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1 Introduction

Let the M columns of the matrix X ∈RN×M denote points in RN that we would like to cluster, using the
K-means algorithm for example. The word cluster does not seem to have a unique mathematical meaning
in the literature, but is used in a variety of situations for different purposes. Loosely speaking one would
like to partition the M columns Xj of X into mutually exclusive subsets such that columns in the same
subset are close to each other while columns in different subsets are far apart from each other. Suppose we
divide the columns into K subsets Sk for 06 k <K. Then a possible mathematical problem that captures
the intent is to pick subsets Sk such that the sum of the squares of the intra-cluster separations,

∑

06k<K

∑

Xi,Xj∈Sk

‖Xi−Xj‖2,

is minimized, where ‖·‖ denotes the Euclidean norm.
(One reason for squaring the distance is to simplify the optimization algorithm when the Eucliden norm

is used.) However, for reasons of practicality and efficiency, the K-means algorithm uses a different (but
equivalent in the case of squared Euclidean distance with weights) formulation.

The Sk are restricted to Voronoi cells. To each Sk there is assigned a column Yk such that x∈Sk if k is
the smallest integer for which

‖x− Yk‖= min
06l<K

‖x− Yl‖.

While this can be used with arbitrary norms, that is of no interest in this paper, and we will continue
assuming that the norm is the standard Euclidean norm. In this formulation it is usually conventional to
measure the goodness of a clustering via the expression,

∑

06k<K

∑

Xj∈Sk

‖Xj− Yk‖2.

This considerably decreases the flop count of algorithms that try minimize the above expression, as there
are many fewer terms involved if K≪M .

There are many algorithms that directly or indirectly try minimize the above expression over the K
columns Yj. However it is difficult to the find the global minimum and the quality of the local minimum
may not be good, though there does not necessarily seem to be agreement over this in the literature, as the
precise local minima at which the algorithm stops depends on the starting point.

The aim of this paper is to consider a larger class of objective functions for choosing the partitioning
of the columns Xj, in order to provide more flexibility in practice, while at the same time retaining the
guaranteed descent feature of the standard K-means algorithm. In fact the standard K-means algorithm
will be a special case. However, we do not claim that the clusters our algorithm computes will be better in
practice; this must be determined by the data and intended use of the clusters. (We provide data on some
synthetic data sets in the experimental section.) Nor do we provide statistical justifications for our choice
of objective functions, even though these would clearly be of great interest, as this would be non-trivial and
would deviate from the main aim of the paper.

We propose two changes to the standard K-means algorithm. The first is that we try to bring in some
flavor of hierarchical clustering, and the second is that we bring in an explicit penalty term for inter-cluster
distance.
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To mimic one level of hierarchical clustering we represent the subset Sk as a union of Voronoi cells Sk;l:
Sk=∪lSk;l.

To penalize gaps between clusters we bring in terms of the form

−‖Yk;l− Yp;i‖2.
Note the negative sign which encourages these distances to become larger during the optimization process.

The rest of the paper works through the details of a K-means style algorithm with guaranteed descent.

2 Notation

Let R denote the set of reals, N the set of non-negative integers, and N+ the set of positive integers. Let
Np= {0, 1, ..., p− 1}, for p∈N, with N0= {}.

Let ‖·‖ denote the standard Euclidean 2–norm. Let ‖·‖F denote the Frobenius norm.
Let e denote the vector of all ones; the dimension will be apparent from the context.
Breaking from custom, we will place row indices on the left. For example, Ai j will denote the (i, j)-th

entry of the matrix A. We will also use Aj to denote the j-th column of A, while Ai will denote the i-th row
of A. We will use a double index notation for block matrices. So Ap; k; will denote the (p, k)-th block sub-
matrix of A, and Ap;i k;j will denote the (i, j)-th entry of the block Ap; k;. Frequently our row and column
indices will start with 0 rather than 1.

Let N,L,K ∈N+. Let Y ∈RN×L. Block partition the columns of Y into K blocks:

Y =( Y0; Y1; ··· YK−1; ).

Let l∈N+
K for K ∈N+, and let Yk;∈RN×lk for k∈NK; that is lk denotes the number of columns in Yk; and

∑

k∈NK

lk=L.

Using Y and λ, partition RN into K mutually disjoint subsets Sk according to the following membership
rule: x∈RN is assigned to Sk if k is the smallest integer for which

min
l∈Nlk

‖x− Yk;l‖= min
p∈NK

min
j∈Nl p

‖x− Yp;j‖.

Let Sk;l, for l ∈Nlk, denote lk mutually disjoint subsets of Sk. The membership rule for Sk;l is as follows:
x∈Sk is assigned to Sk;l if l is the smallest integer for which

‖x−Yk;l‖= min
n∈Nlk

‖x− Yk;n‖.

We will call Sk;l as a sub-cluster and Sk as a cluster.
Let Xk;l denote the sub-matrix of X that contains all the columns of X that lie in Sk;l.

3 Problem

Let M,N ∈N+. Let 1<L1∈N+. Let X ∈RN×M and Ω∈RN be given. Let α, β> 0 and ς , γ > 0 be given.

