. Hongwei’s latest sug-
gestion is to do this as follows instead

local #include “goo.dats” in (*empty*) end

as this will prevent the contamination of the local namespaces with names from goo.

1

4. .hat files. If you have a .dats file with both full and partial templates it might be diffi-
cult to avoid multiple definitions. Move all the partial templates into a .hats file and
local in #include “_.hats” end in the main program file. See previous comment for
the new desired form of this statement instead to avoid namespace pollution.

5. Closures. Note that cloptr1 does not require GC while cloref1 does. The suffix 1 just
indicates all effectrs are allowed. For example :<cloptr,!ntm> means it is a closure with
only (potentially) non-terminating effect.

6. Dynamic variables are not function arguments. This error message might indicate
that you have used variables in an internal function that has not been declared as a clo-
sure. Try :<cloptr> as the arrow decoration.

7. Closures on stack. To avoid GC and yet have higher-order functions you can allocate
closures on stack. The syntax is as follows:

var !p_foo = @lam (...) : int =<clo> ...

However, I don’t know how to make !p_foo a recursive function. In such cases one can declare
foo as a cloptr instead:

fun foo (...) :<cloptr1> int = ...

In this case, ATS will use malloc/free to allocate and free the closure at the end of the func-
tion scope. If malloc/free are not available, then you have to use @lam. Note, cloptr
does not need GC.

8. View not available. Sometimes when you use array_ptr_initialize_clo_tsz you
will loose the view of some external arrays that are needed by the closure. If that occurs
try adding the viewdef explicitly to the call array_ptr_initialize_clo_tsz {double}

{V} (...) etc.. You might find it convenient to use viewdef V = @[double][n] @ lx

or some such definition close-by. The same problem occurs when you try to use
GMAT_safe_mul in ATSfloat/nla.sats. In this case the call should usually look like
GMAT_safe_mul<a> {v1,v2} (... where v1 and v2 are usually defined as
viewdef v1 = GEMAT_v (a, m1, n1, ld1, l1) and similarly for v2. The view variables are a
must in this case.

9. Uninitialized arrays. These are hard to set-up yourself. See if you can use
array_ptr_initialize_clo_tsz. Writing an obvious recursion will not work as the
compiler will not be satsified that @[double?][m] » @[double][m] has truly been
accomplished, especially during the recursion.

10. Static initialization of arrays. This is not quite clear from the manual and tutorial.
The following syntax is an easy way to allocate and initialize an array:

val (free_gc, pf_A | p_A, M) = $arrsz {double} (1.0, ~2.0, 3.14)

where the type of !p_A is @[double][3] and M has type size_t 3. If you use the macro array
or matrix you can get some simplifications of the returned type. See array.sats and
matrix.sats for further information.

11. Uninitialized fmatrix. Sometimes you need to reference an entry you have already
made in order to fill in another entry. It is hard to convince the compiler the previous
entry is there when the type is of the form a: &fmatrix(double?,...). The simplest
approach is to

• fmatrix_ptr_initialize_elt<double> (..., a, ...)

2

• prval pf = view@ a // change the default view

• work with a using the new implicit default view@ a = fmatrix(double, ...)

• prval () = view@ a := pf // reset the view

If a proof is already available explicitly with the uninitialized state you can update the
master type with a trivial statement of the form:
prval pf_arr = pf_arr

Here is a another solution suggested by Hongwei Xi. Here is the code that will not work:

fun f (x: &int? » int): void = let

val () = x := 0

val () = if x > 0 then x := 1

in

end

as the master type in the if is still int?. The new fix is:

fun f (x: &int? » int): void = let

val () = x := 0

val () = if :(x: int) => x > 0 then x := 1

in

end

Note the change in syntax of the if statement. The old solution would be:

fun f (x: &int? » int): void = let

val () = x := 0

prval pf = view@ x

val () = if x > 0 then x := 1

prval () = view@ x := pf

in

end

This works because the master type of pf is int @ x. For for statements master types
can be introduced via the following syntax:
for* (pf_arr: array_v (int, N, l)) => (i := 0; i < N; i := i + 1)

p_arr->[i] := 42

12. Proofs and if statements. Frequently one runs into the following situation:

pf: GMAT_v (a?, m, n, ld, l)

val () = if n > 1 then ... pf := GMAT (a, m, n, ld, l)

else ... pf := GMAT (a, m, n, ld, l)

and yet after the if statement the type of pf will still be of the form a?. To fix this use a
state type as follows
val () = if :(pf: GMAT (a, m, n, ld, l)) => n > 1 then .. else

Note that the type in the if statment is the type of pf after the if statement.

13. Uninitialized array errors. If you see the error message contains lines like:
S2Etyarr(S2Etop(0; S2Ecst(double)), then you probably have an uninitialized array
where an initialized array is required.

14. Static variables. Getting hold of a static variable can be tricky sometimes. Here are
some common forms:

• stavar l: addr

val _ = &x: ptr l // x: &type

3

• val [mn:int] (pf_mn | mn) = m imul2 n

• val [n:int] n = int1_of (2 * x + y * z - a * a)

• val [l:addr] (pf_gc, pf_arr | p) = array_ptr_alloc<double> (n)

• var acc = 0 // implicit stavar acc: addr val _ = &acc: ptr acc

Perusing libats/DATS/fmatrix.dats is one of the best ways to get familiar with this.

15. prval vs. val. Sometimes type-checking will pass but you will get strange type errors
when you go for the full compile. Look at the suspect line. Did you use val when you
should have used prval? Sometimes you will get a message like internal error:

_the_dynctx_find_ and it will mention a prfun or something like that.

16. Syntactically the same. Sometimes two quantities that are the same will be rejected
by the type-checker. For example minimum of two size types. In this case try to give the
minimum a static name. For example

• starvar mn : int

• val MN = min_size1_size1 (M, N) : size_t mn

Now mn is known to be equal to min(m,n) where M : int m and N : int n. Another
way is to explicitly coerce the proof

• prval pf = pf : array_v (a, n, l)

17. Two identical static variables. Sometimes you can define two static variables that are
identical in the same scope and get strange error messages that two identical types don’t
have the same size.

18. Unused for-all variable. For example suppose if you have

• fn foo {a:int} {b:addr} (..

but actually you never use b anywhere. Then when you call foo the compiler will com-
plain because it cannot fit b. So if you see a message like no static variable fits the

constraints, look for the extra for-all variable.

19. Datatypes and GC. If a datatype has only unary constructors then it is represented
internally as integers. So there is no need for GC in this case.

20. extern vs. fun. Sometimes you will get strange compile time errors (involving the key
word _dynctx_) about a perfectly typed function. If that function is declared as fn and
used in a template in the local file then you will get this error. The way out is to declare
it as extern and then implement it.

21. Array access. Use xs.[i] in preference to xs[i]. You will get fewer type errors.

22. scase vs. case. This is more subtle than I thought. For prfun {n:int} foo (pf:

@[int][n] @ l): ... , you have to use scase on n, but case on pf.

23. Proof closures. For these either use llam or even just lam ... =<lin> as llam ...

=<x> is the same as lam ... =<lin,x>.

4

24. Compiler crashes. Okay, this is too generic, but if the type checker crashes, one pos-
sible reason could be that a view static variable needs to be explicitly stated. This will
happen with functions that take arguments that are closures. For example, routines like
array_ptr_initialize_clo_tsz {a} {v} and GMAT_ptr_initialize_clo<a> {v}

require the view variable to be mentioned explicitly for the type checking to succeed
without stack overflow.

25. Records and tuples with views. To define records with embedded proofs you can do
@{pf_arr = array_v (a, n, l), size = size_t n, ptr = ptr l}, whereas with
tuples you would do @(array_v (a, n, l) | size_t n, ptr l). Note the lack of a
vertical bar for records.