Let Y ∈RN×L for some 0<L6L1. Let K ∈N+ and l∈N+
K such that

∑

k∈NK
lk=L. Let

F (Y , λ) =
∑

k∈NK

∑

l∈Nlk

‖Xk;l−Yk;l eT ‖F2 (1)

+ α
∑

k∈NK

∑

l<n∈N lk

‖Yk;l− Yk;n‖2

+
β

γ

∑

k<p∈NK

∑

l∈Nlk
, j∈Nl p

(1− γ ‖Yk;l− Yp;j‖2)

+ ς ‖Y −ΩeT ‖F2 .
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Given X, Ω, α, β, ς , γ, L1, find L, Y , K and l, which solves the minimization problem

min
Y ,l

F (Y , λ),

when

β <
ς

2(L1− 1)
.

The global optimum is hard to find, so we settle for a “local” minima, though the word “local” is dubious
in a discrete setting. The bound on β is needed to ensure that F is bounded from below. We recommend
choosing γ to be reasonably small so as to discourage the formation of empty sub-clusters. ( See Proposition
5.) A good default choice for Ω is the global mean

Ω=
Xe

M
.

The role of α is to encourage sub-clusters belonging to a single cluster to be close together, while the role
of β and γ is to encourage clusters to be well-separated. The role of ς is purely technical at this point; it
keeps F bounded from below when some sub-clusters become empty.

There are several components to this problem and it is difficult to find a linear presentation. Assuming
that the reader is familiar with the K-means algorithm we begin with a rough outline of the algorithm and
then present the details. Our goal is a guaranteed descent algorithm to a local minimum.

4 The Algorithm

The algorithm is a form of block coordinate descent, complicated by the presence of a combinatorial part.
The algorithm proceeds in multiple stages. In each stage we guarantee that F is non-increasing.

1. Initialize Y (essentially randomly from columns of X) with K =L1. (Section 5.)

2. Assign columns of X by the nearest center rule. (Section 6.)

3. Repeat:

A) Compute C, T and R. (Section 7.)

B) For each column Yk;l:

a) If sub-cluster Sk;l is empty delete if descent is possible. (Section 7.2.)

b) Else among the following choices, pick the one with maximum descent:

i. Split off sub-cluster into its own cluster if descent is possible. (Section 7.3.)

ii. Transfer sub-cluster to another cluster if descent is possible. (Section 7.4.)

iii. Swap with another sub-cluster if descent is possible. (Section 7.5.)

c) Update l, T , R and other variables as needed. (Section 12.7.)

C) Freeze all partitions Sk;l and move Y to the nearest critical point. (Section 8.)

D) For each column Xj:

a) If L<L1 and if Xj= YK;0 would lead to descent take this path. (Section 7.1.)

b) Else assign to nearest Yk;l (guarantee descent). (Section 6.)

c) If Xj changed membership, freeze all the partitions Sk;l and modify Y to reach nearest
local minimum (guarantee descent). (Section 8.)

4. Until no (significant) descent

We point out a key difference with what most people call Lloyd’s [15] or Forgy’s [12] version of the K-means
algorithm: we update the centers every time Xj is re-assigned. This second version of K-means is known to
be more efficient in the Euclidean case [13, 14]. Furthermore, it guarantees (modulo floating-point errors)
that no empty clusters will be produced by K-means, which is a frequent problem in Forgy’s version.
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We now present the details of the various steps. We also give some details about the local minima where
the algorithm can stop. Some of the detailed algebraic calculations are relegated to the appendix.

Proposition 1. The cost of one loop, steps B, C and D, is O(NML+L2) flops. Each step of the loop is
guaranteed not to increase the objective function.

Proof. Established in the propositions below. �

5 Initializing Y

We use standard random techniques. Let Q∈N be a positive integer.

1. Choose Q columns of X randomly. Find one with the largest separation and keep as the first column
of Y .

2. L1− 1 times do the following:

a) Choose Q columns randomly from X. Keep the one furthest from the current set of Y columns
as the next column of Y . If the largest distance is zero, this step must be repeated until the
largest distance becomes non-zero.

Choose K =L1, so every column of Y corresponds to a cluster, and there are L1 initial clusters. As long as
there are enough distinct columns in X this process will terminate in a finite number of iterations and cost
O(Q2N+QNL1

2) flops.
This is the costliest stage and to balance the cost we must pick Q such that Q≪min ( MIL1

√
,MI /L1)

where I is the number of iterations that the algorithm will run, which is of course not available a priori.

6 Assigning Xj

Column Xj is assigned to Sk;l following the standard membership rule described in Section 2. The cost of
assigning one Xj is O(NL) flops. The objective function is guaranteed not to increase, and strict decrease
is assured if Xj changes its membership.

The first time we are guaranteed that each Sk;l = Sk will be non-empty. The remaining times this
guarantee is not available.

The total cost of assigning all columns of X is O(NML) flops.

7 Re-arranging sub-clusters

The symmetric two-dimensional array C will be used to hold the distances between the columns of Y . Let

Ck;l k;l = ‖Yk;l−Ω‖2, k ∈NK , l∈Nlk,

Ck;l k;n = ‖Yk;l− Yk;n‖2, l=/ n∈Nlk,

Ck;l p;i = ‖Yk;l− Yp;i‖2, k=/ p∈NK , l∈Nlk, i∈Nlp
.

The two-dimensional array T will be used to hold the distances between columns of Y and sub-clusters,
while the one-dimensional array R will hold the distances from columns of Y to all sub-clusters that it is
not a member of. Let

Tk;l k =
∑

l=/n∈N lk

Ck;l k;n, k ∈NK , l∈Nlk,

Tk;l p =
∑

i∈Nl p

Ck;l p;i, k=/ p∈NK , l∈Nlk,

Rk;l =
∑

k=/ p∈NK

Tk;l p, k ∈NK , l∈Nlk
.
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Note that C ∈RL×L, T ∈RL×K and R∈RL.

Proposition 2. C, T and R can be computed in O(NL2) flops.

Proof. It is easy to see that C can be computed in O(NL2) flops.

Tk;l k can be computed in O(lk) flops. With some care Tk; k can be computed in O(lk) flops too. Tk;l p

can be computed in O(lp) flops, and Tk; p can be computed in O(lp lk) flops. Hence T can be computed in
O(L2) flops.

Rk;l can be computed in O(K) flops, and Rk; can be computed in O(lkK) flops. Therefore R can be
computed in O(KL) flops, or, more generously, in O(L2) flops. �

Based on C, T and R, we re-arrange the sub-clusters, changing the membership of at most two columns
of Y at a time, while still ensuring descent of F . In this section alone we will let F1 denote the value of F
before the intended operation, and let F2 denote the value of F after the intended operation. The operation
will cause a strict decrease in the value of F , if F1−F2> 0.

There are four possible operations we consider for each column Yk;l, and there is a fifth one for introducing
a new Yk;l.

Note that we do not entertain operations that look at three columns of Y at the same time, since the step
will become L times slower. However, in some situations it might be worthwhile to do so, especially if L∼N .

7.1 Assigning Xj its own cluster

If L<L1 there is room to create new clusters.

Proposition 3. If L<L1 and Xj ∈Sk;l, then introducing YK;0=Xj will result in

F1−F2= ‖Xj− Yk;l‖2+ β

(

‖Xj e
T − Y ‖F2 −

L

γ

)

− ς ‖Xj −Ω‖2.

This also gives one way to interpret γ, and one of the effects of ς—it discourages the creation of clusters
away from Ω. It also shows one of the significant differences with K-means, where new clusters can be
easily introduced, and the number of clusters must be controlled explicitly. In our algorithm the constants
indirectly influence the number of clusters and should produce a smoother way to tune the algorithm in
practice.

Note that Yk;l occurs twice in the above expression.

Proof. From equation (1) we can compute

F1−F2 = ‖Xj − Yk;l‖2− ς ‖Xj −Ω‖2− β
γ
(L− γ‖Xj e

T − Y ‖F2 ).
�

7.2 Deleting an empty sub-cluster

It possible that after the columns of X have been re-assigned to the columns of Y , some subset Sk;l associated
with Yk;l might be empty. In this case we give priority to deleting this sub-cluster if possible and decrement
L by 1 if we succeed.

Proposition 4. If Sk;l= {} then deleting Yk;l will result in

F1−F2=α Tk;l k+ ς Ck;l k;l+
β

γ
(L− lk)− βRk;l. (2)

Once C, T and R, are available, this can be computed in O(1) flops.
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Proof. From equation (6) we can compute

F1−F2=α Tk;l k+
β

γ
(L− lk−γRk;l)+ ς Ck;l k;l. �

Proposition 5. If

γ6
ς − 2β (L1− 1)

2
(

‖X‖2 M
√

+ ς ‖Ω‖2 L1

√ ), (3)

then expression ( 2) is always non-negative.

Proof. Follows from Proposition 15. �

Thus with sufficiently small choice of γ the algorithm will always delete empty sub-clusters. We do not
recommend setting γ this small as the upper bound is extremely loose and would not enforce large gaps
between clusters.

If Yk;l is deleted then we need to update C, T and R efficiently. See Proposition 23.

7.3 Splitting off a sub-cluster

We now develop a criteria to check if Yk;l should be split off into its own cluster in case lk>1, and if K
should be increased by one.

Proposition 6. If Yk;l is split off into its own cluster

F1−F2=(α+ β) Tk;l k− β
γ
(lk−1).

This can be computed in O(1) flops once T and l are available.

Proof. We can compute from equation (6)

F1−F2 = α Tk;l k+
β

γ
(L− lk−γRk;l)+ ς Ck;l k;l

− β

γ
(L− lk−γRk;l)− ς Ck;l k;l

− β

γ
(lk−1− γ Tk;l k)

= (α+ β) Tk;l k− β
γ
(lk−1).

�

We note that large values for γ will encourage sub-clusters to split off. This is another reason to keep
γ reasonably small. This also gives a good thumb rule for tuning γ on synthetic data sets.

If Yk;l is split off then C, T and R have to be updated efficiently. See Proposition 24.

7.4 Transferring a sub-cluster to another cluster

Proposition 7. If Yk;l is transferred from cluster k to cluster p then

F1−F2=(α+ β) ( Tk;l k− Tk;l p)− β
γ
(lk−lp−1),

and this can be computed in O(1) flops once T and l are available.
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Proof. We compute from equation (6)

F1−F2 = α Tk;l k+ ς Ck;l k;l

+
β

γ
(lp−γ Tk;l p)+

β

γ
(L− lp−lk−γ (Rk;l− Tk;l p))

− α Tk;l p− ς Ck;l k;l

− β

γ
(lk−1− γ Tk;l k)− β

γ
(L− lp−lk−γ (Rk;l− Tk;l p))

= (α+ β) Tk;l k− (α+ β) Tk;l p+
β

γ
(lp−lk+1).

�

If Yk;l is tranferred to cluster p, then T and R have to be updated efficiently. See Proposition 25.
Note that if γ is not sufficiently large, huge clusters will gobble up small clusters.