26. Order of record fields. When you create a record as val a = @{m = 1, s = “He”}:

R, the order of the fields m and s must follow the definition order for viewtypedef R =

@{m = int, s = string}. This is to ensure that there is a fixed semantics for side-
effects when the record is instantiated field-by-field.

27. fold@ and free@. These can only be used with dataviewtype’s; not with tuples and
records. For tuples and records use their field names to access interior parts. For example
g.3->g.pf_gmat.

28. Accessing sub-fields of dataviewtypes. This is essentially a cut-and-paste of an email
I got from Hongwei. Suppose we define

datatype list_vt (a:type) =

| list_vt_nil (a) of ()

| list_vt_cons (a) of (a, list_vt (a))

and implement the function

fun{a:t@ype} length (xs: !list_vt (a)): int =

case xs of

| list_cons (x, xs1) => fold@ xs; 1 + length (xs1)

| list_nil () => fold@ xs; 0

then this will not type-check. We took out xs1 from the cons cell but did not return it.
You can fix it by using pointers as shown below.

fun{a:t@ype} length (xs: !list_vt (a)): int =

case xs of

| list_cons (x, !p_xs1) => fold@ xs; 1 + length (!p_xs1)

| list_nil () => fold@ xs; 0

or

fun{a:t@ype} length (xs: !list_vt (a)): int =

case xs of

| list_cons (x, !pxs1) => let

val xs1 = !p_xs1 // get it out

val n1 = length (xs1)

val () = !p_xs1 := xs1 // return it

in

fold@ xs; n1+1

end

| list_nil () => fold@ xs; 0

5

29. If you malloc_gc a block and then displace the pointer from the beginning of the block,
GC might reclaim your block. If you need to do this, use malloc_ngc instead. Then, of
course, you must reclaim the block yourself.

30. #[n:int | n > 0]. Very rarely, you will need to declare a function of the form

fun foo (..., x: &int » int n, ...) :<> #[n:int | n > 0] =

let ... in ... end

Note that the static variable for x is used before being declared. The syntax #[n...]

extends the scope of n correctly (for exact details you are going to have to ask Hongwei
himself).

31. Returning a static variable. Say you have a function fun foo (): [n:int] (int n).
Sometimes the compiler will not be able to figure out the static variable for the return
value. In that case you can add it explicitly yourself using the following syntax:

let ... in #[n | my_val_n] end

32. Conflicting names and staload. From 0.1.9 onwards if you open two .sats files with
conflicting names ATS will complain. The way out is to give at least one of them a
module name. As of now number.sats and complex.sats both have abs defined inter-
nally. So do staload C = libc/SATS/complex.sats to resolve the name conflict.

33. Wrapping C libraries. For simplicity, assume that the C code is in foo.c with headers
in foo.h. You will create 4 ATS files: foo.sats, foo.dats, foo.hats and foo.cats.

i. In foo.cats place any C wrappers you need so that it becomes easier to make the
call from ATS. Make sure that the first two lines are

#ifndef ATSFOO

#define ATSFOO

Then place the rest of your C code and make the last line

#endif

This ensures that when the file foo.cats is included multiple times in the generated C

code you don’t generate compiler errors. Make sure to include the C header file in
foo.cats with a statement of the form

#include “foo.h”

ii. In your foo.sats file include the foo.cats with the lines

%{#

#include “foo.cats”

%}

This is the way that C fragments are included in .sats files. This will also ensure that
any types and #define’s that you need to introduce are available to you. Now
define your ATS version of the C API.

iii. If you need to define full template implementations of the form

implement{a} goo (a, b, c) = ...

put them in foo.dats.