7.5 Swapping two sub-clusters

Proposition 8. If Yk;l is swapped with Yp;i then

F1−F2=(α+ β) ( Tk;l k+ Tp;i p− Tk;l p− Tp;i k+2 Ck;l p;i).

Proof. From equation (6) we can compute

F1−F2 = α Tk;l k+
β

γ
(lp−γ Tk;l p)

+ α Tp;i p+
β

γ
(lk−γ Tp;i k)

− α ( Tp;i k− Cp;i k;l)−α ( Tk;l p− Ck;l p;i)

− β

γ
(lp−γ Tp;i p− γ Cp;i k;l)− β

γ
(lk−γ Tk;l k− γ Ck;l p;i)

= (α+ β) Tk;l k+(α+ β) Tp;i p

− (α+ β) Tk;l p− (α+ β) Tp;i k

+ Cp;i k;l(α+ β) + Ck;l p;i(α+ β).

�

If the swap is carried out T and R must be updated. See Proposition 26.

8 Descending Y

Suppose we freeze the membership of the columns of X in the subsets Sk;l. What is the optimal choice for
Y ? In the K-means case the optimal choice is clearly the mean of each cluster. In our case the answer is
only a little more complicated.

Define the matrix A∈RL×L as follows:

Ak;l k;l = |Sk;l|+α (lk−1)+ ς − β (L− lk), (4)

Ak;l k;n = −α, l=/ n∈Nlk,

Ak;l p;i = +β, k=/ p∈NK , i∈Nlp
,

where |S | denotes the cardinality of the set S. Define the matrix W ∈RN×L as follows:

Wk;l=Xk;l e.

We assume that Wk;l=0 if Sk;l= {}.

Proposition 9. For a fixed set of Sk;l and a fixed l, there is exactly one minimum point:

Y =(W + ςΩeT)A−1.

Descending Y 7



Proof. See proof of Proposition 16 and the discussion leading up to it. �

Proposition 10. For a fixed set of Sk;l and a fixed l, the unique critical point Y can be computed in O(NL)
flops.

Proof. See Proposition 22 and the argument leading to it. �

Note that this cost is comparable to the cost of assigning one column Xj to its optimal sub-cluster. So
re-computing Y for every such assignment only affects the constant in the flop count. However, the reason
for doing so, is similar to that of the non-standard K-means algorithm: it reduces the chance of producing
empty sub-clusters.

9 Numerical experiments

Tests were carried out on a bunch of random synthetic data that were generated as follows. Let M1 ∈N+.
Let Tk;∈RN×M1 be a random matrix with entries chosen uniformly from [−1,1]. Let S ∈RN×K be a random
matrix with entries chosen uniformly from [−1, 1]. Let D∈RK×K be a diagonal matrix with entries chosen
uniformly from [−ν , ν] for ν ∈R and fixed. Let Xk;=Tk;+ Dk kSk e

T .
Let Ck; represent a clustering of the columns of X into K1 clusters. Let Ck l denote the number of columns

of Xl; that are in Ck;. Let

Kl= argmaxk∈NK1
Ck l,

and

Lk = argmaxl∈NK
Ck l.

Let

S(C)=
∑

l∈NK

∑

k∈NK1
,k=/Kl

Ck l+
∑

k∈NK1

∑

l∈NK,l=/Lk

Ck l.

(S(C) is the sum of false positives and negatives when those concepts make sense.) We can simplify this

S(C) =
∑

l∈NK

(M1− CK(l) l)+
∑

k∈NK1

(|Ck;| − Ck L(k))

= M −
∑

l∈NK

CK(l) l+M −
∑

k∈NK1

Ck L(k)

= 2M −
∑

l∈NK

CK(l) l−
∑

k∈NK1

Ck L(k).

Using the nearest center rule we can partition the columns of X into K clusters Ξk; using the K columns
of SD. Note that these may not be the same as Xk;. Let Y and Λ be computed by the new method, and
let the resulting clustering of the columns of X into K1 clusters be denoted by Zk;. We will measure the
goodness of Y and Λ by the number

score IMP =S(Ξ)−S(Z).

This number lies in the range [−2M, 2M ] and bigger numbers are taken to indicate that the clustering Z
was good in some sense. Note that one advantage of this measure is that it does not benefit lumping all
of X into a single cluster, or, breaking it all up into M clusters, since every clustering is compared to the
putative right clustering Xk;. One disadvantage is that sometimes Xk; is not the right clustering and our
method can be penalized for finding it.

Note that a score of 0 should be considered as excellent for this data set.
We will also compare against a K-means algorithm. Our implementation uses the same initialization

routine as IMP except with a much larger value of Q. It also updates the cluster centers every time a column
of X is re-assigned. We did this so as to avoid empty clusters. The K-means algorithm was provided with
the correct value of K and ran it until it reached a local minimum. In fact we did this for both algorithms.
IMP was provided with a starting value of L1= 2K and left to work out the true number of clusters. Both
algorithms were run until they reached their local minimum and no attempt was made at early termination.
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We chose some of the parameters as follows:

L1 = 2K,

M =

{

KM1, no outliers,
(K +1)M1, with M1 outliers,

ς =
M1

2000
,

β =
ς

2.00001 (L1− 1)
,

α = 2 (L1− 1) β,

Q (for K-means) = K,

Q (for fIMP) =

{

30, if K = 100,
40, if K = 200,

ν = 10K1/N log2 (K),

Number of trials =

{

100, if K = 100,
50, if K = 200.

The experimental results for K = 100 are summarized in Table 1 and for K = 200 in Table 2.

N M1 γ × 104 Losses1 fIMP score Losses2 K-means score Time fIMP Time K-means
7 30 4 42 −6 8 −31 0.60 0.04
14 30 4 53 −6 14 −28 1.08 0.07
28 60 4 47 −8 11 −58 4.03 0.26
56 120 3 26 −15 1 −129 17.32 1.16
112 240 3 23 −14 6 −237 80.81 5.35

Table 1. Experimental results for K=100. The column Losses1 reports the number of times the fIMP score was strictly

negative out of 100 trials. The column “fIMP score” reports the average score for fIMP across 100 trials. The columns

Losses2 reports the number of times the score for fIMP was strictly worse than the score for K-means out of 100 trials.

The column “K-means score” reports the average score for K-means. The column “Time fIMP” reports the average

running time for fIMP in seconds. The column “Time K-means” reports the average running time for K-means in seconds.

N M1 γ × 104 Losses1 fIMP score Losses2 K-means score Time fIMP Time K-means
7 30 2.5 36 −8 9 −39 4.60 0.23
14 30 2 40 −14 9 −48 8.12 0.39
28 60 2 33 −16 4 −83 29.60 1.23
56 120 2 33 −37 8 −158 138.91 5.60
112 240 0.8 16 −73 3 −296 665.94 23.98

Table 2. Experimental results for K = 200. The column Losses1 reports the number of times the fIMP score was

strictly negative out of 50 trials. The column “fIMP score” reports the average score for fIMP across 50 trials. The

columns Losses2 reports the number of times the score for fIMP was strictly worse than the score for K-means out of

50 trials. The column “K-means score” reports the average score for K-means. The column “Time fIMP” reports the

average running time for fIMP in seconds. The column “Time K-means” reports the average running time for K-means

in seconds. Note that compared to Table 1 both M and K are doubled in corresponding rows.

For this specific synthetic data set and initialization strategy we conjecture that fIMP takes O(NMK2)
flops to find a local minima while K-means takes O(NMK) flops. We conjecture that on average fIMP

comes close to the global minimum while K-means is off by about one cluster. It is crucial to note that
this synthetic data set has no outliers, the clusters tend to collide more frequently near the origin, and the
clusters are convex (cubical) in shape. So these conjectures are only in this very restrictive setting.

The next set of experiments was essentially a repeat of the previous set with outliers thrown in. In
particular for every run we added M1 points distributed randomly in [−ν, ν]N. The scoring however was
restricted to the non-outliers and there was no penalty for empty clusters. To enable K-means to do well
in this situation we seeded it with K +M1 centers. For fIMP we chose L1 = 2K as usual. The results for
K = 100 are shown in Table 3 and for K = 200 shown in Table 4.
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N M1 γ × 104 Losses1 fIMP score Losses2 K-means score Time fIMP Time K-means
7 30 4 33 −6 12 −24 0.45 0.06
14 30 4 54 −9 12 −27 0.80 0.10
28 60 4 32 −8 0 −86 2.33 0.57
56 120 3 21 −15 0 −400 9.71 4.00
112 240 3 14 −26 0 −1428 46.36 32.22

Table 3. Experimental results for K = 100 with M1 outliers. The column Losses1 reports the number of times the

fIMP score was strictly negative out of 100 trials. The column “fIMP score” reports the average score for fIMP across

100 trials. The columns Losses2 reports the number of times the score for fIMP was strictly worse than the score for K-

means out of 100 trials. The column “K-means score” reports the average score for K-means. The column “Time fIMP”

reports the average running time for fIMP in seconds. The column “Time K-means” reports the average running time

for K-means in seconds.

N M1 γ × 104 Losses1 fIMP score Losses2 K-means score Time fIMP Time K-means
7 30 2 31 −14 4 −44 3.98 0.29
14 30 2 39 −10 11 −33 6.99 0.45
28 60 2 34 −21 2 −90 22.13 2.00
56 120 2 25 −27 0 −337 96.93 11.89
112 240 1 19 −71 0 −1602 500.21 84.31

Table 4. Experimental results for K= 200 with M1 outliers. The column Losses1 reports the number of times the fIMP

score was strictly negative out of 50 trials. The column “fIMP score” reports the average score for fIMP across 50 trials.

The columns Losses2 reports the number of times the score for fIMP was strictly worse than the score for K-means out

of 50 trials. The column “K-means score” reports the average score for K-means. The column “Time fIMP” reports the

average running time for fIMP in seconds. The column “Time K-means” reports the average running time for K-means

in seconds. Note that compared to Table 1 both M and K are doubled in corresponding rows.

10 Existing work

For a summary of early literature see [6, 8].
It is known that when there really are K clusters and enough effort is expended then, in some cases, K-

means will converge quickly to the right solution [1, 11]. On the other hand it is known that for ill-fated
configurations K-means can take a long time to converge [2].

Work has also been done on heuristic starting methods, for example [3], which also estimate K.
The work of Lindsten, Ohlsson and Lung [4, 5], replaces the K-means objective function with a convex

objective function with one continuous regularization parameter that replaces the discrete parameter K.
This objective function bears some resemblance to ours. However, we note that their objective function has
sums of norms, and not their squares, and so is more expensive to optimize and requires traditional interior
point methods. Furthermore, there are no negative terms in their objective function and hence no explicit
penalty for inter-cluster distances. Finally every cluster is represented by a single center as in the classical
K-means method and the algorithm starts with M (versus L1) cluster centers.