6

iv. If you need to define partial template implementations of the form

implement goo<double> (a, b, c) = “double_goo”

put them in foo.hats.

v. Suppose now that your main program resides in main.dats. You can access your
new ATS API via

staload “foo.sats”

or, if you do not want to open the whole module and cause name clashes, via

staload F = “foo.sats”

To allow access to the full template implementations you also need the line

staload _ = “foo.dats”

To allow name safe access to the partial template implementation you also need the line

local #include foo.hats in (* empty *) end

Finally, in case your library needs run-time initialization you also need

dynload “foo.dats”

vi. In your Makefile you will use a command that looks like

atscc foo.sats foo.dats main.dats -o foo -lfoo

vii. In the next tip I talk about controlling dynamic loading.

34. Dynamic loading of .dats. What happens if you don’t need run-time initialization for
foo.dats? If you skip dynload “foo.dats” in main.dats, the ATS compiler will com-
plain. The way out is to add the following line to foo.dats

#define ATS_DYNLOADFLAG 0 // dynamic load at run-time not needed

If you do this, please make sure that foo.dats only has functions and function templates. If
you have a top-level expression of the form

val global_value = my_function ()

it will not be evaluated if you turn-off dynamic loading for this file. This will also prevent
global_value from being marked as a root by the gc. So be cautious in turning off
dynamic loading.

35. Dynamic loading of .sats. Strangely enough even a .sats file has to be compiled and
loaded at run-time. To prevent this add the line

#define ATS_STALOADFLAG 0 // no staload at run-time

If you do this, please make sure that there are no datatype’s or exception’s defined in the
.sats file.

7

36. static inline for C glue. When writing C code make sure to mark it as static

inline to prevent multiple definitions:

static inline ats_size_type foo (ats_size_type n) {

return (ats_size_type) (5 * n);

};

37. Fake proofs from C functions. A typical situation requires that the user provides a
work-space array of m entries, if the data size is n, where m is related to n by some compli-
cated function. If this relationship is not satisfied you might incur a run-time error. The
way out is to define an abstract proposition encapsulating the relationship:

absprop MyProp (n:int, m:int)

Let int comp_workspace_size (int n); be the C function that computes the work-
space size. You can declare the C function thus:

extern fun ats_comp_workspace_size {n:int} (n: int n):

[m:int] @(MyProp (n,m) | int m)

= “comp_workspace_size”

Now ats_comp_workspace_size will return not only the correct workspace size, but also
a certificate that the other functions can demand to see before they use the workspace of
size m with the data of size n.

38. Strange missing template compiler errors. Sometimes the compiler will complain
that a template instantiation for certain types is missing. Assuming you did not mess up
how templates should be defined and loaded, look at the types that the compiler is trying
to find a template for. If the types look strange it could be that you have forgotten to
explicitly include the template type parameters in a template call somewhere. For
example you might have my_template (x, y), rather than my_template<float, int>

(x,y). The ATS compiler will insert template type parameters on its own, but sometimes
they are not the ones for which you have instantiations. Adding the types explicitly will
help.

39. How to use list_vt. There are 3 ways to pass list_vt arguments to functions:

i. fun foo (v: list_vt (...)) : void. In this case the list is consumed after the
function call and not available for later use. A typical example would be freeing
the list.

ii. fun foo (v: !list_vt (...)) : void. Here the pointer to the head of the list
is passed in. So anything that it points to can be modified, but you will continue
to have access to the same pointer to the head of the list.

iii. fun foo (v: &list_vt (...)) : void. Here address of the pointer to the head
of the list is passed in. So in principle the function could change even the pointer
to the head of the list. In other words inside foo we can have a statement of the
form v := new_list_vt. This would be illegal in either of the earlier forms. Note
that in both of the earlier forms, the contents of any cons cell, like the tail for
example, can be assigned. So there is no write-protection in the earlier forms.

Just remember that v: list_vt, mean that v is actually a pointer to the head struct of
the list. As far as I can tell you probably can (should?) avoid version iii. For example,
while the tutorial uses this form for reverse_append, list_vt.sats does not have a
single instance of this!

8