Another modified K-means objective function is that of [17]. However, this does not include negative
terms either.

Hierarchical clustering algorithms are asymptotically slower than K-means but there has been work on
making them faster, for example [7, 9].

Our algorithm leans heavily on the standard Euclidean norm, but other measures of similarity can be
important in practice [10].

Multi-point representations of clusters is implicit in the work of Rose et.al. on deterministic annealing [16].
Multi-point representations are also used in learning vector quantization [18].
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11 Future work

We have presented a single family of new objective functions for clustering. The advantage of this family is
that it retains the efficient time complexity of K-means while allowing a different set of local minima that
can be tuned via a few parameters.

However, there is a much larger family of objective functions that can be explored. For example, we could
consider other power laws on the distance, and we can allow many more constants.
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Our objective function can be viewed as an average linkage 2-level hierarchical clustering with gap
penalties scheme. The linkage can be viewed as a complete graph with cluster centers as vertices. A very
useful model would be to replace this graph with a spanning tree that is chosen dynamically to allow non-
spherical clusters and decrease the objective function (single linkage with gap penalties). However the details
for the corresponding fast solver becomes more complicated, so this will be addressed in a separate paper.

Our objective function corresponds to a spring–mass model, where some of the springs can be viewed
either as having a negative spring constant, or, as being wrapped around through the point at ∞. Based
on this physical model, one can see that we can consistently develop other objective functions, for example
using spring–mass–charge models (the exponents will no longer just be +2). What these model will loose
is the unique local minima for a fixed partition, but fast gradient descent will still be possible. The details
will be presented elsewhere.

It also would be nice to develop simple statistical models that can guide the user in the choice of the
objective functions.

Some of the more complicated objective functions require more sophisticated fast solvers to locate the
best Y . So this consideration also influences the choice of the objective function.

Our algorithm requires O(L2) working space memory. One can implement an algorithm that requires
less working space memory but more flops.

Our algorithm has an O(L2) combinatorial part in each iteration. This makes it non-scalable with respect
to the number of clusters. We can make it O(L) by only considering O(1) random cluster centers during the
combinatorial phase. The details will be presented elsewhere.

Applying deterministic annealing to these new objective functions will also be interesting.

12 Appendix

12.1 Additional notation

Let

A⊗B=





A1 1B A1 2B ···
A2 1B A2 2B ···
··· ··· ···



,

where A and B are two matrices. Let

vec(A) =





A1

A2
···



.

Let

tr(A)=
∑

i=1

n

Ai i,

where A∈Rn×n.

Let Y−k;l denote the sub-matrix of Yk; obtained by dropping Yk;l from Yk;. Let Y−k; denote the sub-
matrix of Y obtained by dropping the sub-matrix Yk; from Y .

12.2 Sums of square distances

Note that

‖A− yeT ‖F2 = tr((A− yeT )T(A− yeT ))
= tr((AT − eyT)(A−yeT ))
= tr(ATA−ATyeT − eyTA+ yTyeeT)

= tr(ATA)− 2yTAe+ yTyeTe

= ‖A‖F2 − 2yTAe+ ‖y‖2n, (5)
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where n is the number of columns in A.

12.3 Re-writing F

All the terms in F that depend on the single column Yk;l:

F (Y , l) = ‖Yk;l eT −Xk;l‖F2 +α ‖Yk;l eT − Y−k;l‖F2

+
β

γ
(L− lk−γ ‖Yk;l eT − Y−k‖F2 )

+ ς ‖Yk;l−Ω‖2+ terms independent of Yk;l. (6)

We can use identity (5) and expand it as:

F (Y , l) = ‖Xk;l‖F2 − 2Yk;l
T Xk;l e+ ‖Yk;l‖2 |Sk;l|

+ α ‖Y−k;l‖F2 − 2αYk;l
T Y−k;l e+α ‖Yk;l‖22 (lk−1)

+
β

γ
(L− lk−γ ‖Y−k‖F2 +2γYk;l

T Y−k e− γ ‖Yk;l‖2 (L− lk))

+ ς ‖Ω‖2− 2 ςYk;l
T Ω+ ς ‖Yk;l‖2

+ terms independent of Yk;l.

Gathering terms we get

F (Y , l) = ‖Xk;l‖F2 +α ‖Y−k;l‖F2 +
β

γ
(L− lk−γ ‖Y−k‖F2 )+ ς ‖Ω‖2

− 2Yk;l
T (Xk;l e+αY−k;l e+ ςΩ− βY−k e)

+ ‖Yk;l‖2 (|Sk;l|+α (lk−1)+ ς − β (L− lk))

+ terms independent of Yk;l. (7)

12.4 Gradient of F

From equation (7) we can compute the gradient:

1

2

∂F (Y , l)

∂Yk;l
= Yk;l (|Sk;l|+α (lk−1)+ ς − β (L− lk))

− (Xk;l e+αY−k;l e+ ςΩ− βY−k e). (8)

Note that this is the (k; l)-th block component of the gradient viewed as a column vector.
It is useful to re-write this in a simpler form. First we observe that A is symmetric.

Proposition 11. A=AT.

Proof. Obvious. �

Now we can write the gradient of F as

1

2

∂F (Y , l)

∂Y
=YA− (W + ςΩeT), (9)

where the gradient is now written as a matrix for convenience. In standard column form we can write

1

2

∂F (Y , l)

∂Y
=(A⊗ I) vec(Y )− vec(W )− ςe⊗Ω, (10)

where we used the fact that A is symmetric.

Proposition 12. A is strictly diagonally dominant and positive definite and

‖A−1‖2< 1

ς − 2β (L− 1)
,
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when L> 1.

Proof. We claim the diagonal entries are positive:

|Sk;l|+α (lk−1)+ ς − β (L− lk)> 0,

since

|Sk;l|+α (lk−1)+ ς − β (L− lk) >

ς + lk(α+ β)−α−Lβ >

ς +α+ β −α−Lβ >

ς − (L− 1) β > 0,

since by assumption

lk>1, β <
ς

2(L1− 1)
<

ς

L− 1
.

The sum of the absolute values of the entries in row (k; l) is given by

α (lk−1)+ β (L− lk).

We claim that this sum is strictly smaller than the corresponding diagonal term since

|Sk;l|+α (lk−1)+ ς − β (L− lk)−α (lk−1)− β (L− lk) =

|Sk;l|+ ς − 2β (L− lk) >

ς − 2β (L− 1) > 0,

since by assumption

β <
ς

2(L1− 1)
6

ς

2(L− 1)
.

Applying Gerschgorin’s theorem we also obtain

λmin(A)> ς − 2β (L− 1)> 0,

from which we obtain the desired upper bound on the 2-norm of A−1. �

Proposition 13.

‖W ‖26 ‖X‖2 M
√

.

Proof. From

Wk;l=Xk;l e

we obtain

‖Wk;l‖26 ‖X‖2 |Sk;l|
√

.

Therefore

‖W ‖26 ‖W ‖F 6 ‖X‖2 M
√

. �

Proposition 14. All critical points of F are uniformly bounded.

Proof. L>1 is the non-trivial case. From Proposition 12, it follows that the critical points that are solutions
of the equation

∂F (Y , λ)

∂Y
= YA− (W + ςΩeT) = 0,

satisfy the bound

‖Y ‖= ‖(W + ςΩeT )A−1‖6 ‖W + ςΩeT ‖ ‖A−1‖6 ‖W ‖+ ς ‖Ω‖ ‖e‖
ς − 2β (L− 1)

<∞,
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for any sub-multiplicative norm.

Since F is differentiable and bounded from below, there are no other critical points to consider.

Using Proposition 13 we also have the explicit uniform upper bound

‖Y ‖26 ‖X‖2 M
√

+ ς ‖Ω‖2 L
√

ς − 2β (L− 1)
6
‖X‖2 M

√
+ ς ‖Ω‖2 L1

√

ς − 2β (L1− 1)
. �

Proposition 15.

Rk;l6
2L1

(

‖X‖2 M
√

+ ς ‖Ω‖2 L1

√ )

ς − 2β (L1− 1)
.

Proof. Follows from the previous proposition and the easily established upper bound

Rk;l6 2L1 ‖Y ‖2. �

12.5 Hessian of F

From equation (8) we can compute the Hessian of F , denoted as 2H :

Hk;l k;l=
1

2

∂2F (Y , l)

∂2Yk;l
= (|Sk;l|+α (lk−1)+ ς − β (L− lk)) I ,

Hk;l k;n=
1

2

∂2F (Y , l)

∂Yk;l ∂Yk;n
= −αI ,

Hk;l p;i=
1

2

∂2F (Y , l)

∂Yk;l ∂Yp;i
= βI.

We can represent the Hessian in matrix form as

H =A⊗ I ,
which also follows from equation (10).

Proposition 16. All critical points of F are of the form Y =(W + ςΩeT )A−1 and correspond to local minima
of F.

Proof. Follows from the positive-definiteness of the Hessian H . �

Note that the formula for the critical point is a bit deceptive in appearance. For example, there is more
than one critical point, since the choice of l and Sk;l determine W and A.

12.6 Rapid application of A−1

We will depend on the Sherman–Morrison–Woodbury (SMW) formula

(I +UV T )−1=(I −U(I +V TU)−1V T). (11)

Let D denote the diagonal matrix

Dk;l k;l= |Sk;l|+αlk+ς − β(L− lk).

All Dk;l k;l can be computed in O(L) flops once |Sk;l| is known.
Note that

Dk;l k;l= Ak;l k;l+α> 0

since we have assumed that

α> 0.
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Let B denote the block-diagonal matrix

Bk; k;=(α+ β) eeT , k ∈NK ,

where the size of each block is chosen such that

A=D−B+ βeeT .

We first compute (D−B)−1 noting that we just have to invert the K diagonal blocks

Dk; k;− Bk; k;= Dk; k;− (α+ β) eeT = Dk; k;
1/2

(

I − (α+ β) Dk; k;
−1/2

eeT Dk; k;
−1/2

)

Dk; k;
1/2
.

Let

τk= eT Dk; k;
−1 e=

∑

l∈Nlk

1

Dk;l k;l
,

where τ ∈RK can be computed in O(L) flops if Dk;l k;l is available.

Proposition 17. ( Dk; k;− Bk; k;)
−1= Dk; k;

−1+
α+ β

1− (α+ β) τk
Dk; k;

−1 eeT Dk; k;
−1.

Proof. By equation (11). �

Proposition 18. σ= eT(D−B)−1e=
∑

k∈NK

τk
1− (α+ β) τk

.

Proof. We calculate:

σ= eT (D−B)−1e =
∑

k∈NK

eT( Dk; k;− Bk; k;)
−1e

=
∑

k∈NK

(

eT Dk; k;
−1e+

α+ β

1− (α+ β) τk
eT Dk; k;

−1 eeT Dk; k;
−1 e

)

=
∑

k∈NK

(

τk+
α+ β

1− (α+ β) τk
τk
2

)

=
∑

k∈NK

(

τk(1− (α+ β) τk)+ (α+ β) τk
2

1− (α+ β) τk

)

=
∑

k∈NK

(

τk− (α+ β) τk
2+(α+ β) τk

2

1− (α+ β) τk

)

=
∑

k∈NK

τk
1− (α+ β) τk

.

�

Proposition 19. A−1=(D−B)−1− β

1+ βσ
(D−B)−1eeT (D−B)−1.

Proof. By equation (11)

A−1 = (D−B+ βeeT)−1

= (D−B)−1− β

1+ βσ
(D−B)−1eeT (D−B)−1.

�

Proposition 20. ǫk;l=((D−B)−1e)k;l=
1

(1− (α+ β) τk) Dk;l k;l
.

The computation costs O(L) flops once Dk;l k;l and τk have been computed.
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Proof. Direct computation with formulas we have already found:

((D−B)−1e)k; = ( Dk; k;− Bk; k;)
−1e

= Dk; k;
−1e+

α+ β

1− (α+ β) τk
Dk; k;

−1 eeT Dk; k;
−1e

= Dk; k;
−1e

(

1+
α+ β

1− (α+ β) τk
eT Dk; k;

−1e

)

= Dk; k;
−1e

(

1+
(α+ β) τk

1− (α+ β) τk

)

= Dk; k;
−1e

(

1− (α+ β) τk+(α+ β) τk
1− (α+ β) τk

)

=
Dk; k;

−1e

1− (α+ β) τk
.

�

Proposition 21. Let

ψk;l=
zk;l
Dk;l k;l

µk=
∑

l∈N lk

ψk;l.

Then

wk;l=((D−B)−1z)k;l= ψk;l+
(α+ β) µk

(1− (α+ β) τk) Dk;l k;l
.

The cost of computing w=(D−B)−1z is O(L) flops once Dk;l k;l is available.

Proof. Direct computation with formulas we have already found:

((D−B)−1z)k; = ( Dk; k;− Bk; k;)
−1 zk;

= Dk; k;
−1zk;+

α+ β

1− (α+ β) τk
Dk; k;

−1 eeT Dk; k;
−1 zk;

= ψk;+
(α+ β)

(

eT Dk; k;
−1 zk;

)

1− (α+ β) τk
Dk; k;

−1 e

= ψk;+
(α+ β) µk

(1− (α+ β) τk)
Dk; k;

−1 e.

�

Proposition 22.

A−1z=w− β (ǫ
Tz)

1+ βσ
ǫ.

The cost is O(L) flops once σ, w and ǫ have been computed.

Proof. Direct computation with formulas we have already found:

A−1z = (D−B)−1z − β

1+ βσ
(D−B)−1eeT (D−B)−1z

= w− β (eT (D−B)−1z)

1+ βσ
(D−B)−1e

= w− β (ǫTz)

1+ βσ
ǫ.

�

12.7 Updating C, T and R

When Yk;l’s membership in cluster k is changed we have to update C, T and R efficiently. The following
propositions aid in this task, but are no means sufficient for the programmer, since the indices of the various
quantities must be updated too.
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Proposition 23. If Sk;l= {} and Yk;l is deleted, then the new T and R can be computed from the following
formulas:

Tk;n k ← Tk;n k− Ck;n k;l, l=/ n∈Nlk
,

Tp;i k ← Tp;i k− Cp;i k;l, k=/ p∈NK , i∈Nlp
,

Rp;i ← Rp;i− Cp;i k;l, k=/ p∈NK , i∈Nlp
.

This costs O(L) flops.

Proposition 24. If Yk;l is split off from cluster k, then let YK;0= Yk;l and

CK;0 p;i = Ck;l p;i, p∈NK , i∈Nlp
,

Tk;n k ← Tk;n k− Ck;n k;l, l=/ n∈Nlk
,

Tp;i k ← Tp;i k− Cp;i k;l, k=/ p∈NK , i∈Nlp
,

Tp;i K = Cp;i k;l, k=/ p∈NK , i∈Nlp
,

TK;0 p = Tk;l p, p∈NK ,

RK;0 = Rk;l+ Tk;l k.

The cost of this update is O(L) flops.

Proposition 25. If Yk;l is transferred to cluster p, then

Tq;j k ← Tq;j k− Cp;i k;l,

Tq;j p ← Tq;j p+ Cp;i k;l,

Rk;l ← Rk;l− Tk;l p+ Tk;l k,

Rp;i ← Rp;i− Cp;i k;l.

Proposition 26. If Yk;l is swapped with Yp;i, then

Tk;n k ← Tk;n k− Ck;n k;l+ Ck;n p;i

Tp;j p ← Tp;j p+ Cp;j k;l− Cp;j p;i

Tk;n p ← Tk;n p+ Ck;n k;l− Ck;n p;i

Tp;j k ← Tp;j k+ Cp;j p;i− Cp;j k;l

Rk;n ← Rk;n− Ck;n p;i+ Ck;n k;l

Rp;j ← Rp;j− Cp;j k;l+ Cp;j p;i.

The cost of the update is O(L) flops.
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